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Conformal Transformation and it's Applications 

 

Nilar Thein

 

 

Abstract 
This paper investigates flow past a flat plate and two-dimensional irrotational motion of fluid 

due to singularities between two fixed boundaries. The flow past a flat plate is obtained by 

using Joukowski transformation. It is also shown by examples that the conformal 

transformation can make a problem of irrotational flow treatable by converting an awkwardly 

shaped boundary into one of the simple forms.  

Keywords: flat plate, Joukowski transformation, conformal transformation, singularities. 

 

1. Conformal Transformation 

 Suppose that z and  are two complex variables defined by z x iy   and  = i   

where x, y, ,  are real variables. Suppose that z describes a certain curve C in the z-plane 

and   is related to z by means of the transformation   = f(z) where f(z) is analytic.  

 If f(z) is a single-valued function of z, then to each point in the z-plane, we can obtain 

a corresponding point in the  -plane. In this way, the curve C in the z-plane may be mapped 

into a curve C' in the  -plane. 

 
Figure 1 

 Suppose that the function f (z) is analytic. Let P, Q, R be neighboring points in the z-

plane such that OP= z, 1OQ z z  , 2OR z z .   

 
Figure 2 

 

Under the transformation   = f(z), suppose that P,Q, R, map into the points P', Q',R' 

respectively in the  -plane, where OP' =  , OQ' =   + 1 ,OR'=  + 2 .It is assumed that 
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1z , 2z , 1 , 2  are small. Since f(z) is analytic, 
d

dz


is unique at P. Thus, to the first 

order of smallness, 1 2

1 2z z

 


 
 (or)  1

2




= 1

2

z

z




 .    (1) 

Therefore,       1 1

2 2

z

z

 


 
,              (2)  arg

 1  arg 2 = arg 1z  arg z2 ,           (3) 

and   1 = 1

1z




 z1.  

Therefore, 1
1

1z


 


1z and arg 1 = arg 1

1z

 
 
 

+ arg z1. So in the neighborhood of the 

point P' distances are multiplied by the value of 1

1z




at P; this is called the magnification of 

the transformation.  

 From (2) and (3), we obtain 
P 'Q ' PQ

P 'R ' PR
  and R P Q RPQ     . Thus the triangles 

R P Q   and RPQ are similar. So an infinitesimal triangle in the z-plane maps into a similar 

infinitesimal triangle in the  -plane. Thus the mapping preserves the angles and the similarity 

of corresponding infinitesimal triangles. Such a transformation which has these properties is 

said to be conformal.  

Example: Transformation of w = z
2
 

 
Figure 3 

 

1.1 Applications of Conformal Transformation 

 Suppose there is a two-dimensional incompressible flow in the z-plane. On applying 

the conformal transformation   = g (z), the new plane of flow becomes the  -plane. Let  be 

the density of the fluid in both cases. Suppose further that C is a rigid boundary in the z-plane 

which maps into the curve C' in the  -plane. Let the complex velocity potential for the z-

plane be w = f(z) =  + i where the real functions (x,y), (x,y) are the usual velocity 

potential and stream function respectively. By means of the transformation  = g(z) it can 
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express w as a function f ( ) i      where   (  , ), ( , )   . At the 

corresponding points t, z, the complex potential w takes the same value so that ,   . 

 Now C is a rigid boundary in the z-plane and so also a streamline for which = 

constant. Thus along C',   = constant.  Therefore, C' is a streamline and also a rigid 

boundary. Therefore, under the conformal transformation, points on the streamline through a 

given point in the z-plane will transform into points on the stream line through the 

corresponding point in the  -plane. In particular, the boundaries of the fluid in z-plane will 

transform the boundaries in  -plane.  

 

1.2 Transformation of source and sink 

 
 Suppose there is a source of strength m  at P in the z-plane surrounded by a small 

closed curve C. By the definition of source, the flow across C is 2m. Under the conformal 

transformation the point P transforms into the point P' in the  -plane and the small closed 

curve C surrounding P in the z-plane transforms into a small closed curve C' surrounding P' in 

the        -plane. The flow across C is given in terms of the stream function by 
C

d  . Since 

each point on C' corresponds to one and only one point on C, this is equal to 
C

d


   taken in 

the same sense. So, the flow across C' is 2m and this will be the same for any small closed 

curve surrounding P'. Therefore a source transforms into an equal source at the corresponding 

point. Similarly if there is a sink of strength     (– m) at P in the z-plane, then it transforms into 

an equal sink at the corresponding point in the  -plane.  

In particular, the boundaries of the fluid in z-plane will transform the boundaries in  -

plane. And a source, sink or vortex at a particular point in the z- plane will transform an equal 

source, sink or vortex at the corresponding point in the  -plane. The kinetic energy of both 

corresponding regions is equal.

