
Improved Hashing and Honey-Based Stronger
Password Prevention against Brute Force Attack

Khin Su Myat Moe
Department of Computer Engineering and Information

Technology
Yangon Technological University

Yangon, Myanmar
myatmoe.66@gmail.com

Thanda Win
Department of Computer Engineering and Information

Technology
Yangon Technological University

Yangon, Myanmar
thanda80@gmail.com

Honeyword generation method is one of the methods to
defense against the stolen password file from attackers. In this
approach, the system stores the list of password which
contains the real user’s password with honeywords from
honey generation algorithm. Hackers who steal databases of
user logins and passwords only have to guess a single correct
password in order to get access to the data. When the database
or password file becomes readable by using brute force attack,
the attackers get the secrete passwords. To speed up the
process, attackers have access to sophisticated software that
can send thousands of passwords each minute to applications
in an attempt to decrypt the data. Using higher speed, multi-
core processors also shortens the time it can take to break
encryption. With HE, decrypting with an incorrect password
results attempt. For example, if a hacker made 100 password
attempts, they would receive 100 plain text results. Even if
one of the passwords were correct, the real data would be
indistinguishable from the fake data [4].

The core innovation of the honeywords generation
scheme is to store the user’s real password with honeyword
and the classification of honeywords and user’s real password.
The current existing honeywords generation method has
weakness in password storage and old password management
problem. So we propose the following facts to overcome
vulnerability of the existing system.

• We propose honeywords generation methods to
reduce storage overhead problem, typo safety
problem and our proposed method is flatness.

• Moreover we propose hashing and salting algorithm
with very low time complexity for securing stored
passwords.

The rest of this paper describes as follows. In section II
and III, we discuss related work and research methodology
respectively. We present system flow of proposed method in
section IV and section V presents comparative study on
honeywords generation method. Section VI describes
experimental result for the hashing algorithm and finally we
conclude the paper.

II. RELATED WORK

Ziya Alper Genc, Suleyman Kardas, Mehmet Sabir Kiraz
discussed that password is easy to crack with the improvement

Abstract – Nowadays, security of password file is one of the most
important problems for millions of users and companies in
various fields. So, many systems store the password files in
database using the various hashing and salting algorithm.
However, password hashing is not secure by attackers because
they try to get user’s password in password file that are stored in
the database using various attacks such as brute force attack,
password guessing attack, etc. Therefore, some systems store the
passwords in the database with honeywords or fake passwords
using honeywords generation algorithm to prevent the attacks
from hackers. But the current existing system using honeywords
generation algorithm meets the two problems. The first problem
is typo safety problem and the last problem is storage overhead
problem. In this paper, we propose a novel honeyword
generation approach which decreases the storage overhead, typo
safety problem and also reduces the other drawbacks of existing
honeywords generation techniques such as old password
management problem, etc. Our proposed system stores the other
users’ passwords as honeywords in the database instead of
creating the honeywords for reducing storage overhead problem
and typo safety problem. Moreover, we store the password and
honeywords into the database using a unique hashing algorithm
with very low time complexity as most of the steps involved
simple binary operations.

Keywords – password file, hashing and salting algorithm, password
hashing, storage overhead problem, honeywords generation
algorithm

I. INTRODUCTION

The maintenance of password file in the database
becomes the main challenge in various areas because many
real world systems choose password based encryption
algorithm. So, the password files play an important role in
millions of users and companies such as Yahoo, RockYou,
LinkedIn, eHarmony and Adobe [1],[2] since leaked password
makes the user target of many possible cyber-attacks. Since,
many companies try to protect the password files using
hashing and sating algorithms. For example, LinkedIn
passwords were using the SHA-1 algorithm without a salt and
the eHarmonly passwords were also stored using unsalted
MD5 hashes [3]. If the password file is attacked by attacker
using password cracking techniques, the attackers can easily
get the password files.

2017 International Symposium on Electronics and Smart Devices

978-1-5386-2778-5/17/$31.00 ©2017 IEEE 1

in the graphical processing unit (GPU) technology. An
attacker can recover a user’s password using brute-force attack
on password hash. Once the password has been recovered no
server can detect any invalid user authentication [6].

Ari Jules and Ronald L. Rivest described that how
honeyword was produced and this honeyword was stored with
real user password in password file. The password file is
attacked by the hackers using brute force attack and this
system can deceive to the hackers. This method can be caused
storage overhead and typo safety problem. And then, they also
discussed the storage of the password file and key expansion
for covering brute force attack. Revealing the password file by
the attacker is a serious security problem that has affected
many users and company like LinkedIn, Yahoo, and
eHarmony [7].

