
1

 Answering Top-k Keyword Queries on Relational Databases

Myint Myint Thein, Mie Mie Su Thwin

mmyintt@gmail.com, drmiemiesuthwin@mmcert.org.mm

University of Computer Studies, Mandalay

Myanmar

Abstract

Keyword search in relational databases allows the user to search information without knowing

database schema and using structural query language. As results needed by user are assembled from

connected tuples of multiple relations, ranking keyword queries are needed to retrieve relevant

results. For a given keyword query, we first generate candidate networks and also produce

connected tuple trees according to the generated candidate networks by reducing the size of

intermediate joining results. We then model the generated connected tuple trees as a document and

evaluate score for each document to estimate its relevance. Finally, we retrieve top-k keyword

queries by ranking the results. In this paper, we propose a new ranking method based on virtual

document. We also propose Top-k CTT algorithm by using the frequency threshold value. The

experimental results are shown by comparison of the proposed ranking method and the previous

ranking methods on IMDB and DBLP datasets.

Keywords— Candidate Network; Connected Tuple Tree; Top-k; Keyword Query; Keyword Search;

Relational Databases;

1. INTRODUCTION

The most critical and valuable amount of data

such as business data has been stored in

relational databases. Relational database

management system (RDBMS) is a DBMS in

which data is saved in tables and the

relationships among the data are saved in tables.

The data can be reassembled and accessed in

many different ways without change the table

forms. Most commercial RDBMS uses a

structured query language (SQL) to access the

database. With more and more data being stored

in relational database, it has become crucial for

users to be able to search and browse the

information stored in them. Keyword search in

relational databases enables ordinary users, who

do not understand the database schema and

SQL, to find the connected tuple sets among the

tuples stored in relations, with a given set of

keywords. The existing methods of keyword

search in relational databases can be broadly

classified into two categories that are schema

based method and graph based method.

In schema based keyword search in relational

database, it has a common method that is

generating candidate network in schema graph

transformed from relations. Data is stored in the

form of columns, tables and primary key to

foreign key relationships in relational databases.

According to develop the schema graph, we

illustrate two schema graphs as examples.

Figure 1 shows the schema graph of publication

database from DBLP dataset. The movies

database schema graph of IMDB dataset shows

in Figure 2. For a given keyword query, the

logical unit of answers needed by users is not

limited to an individual column value or ever an

individual tuple. It may be multiple tuples

joined together. Given keyword search in

relational databases, generating minimum

joining tuples sets of relations that contained

keyword is called candidate network (CN), such

as SQL. A candidate network must satisfy the

two conditions, total and minimal. Because it is

meaningless if two tuples in a candidate

network are too far away from each other, the

maximum numbers of tuples allowed in a

2

candidate network are needed to specify (Yu &

Qin, 2010).

Suppose user wants to get the papers written

by ―Jinlin Chen‖ from DBLP database. The

system generates the relevant CNs, such as

Person ⋈ Relation-Person-InProceeding ⋈

InProceeding, with multiple tuples from

different relations joined by foreign keys.

Generating all valid candidate networks that are

called connected tuple trees (CTTs) by joining

tuples from multiple relations. There are many

connected tuple trees that can be results for the

query. These results are not surely useful to the

user. We need to compute a single score for

each CN in order to rank the relevant results.

So, a ranking method is essential for getting

user satisfaction. For the ranking method, some

systems considered each text column as a

collection and each value in the text column as

document by using IR weighting methods. The

results are ranked according to a final score that

is obtained by dividing the sum of all these

scores by the number of tuples in the tuple trees.

These methods can help improve the keyword

search quality in relational database.

Recently, several researchers have been done

on keyword search systems for relational

databases (Baid, 2010; Qin & Yu, 2009;

Stefanidis & Drosou, 2010; Wang, 2007; Li &

Zhu, 2008). In candidate network generation,

DISCOVER (Hristidis & Papakonstaninou,

2002) and Liu & Yu & Meng (2006) developed

the CN generation algorithm based on a

breadth-first traversal in the search space.