 

2. Joukowski Transformation 

 It is the most common conformal transformation which is given by   

    = f(z) = 
2a

z
z

 ,    (4) 

where a is constant. The transformation changes z-plane to  -plane where  z = x + iy. Then, 

  
2a

i z ,
z

          

Figure 4 
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2a (x iy)

x iy .
(x iy) (x iy)


  

 
 

Therefore, 
2 2

2 2 2 2

a a
x (1 ) , y (1 ).

x y x y
     

 
   (5) 

If  x
2
 + y

2
 = r

2
, the circle of radius r is in the z-plane, then  

  

2 2

2 2
2 2

1
a a

r r
r r

 
 

   
    

   

, in the  -plane. (6) 

Therefore by using Joukowski transformation, a circle on the z-plane of radius r transforms 

into an ellipse with major axis A = 
2a

r
r

  and minor axis B = 
2a

r
r

 on the  -plane. 

 
 In the special case, when r = a, the ellipse becomes an infinitely thin plate of length 4a 

in the      -plane, since A = 2a and B = 0. So, the Joukowski transformation changes the circle 

into a flat plate. And then the circle of radius a in the z-plane is called the Joukowski 

transformation circle.  

 

2.1 Flow Past a Flat Plate with Circulation 

 
Figure 6 

 The complex potential for a fixed circular cylinder radius a in a stream whose 

undisturbed spped U makes an angle   with the X-axis and about which there is a circulation 

  is 

   
2 i

i a e i
W U ze log z

z 2

 
  

   
 

.           (7) 
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 If the transformation 
2a

z
z

    is applied to the whole area outside the circle in the z-

plane, it transforms into the whole of the  -plane with a rigid barrier between the points 

 2a,O . The problem then becomes that a flat plate of width 4a, about which there is 

circulation, in a stream U inclined at   to the plate. Solving for z in terms of  , 

 2 21
z 4a

2
      and  

2
2 2a 1

4a
z 2
     . 

 Hence the complex potential (7) becomes 

      2 2 i 2 2 i1
W U 4a e 4a e

2

            
  

 

     2 2i 1
log 4a

2 2


    


. 

        2 2U cos i 4a sin      
  

 

     2 2i 1
log 4a

2 2


    


, 

neglecting a constant. 

 The circulation about the plate is given by the decrease in the velocity potential   on 

describing a circuit round it, this is the same as the decrease in   on describing the 

corresponding circuit about the cylinder, i.e., there is a circulation   about the plate.  

 The velocity at any point can be written 

   
2

2

dW

dW dzU iV
d a

1
z

   
  

 
 

. 

 The denominator vanishes when z a  , i.e., 2a   , therefore the velocity is infinite 

at both edges unless 
dW

dz
 has a factor  z a  or  z a , when it will be finite at the 

corresponding edge. 

   
2

i i

2

dW a i
U e e

dz z 2 z

    
   

 
, 

if this is zero when z a  , then 4 Uasin     . Hence the velocity at the edge 2a  will 

be finite. 

 

Example 

 A flat plate of infinite length and width L is placed in a current of incompressible fluid 

with its plane at an angle   to the undisturbed stream lines. 
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Figure 7 

 

 The circle of radius a on BOA as diameter transforms into the flat plate B A   of length 

4a, by means of transformation 
2a

z
z

   . Taking the centre of the circle as origin, the 

complex potential in z-plane is given by 
2

i iUa i
W Uze e log z

z 2

   
  


. 

   
2

i i

2

dW Ua i
Ue e

dz z 2 z

   
  


. 

 Stagnation points corresponding to z a   are given by 
dW

0
dz

 . Therefore 

4 aUsin    . 

 By using the Blasiu's theorem,  

  

2

1 dW
X iY i d

2 d

 
    

 
 . 

   

2
2 2 i

i

2 2

1 a Ua e i
i 1 Ue dz

2 z z 2 z

 


    
        

    
 . 

 By using Residue Theorem, 

   
i

i1 2Ui e
X iY i 2 i i Ue

2 2




      


 

   2 2X Usin 4 aU sin       

   2Y Ucos 4 aU sin cos       . 

 The resultant force R is 24 aU sin   and acting at angle, 
Y

tan
X

  , 
2


   . 

2

1 dW
N real part of d

2 d

 
     

 
  

           

2

2

2

2

a
z

1 dWz dz
a2 dz

1
z


 

   
 


  
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2

2 2 2i 2 2

2

1
real part of 2U a e 2U a 2 i

2 4


  

       
  

 

          2 2 2 22 U a sin 2 L U sin 2
8


      . 