Many technicians considered how to reduce storage
overhead problem and they created many methods. Among
them, the new honeywords generation also called honey
circular list or paired distance protocol (PDP) method was
described by Nilesh Chakraborty and Samrat Mondal. That
method can reduce storage overhead problem compared to the
earlier existing methods. But the storage overhead problem
has still remained in honey encryption process [8].

Many password systems, particularly for government and
industry users, store hashes of users' old passwords usually the
last 10 [9]. When a user changes her password, she is
prohibited in such systems from reusing any stored ones. The
related proposal by Schechter, Herley, and Mitzenmacher
[10], which relies on a similar data structure called a “count-
min sketch," allows one to reject new passwords that are
already in common use within a user population. A better
option is to not store old passwords on a per-user basis.

The example of existing system flow design of
honeywords generation algorithm is shown in following fig. 1.

Fig. 1. Existing System [5]

The existing system flow includes seven steps in the above
figure 1. Firstly, if the user is a new user, the user makes the
registration process. After making the registration process, the
system creates honeywords and honeyword indexes for
password file protection. On the other hand, the user makes
login process. When the user tries to login with his username
and password, the honeychecker checks the entire password is
the real password or honeyword. If the user has real password,

the system allows this user to enter the system. Otherwise, the
server sends an alarm message to the system administrator for
entering honeywords. However, there are some limitations in
honeywords generation process such as storage overhead
problem, old password management problem and so on.

III. RESEARCH METHODOLOGY

The main idea of this section is to overcome storage
overhead problem and old password management problem in
honeywords generation method. Moreover, we describe case
analysis of hashing and salting algorithm for securing
password file.

A. Honeywords Generation Method
Passwords are notoriously weak authentication

mechanism because users frequently choose poor and
repeatedly passwords. The attacker can easily know this poor
password. So, the system stores the correct password with
several honeywords for each account in the database to
deceive attackers. Honeywords also called decoyed passwords
are used to detect attack against hashed password database.
However, instead of generating honeywords and stored them
in the password file, we use the existing user passwords as
honeywords. In order to achieve this, the existing password
indexes for each account which we called honeyindexes, are
randomly assigned to a newly created account of user if the
new account is created. And then, if a new user that creates
new account, he gets randomly index number. The correct
hashing password for this account is kept with this index
number in the password list.

The main purpose of our method consists of two modules.
The first module is to reduce storage space compared to the
existing honeywords generation methods. The second module
is that our method don’t need to consider about typo safety
problem. By using the passwords of other users as
honeywords, the attackers become more complicate which
password is fake password or which password is correct.

For each user account, we create two password tables in
the database. The first table is stored into the main server and
the second table is stored into the honey checker. Honey
checker is an auxiliary secure server to assist with the use of
honeywords. The honey checker can save store secret
information and can raise an alarm to the administrator when
an irregularity is detected. Table I has two elements: first
element is the username of the account and the second is the
honeyindex set for the representative account. The table is
sorted randomly according to the user enter position. There are
also two elements in the second table. The first one is the real
password index of the account and the next is hashing of the
corresponding real password. The table is sorted randomly
according to the user registration position.

TABLE I
Example password files F1 in main server

Username Honeyindex Set

 John (2,3,4,5)

2

Marry (1,3,4,5)

Smith (1,2,4,5)

Joy (1,2,3,5)

Herry (1,2,3,4)

TABLE II
 Example password files F2 in Honey checker

Correct index Hashing password

1 D7F6A6763403E357C

2 A946A6763403876

3 E7F6A4567403E9A1

4 F6A67633333357C

5 C1234T7F6A67634

Fig.2 shows the flowchart for the verification process of
honeywords and real passwords. The main purpose of the
honeywords generation algorithm is to hide the real password
with many fake passwords.

Fig. 2 Flowchart for Verification of Honeywords and Real Passwords

 When a user sends a login request with password to the
server, the server checks this user’s password exists or not in
the database. If password doesn’t exist in password list, the
server returns unsuccessful login to user. On the other hand,
the server sends password to honey checker for classification
of honeywords and real password if the password is in the
password list. If the password is honeyword, the system raises
an alarm to system administrator. When password is real
password for this user account, the system allows this user to
enter into the system.