SPARK (Luo & Wang, 2011) is subsequently

improved the CN generation algorithm by

canonical. In the ranking strategy, IR-Style

(Hristidis & Gravano, 2003) incorporated a

state-of-the-art IR ranking method to address

the retrieval effectiveness issue and presented

several efficient query execution algorithms

optimized for returning top-k relevant answers.

Liu & Yu & Meng (2006) improved the ranking

method in IR-Style by adapting four

normalizations. Both two systems considered

each text column as a collection and each value

in the text column as document. BANKS

(Aditya & Bhalotia, 2002) and BANKSII

(Kacholia & Pandit, 2005) took another

approach by modeling the database content as a

graph and proposed sophisticated ranking and

query execution algorithms. The theoretical

aspect of efficient query processing for top-k

keyword queries is studied in (Ding & Yu,

2007; Kashem & Chowdhury, 2010, Xu &

Ishikawa, 2009; Kimelfeld & Sagiy, 2006).

SPARK (2011) further modified the ranking

method of IR-Style by introducing the concept

of a virtual document and presented efficient

query evaluation algorithms for their ranking

method. Despite the existing studies, there are

still several issues with existing ranking

methods. Some of the existing ranking methods

may produce the meaningless results which are

disappointed for user.

In this paper, we focus on retrieving the top-k

rank relevant results with given keyword query.

We propose a new ranking method based on

virtual document. The proposed ranking method

can produce meaningful results by applying two

factors, content factor and structural factor. The

proposed ranking method can evaluate the

accurate scores of the relevant results from

relational database for the user. If query

processing algorithms is not optimized for the

ranking method and top-k queries, the query

execution time will become prohibitively large

for large databases. We also propose the Top-k

CTT algorithm by using frequency threshold

value. The proposed Top-k CTT algorithm can

retrieve the efficient top-k queries. We conduct

the experimental results on DBLP and IMDB

databases. The results show that the proposed

ranking method supports effective keyword

search on large amounts of relational data.

The rest of the paper is organized as follows:

Section 2 discusses the related work. Section 3

presents the basic concept of keyword query

and CN. Section 4 presents the CN generation.

Section 5 illustrates the CN evaluation. Section

6 discusses the ranking method and the query

processing in Section 7. Section 8 shows the

experimental results and Section 9 concludes

this paper.

2. RELATED WORK

The techniques to support keyword search in

relational databases can be divided into two

categories. One type of methods is based on

3

modeling data as a graph, and the results as

subtrees or sub-graphs. Another type of

methods is based on relational databases where

structured data are stored. One important issue

of keyword search in relational databases is the

efficiency and effectiveness.

Several researchers have been done on early

keyword search systems for relational databases

(Agrawal & Chaudhuri, 2002; Hristidis &

Papakonstaninou, 2002). Early works in schema

graph approach like DBXplorer (Agrawal &

Chaudhuri, 2002) and DISCOVER simply

consider the number of joins in the tuple trees.

DISCOVER (2003) adapted IR-style document-

relevant ranking strategies to the problem of

processing free-form keyword queries over

RDBMSs. DISCOVER also proposed IR-style

ranking method in straightforward manner to

rank tuple trees by assuming OR semantics for

answers. This method had not considered the

effectiveness of the query results. Liu & Yu &

Meng (2006) described the ranking formula by

adapting four normalizations: tuple tree size

normalization, document length normalization,

document frequency normalization and inter-

document weight normalization. This score

function is not monotonic due to the four

normalizations.

SPARK (2011) proposed to model a joining

tuple tree as a virtual document. SPARK

studied the tree level ranking function which

does not satisfy tuple monotonicity. In order to

handle such non-monotonic score functions, a

new monotonic upper bound function is

introduced. The intuition behind the upper

bound function is that, if the upper bound score

is already smaller than the score of a certain

result, then all the upper bound scores of unseen

tuples will be smaller than the score of this

result due to the monotonicity of the upper

bound function. SPARK proposed two new

algorithms that are Skyline-Sweeping algorithm

and Block-Pipelined algorithm.