3. Flow Due to a Source between Two Fixed Boundaries 

 
Figure 8 

 Consider a source m at the point 0z  in the fluid bounded by the lines 0   and 
3


  . 

The conformal transformation 3Z z  where iz re   from z-plane transform to Z-plane. The 

boundaries 0   and 
3


   in z-plane transform to 0   and    (real axis) in Z-plane. 

The point 0z  in z-plane transforms to point 0Z  in Z-plane such that 3

0 0Z z  and the source m 

at 0z  transforms to a source m at 0Z . Hence the image system with respect to real axis in Z-

plane consists of a source m at 0Z  and a source m at 0Z . Therefore the complex potential for 

this motion is  

      0 0W mlog Z Z mlog Z Z      

           3 3 3 3

0 0mlog z z mlog z z      

            3 3 3 3

0 0i m log z z z z       . 

 

Example 

 Suppose that between two fixed boundaries 
4


   and 

4


   , there is two-

dimensional liquid motion due to a source of strength m at the point  a,0  and an equal sink 

at the point  b,0 . 

 

 

 

  

 

 

 

  

 

 

 



8 

Yadanabon University Research Journal, 2019, Vol-10, No.1                                            

 
Figure 9 

 Consider the transformation 2Z z , from xy-plane to  -plane, where iz re   and 
iZ Re  . 

 Hence the boundaries 
4


    in the z-plane transform to 

2


   , the imaginary axis 

of Z-plane. The points  A a,0  and  B b,0  transform to  2A a ,0  and  2B b ,0  

respectively. Since the source transforms to an equal source at A  and the sink transforms to 

an equal sink at B , the image system with respective to imaginary axis in Z-plane consists of 

a source of strength m at  2A a ,0   and a sink of strength m  at  2B b ,0  .  

 

Therefore, the complex potential for this motion is  

                  2 2 2 2W mlog Z a mlog Z b mlog Z a mlog Z b          

        2 4 2 4mlog Z a mlog Z b     . 

 By using the transformation, 

    4 4 4 4W mlog z a mlog z b      

       4 4 4mlog r cos 4 a ir sin 4      

        4 4 4mlog r cos 4 b ir sin 4     

 
4 4

1 1

4 4 4 4

r sin 4 r sin 4
m tan tan

r cos 4 a r cos 4 b

   
    

  
. 

 Thus the stream function of two-dimensional motion due to a source of strength m at 

 a,0  and an equal magnitude of sink at  b,0  is  

   
 

 

4 4 4

1

8 4 4 4 4 4

r a b sin 4
m tan

r r a b cos 4 a b


 


  

. 

  
3 3

4 4 4 4

dW 4z 4z
m m

dz z a z b
  

 
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  

  

3 4 4

4 4 4 4 4 4

4mr cos3 isin 3 a b

r cos 4 a ir sin 4 r cos 4 b ir sin 4

   


     
. 

 The velocity at the point  r,  in two-dimensional liquid motion due to a source and 

sink is 

  
 

   

3 4 4

1 1
8 4 4 8 8 4 4 82 2

4mr a bdW
q

dz
r 2a r cos 4 a r 2b r cos 4 b


 

   

. 

 

 

4. Flow due to a Source and Sink at the Corners of Infinite Rectangle 

 Consider the infinite rectangle in the z-plane for which 0 y   , x 0 . Use the 

transformation t cosh z , where t i    and z x iy  . Therefore, cosh x cos y   and 

sinh xsin y , where 0 y   , x 0 . If y 0  and 0 x  , then 1    . If x 0  and 

0 y   , then 1 1    .  If y    and 0 x  , then 1     . Thus, the infinite 

rectangle in the z-plane for which 0 y   , x 0  into the a half of the      t-plane for which 

  is positive. 

 Consider the two-dimensional irrotational motion of a liquid due to within the above 

infinite rectangle with a source and sink are placed at the corners  0,0  and  0, . 

 
Figure 10 

 

 The source transforms into an equal source at  1,0  and the sink transforms into an 

equal sink at  1,0 . The complex potential for this motion is 

     W mlog t 1 mlog t 1      

      
cosh z 1 z

mlog 2mlog tanh
cosh z 1 2


   


 

      
z

log tanh
2

  , where 2m   . 

  

2 z
sec h

dW 2
zdz 2 sinh z

tanh
2

 
    . 
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 For the curve of equal pressure in the liquid, the velocity must be constant. Therefore, 
2

2 2

1q C
sinh z

 
   
 

, where 1C  is a constant. 

  2

2sinh zsinh z C  

      2

2cosh z z cosh z z C    . 

 Therefore, the curves of equal pressure in the liquid are given by 2 2 2sinh x sin y C  . 
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