B. Hashing and Salting Algorithm
In our proposed system, hashing and salting algorithm is

considered to provide better security for key or password with
faster time. This algorithm is as follows:

Step 1: Convert user’s password into binary string.
Step 2: Adding padding bits to this binary string.
Step 3: Making flapping of the binary 1’s and 0’s in string.
Step 4: Perform XOR operation with salting binary string
and string formed by combination of zero’s and one’s
Step 5: Rotate the string left or right by r character
depending on the system.
Step 6: Convert the binary string into hexadecimal string.

C. Case Study I
Example- user selected password: hello123
Step1: Convert the input expression (password: hello123)
into binary string.
01101000 01100101 01101100 01101100 01101111
00110001 00110010 00110011

Step 2: Padding bits are added a random string of character
before making password hashing.
00000000 01101000 01100101 01101100 01101100
01101111 00110001 00110010 00110011

Step 3: Flapping of the binary 1’s and 0’s in the string.
11111111 10010111 10011010 10010011 10010011
10010000 11001110 11001101 11001100

Step 4: Performs XOR operation of binary strings with an
equal size string formed by combinations of X zero’s and
one’s. In this case, the value of X is 4. It means String2 is
formed with 4 zero’s and 4 one’s.
String1:
11111111 10010111 10011010 10010011 10010011
10010000 11001110 11001101 11001100
String 2:
00001111 00001111 00001111 00001111 00001111
00001111 00001111 00001111 00001111
After XORing,
11110000 10011000 10010101 10011100 10011100
10011111 11000001 11000010 11000011

Step 5: Rotates the string right by r characters. Here, the
value of r is 4. So, first 4 characters are rotated to the right.
00111111 00001001 10001001 01011001 11001001
11001001 11111100 00011100 00101100

Step 6: Convert the binary expression into hexadecimal
string.
The resulting password of hexadecimal string
(3f98959c9c9fc1c2c) is stored into the database.

IV. PROPOSED SYSTEM FLOW

In this system, there are two main parts: the first part is new
user registration process and the last part is member login

3

process. The flowchart for the proposed system is shown in
fig. 3. In this flowchart, the user makes the registration process
if the user is new user. Otherwise, the user can make the login
process. If the registration process successful, the system
creates honeywords for this user’s password. And then, this
user’s real password and honeywords are stored into the
database using hashing and salting algorithm. If the user is a
member of the system and he tries to enter into system, the
system checks whether this user’s password exists into the
database or not. If password doesn’t exist in the database, the
server returns unsuccessful login message is released to this
user. If this password exists in the database, the server sends
this user’s password to honeychecker for classification of real
password and honeyword. If the password is real password,
the honeychecker allows this user to enter into the system.
Otherwise, the honeychecker sends an alarm message to
administrator for entering the honeywords into the system.

Fig .3: Flowchart for the proposed system

V. COMPARATIVE STUDY ON HONEYWORDS GENERATION
METHODS

In this section, we describe the comparison of the
honeywords generation methods including our proposed
models in terms of flatness, typo safety and storage overhead.

A. Flatness

If the system maintains k sweetwords against a user ui then
attacker may get confused among k possible options once list
of Wi is compromised. The list of Wi contains one sugarword
(the real password) and (k-1) honeywords. Now it may happen
that t adversary can easily identify t password chosen by the
user from the list Wi (e.g if there exists a correlation between
username and password). A honeyword generation algorithm
is said to be perfecty-flat adversary has no advantage while
identifying the user’s original password from the list of Wi. If

the honeyword generation algorithm is perfectly flat then the
probability of selecting the original password of user from list
Wi is 1/k. If the probability of selecting user password from
the list Wi is slightly greater than 1/k, then the honeyword
generation algorithm is approximately-flat. A good honeyword
generation algorithm is required to be perfectly-flat [9].�

The proposed honeywords generation method is a good
honeywords generation method because the probability of
selecting the original password of user from password file is
1/k. So, our proposed system is perfectly flat because we use
the other user’s passwords as honeywords.

B. Typo Safety

A honeyword generation technique is called typo safe if
typing mistake of users during entering of the password does
not get match with any of the honeywords [9].

Our method is better than the existing method because we
choose the other user’s password as honeywords. So, we can
mostly reduce the typo safety problem because user cannot
misunderstand with other user passwords.