BANKS (2002) also found tuple trees from

the data graph directly by using the Steiner tree

algorithm. For a data graph, it uses PageRank

style methods to assign weights to tuples and

edges between them. A combination of tuple

weights and edge weights is used to compute

the confidence of a tuple tree. BANKSII (2005)

is an improvement of BANKS which introduces

a novel technique of bidirectional expansion to

improve search efficiency. Li & Feng (2008)

proposed a new concept referred to as a

compact Steiner Tree, which can be used to

approximate the Steiner tree problem for

answering top-k keyword queries efficiently.

They also proposed a novel structure-aware

index to support keyword search. In order to

balance the importance of individual nodes and

the structural cohesiveness of the results,

Xiaohui & Huxia (2012) proposed a random

walk model with message passing to match the

characteristics of keyword search in databases.

3. PRELIMINARIES

3.1 Data Model

A relational database can be viewed as a

graph which represents a relational model such

as schema graph Gs (V, E). A relation database

is a collection of relations. Each relation in the

database corresponds to a vertex in Gs, denoted

as the set of relation schemas {R1,R2,…}.

Edges represent the foreign key to primary key

relationships between pairs of relation schemas,

Ri and Rj, denoted Ri→Rj. A relation on relation

schema Rj is an instance of the relation schema,

such as a set of tuples, conforming to the

relation schema. The graph can be as a directed

or undirected graph. It can be captured every

granularity level of the schema elements.

Figure 1. Publication Database Schema Graph

We use directed schema graphs that show in

Figure 1 and Figure 2 as the schema graph of

publication database and movies database

schema graph. For simplicity, we assume all

4

primary key and foreign key attributes are made

of same attribute with attribute of related

relation. There are no self loops and at most one

primary-foreign key relationship between any

two relations.

Figure 2. Movies Database Schema Graph

3.2 Connected Tuple Tree

A keyword query (Q) consists of a list of

keywords {k1,k2,…,kq}, and searches

interconnected tuples that contain the given

keywords. For a given query Q, a result is the

set of all possible joining networks of tuples. A

joining network of tuple is a connected tuple

tree. Each node ti is a tuple in the database, and

each pair of adjacent tuples in CTT is connected

via a foreign key to primary key relationship.

Suppose (Ri,Rj) is an edge in the schema graph.

Let ti Є Ri, tj Є Rj, and (ti join tj) Є (Ri join

Rj). Then (ti,tj) is an edge in the connected

tuple tree. The size of a CTT is the number of

tuples involved. Note that a single tuple is the

connected tuple tree with size 1. The size of

CTT can have arbitrarily large size, when there

exists a many to many relationship in the

schema graph. Therefore, the size of connected

tuple tree is needed to only data bound.

3.3 Candidate Network

Each connected tuple tree is the sets

consisting of relational names that produced by

a relational algebra expression, if each tuple in

one relation contains a term of the keywords.

For a given keyword query Q, the query tuple

set R
N
 is a set of all tuples which belong to

relation R that contain at least one keyword of

the query Q. We denote R
F
 the free tuple set

which is the set of all tuples in relation R and

we use R
Q
 to denote a tuple set, which can be

either a non-free tuple set or a free tuple set. A

candidate network is a tree of tuple sets R
N

or

R
F
 with the restriction that every node must be a

query tuple set. Every edge (Ri
Q
,Rj

Q
) in a CN

corresponds to an edge (Ri,Rj) in the schema

graph Gs. The size of a CN is the number of its

tuple sets.

In the framework of RDBMS, a keyword

query is processed in the two main steps that are

candidate network generation and candidate

network evaluation. In candidate network

generation step, it generates a set of CNs over

schema graph Gs. The set of CNs shall be sound

or complete and duplicate-free upon the

maximal size. In candidate network evaluation

step, it evaluates the generated CNs by reducing

the size of intermediate joining results. We

present how to generate minimal number of

CNs and how to evaluate the generated CNs in

Section 4 and Section 5.

4. CANDIDATE NETWORK GENERATION

In schema-based keyword search in

relational database, the generating all candidate

networks for keyword query Q satisfy the two

properties, such as complete and duplication-

free, which are listed below.