C. Storage Overhead

Using the existing honeyword generation algorithms
maintains k-1 extra passwords along with the original
password of user, in the password file F. On the other hand,
index of the original password of the user is maintained in
“honeychecker” server. If we assume that for storing a single
password, the existing system require (k-1)*n memory space.
In this process, we assume that k is number of sweetwords and
n is the number of users. For PDP method, the system
requires (1+RS)*n storage space. RS is the random string in
PDP methods [9].

Our proposed method takes (1*n) memory space and it
can save storage overhead which is huge benefits.

TABLE I. COMPARATIVE STUDY OF HONEYWORDS GENERATION
METHODS

No Methods Flatness Typo
Safety

Storage
Overhead

1 CTD 1/k Low (k-1)*n

2 Password Model 1/k High (k-1)*n

3 Take a Tail 1/k High (k-1)*n

4 PDP 1/k High (1+RS)*n

5 Our Proposed
Method

1/k High 1*n

CTD- Chaffing by Tweaking
PDP- Paired Distance Protocol
k- Number of sweetwords in password file
n- Number of users
RS- Random String

VI. EXPERIMENTAL RESULT FOR HASHING ALGORITHM

This password hashing scheme is implemented with python
programming language. This programming language was

4

designed to meet all the real world requirements with its key
features and easy for the programmers to learn and use
efficiently. In this technique the most important aspect is less
time complexity. The time complexity of an algorithm
determines the amount of time taken by an algorithm to run as
a function of the length of the string representing the input.

Suppose the user gives a password of different lengths such
as ‘hi45678, hello123, oranges321 and chocolate1234’, etc.
The time complexity of different length password in this
scheme is in table II.

TABLE II
Time Complexity for length of password

Length of password
(in characters)

Time complexity
(second)

7 3.050004

8 3.100004

9 3.140004

10 3.18005

VII. CONCLUSION

Honey encryption technique using honeywords becomes
various interesting challenging technique in security area
because it can provide several advantages over password
based scheme. In this paper, we present a novel honeywords
generation method which has much lesser storage space and it
can also reduce the majority of the drawbacks of the existing
honeywords generation techniques. The honeywords
generation method which is proposed here is an effective
technique and can be used in honey encryption and decryption
process. The proposed hashing and salting technique has much
lesser time complexity than Advanced Encryption Standard
(AES), Data Encryption Standard (DES) or any other
contemporary technique. In the future, we will apply this
honeywords generation method and hashing and salting
algorithm in real world application system that is need for
security such as message transmission process.

References
[1] Mirante, D and Justin,C, “Understanding Password Database

Compromise”, Technical Report TR-CSE-2013-02, Department of

Computer Science and Engineering Polytechnici Institute of NYU,
2013.

[2] Vence, A, “If your password is 123456, just make it hackme”, The New
York Times 20, 2010.

[3] Brown,K , “The danger of weak hashes”, Technical report, SANS
Institute InfoSec Reading Room, 2013.

[4] Prof. Rohini S. More, Prof. Smita S. Konda, “Resilient security against
hackers using enchanced encryption techniques: Blowfish and Honey
Encryption” International Journal on Recent and Innovation Trends in
Computing and Communication, Volume: 4 Issue: 6, June 2016.

[5] Ziya Alper Genc, Suleyman Kardas, Mehmet Sabir Kiraz, “Examination
of a New Defence Mechanism: Honeywords,” Inernational Journal of
Engineering Trends and Technology (IJETT), Volume 27 Number 4,
September 2015.

[6] Ari Jules, Ronald L. Rivest, “ Honeywords: Making Password-e
Cracking Detectable” MIT CSAIL, May 2, 2013.

[7] R. Gennaro and Y. Lindell, “A framework for password-based
authenticated key exchange,” In Advances in CryptologyEUROCRYPT
2003, pages 524–543. Springer, 2003

[8] Nirvan Tyagi [ntyagi], Jessica Wang [jzwang], Kevin Wen [kevinwen]
and Daniel Zuo [dzuo],, “Honey encryption Application,” Computer and
network Security, Springer, 2015.

[9] Defense Information Systems Agency (DISA) for the Department of
Defense (DOD), “Application security and development”, Security
technical implementation guide (STIG), version 3 release 4, 28 October
2011.

[10] S.Schechter, C. Herley and M.Mitzenmacher, “Popularity is everything:
a new approach to protecting passwords from statical guressing attacks”,
USENIX HotSec, pages1, 2010.

[11] Nilesh Charkraborty and Samrat Mondal, “A New Storage Optimized
Honeyword Generation Approach for Enhancing Security and
Usability,” 21, SEPT, 2015.

5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