Property1. The set contains all CNs with no

more than MAXN (completeness).

Property2. Every two CNs are not isomorphic

to each other (duplication-free).

We proposed a new CN generation

(AT_CNGen) algorithm based on adjacent tuple

list in our previous work (Thein & Thwin,

2012). AT_CNGen algorithm generate all CNs

for a given query Q and schema graph SG. In

order to generate valid CNs, AT_CNGen

algorithm first accepts the adjacent tuple lists as

input. During each CN generation, AT_CNGen

calls the two procedures which get a query tuple

sets T for a given query Q and take the adjacent

tuple list for getting query tuple sets. Each

adjacent tuple list d adds a CN, if d is a valid

CN and is not duplicated on each others. If d is

invalid and identical, d is pruned. Finally,

5

AT_CNGen algorithm generates all candidate

networks no more than the maximal number of

tuple sets for the user input keywords. The

generated CNs is only data bounded by

following Properties 1 and 2. For example, we

illustrate the adjacent tuple list for query Q =

―Chen Web Springer‖ in DBLP and the

adjacent tuple list for query Q = ―Black Jack

David‖ in IMDB that are shown in Figure 1 and

Figure 2.

Figure 3. Adjacent Tuple List for DBLP

Figure 4. Adjacent Tuple List for IMDB

5. Candidate Network Evaluation

We present the generating CTTs by

executing the generated CNs in order to get the

results. For a given query Q, the connected

tuple tree is generated according to an evaluated

CN that is some tuples coming from different

relations. For each pair of adjacent tuple sets Ri,

Rj in connected tuple tree, there is an edge

(Ri,Rj) in SG. We proposed D_CNEval

algorithm for the CN evaluation in our previous

work (Thein & Thwin, 2012). D_CNEval

algorithm is observed that there is substantial

evaluating the common join expressions among

CNs. As a consequence, the computational

efforts can be saved if multiple CNs can be

executed in a calculated way that minimizes the

sizes of joining intermediate results. Each CTT

that defined satisfaction in order to properties 3

and 4 as follow:

Property3. If a node in connected tuple tree is

one of tuples in relation, it contains at

least one keyword in query Q

(completeness).

Property4. There is no duplicate tuple with each

other in the connected tuple tree

(duplication-free).

The examples of evaluated CN for Q = ―Chen

Web Springer‖ in DBLP and Q = ―Black Jack

David‖ in IMDB that are shown in Figure 10

and Figure 11.

Figure 5. Processing of Evaluated CN on DBLP

Figure 6. Processing of Evaluate CN on IMDB

6

6. RANKING METHOD

6.1 Problems of Existing Ranking Methods

To rank documents, IR systems assign a score

for each document as an estimation of the

document relevance to the given query. In IR, a

document is a basic information unit stored in a

text database. It is also the basic unit of answers

needed by users. A similarity value between a

given query and a document is computed to rank

documents. In relational keyword search, the

basic text information unit stored in a relational

database is a text column value (Liu & Yu,

2006; Xiaohui & Huxia, 2012). The basic unit of

answers needed by users is a connected tuple

tree which is assembled by joining multiple

tuples, each of which may contain zero, one or

multiple text column values. A similarity value

between a given query and a connected tuple

tree needs to be computed to rank connected

tuple trees.

In general, retrieval effectiveness is vital to

keyword search on relational database due to the

fuzzy nature of keyword queries. In a keyword

query, each query result is assigned a relevance

score and all results are presented in decreasing

order of that score. There are three ranking

methods considered by existing relational

keyword search systems. The first ranking

method is the IR score of attribute values. The

IR score of an attribute value is computed

according to the number of keywords it

contained. Traditional information retrieval

weighting methods, such as TF-IDF weighting,

can be used to compute the IR score. In

DISCOVER, the IR score of an attribute value is

computed by database system. The second

ranking method is the structure or semantics of

result trees. Result trees refer to connection trees

used by BANKS, join trees used by DBXplorer,

and candidate networks used by DISCOVER. A

result tree is scored by its size which is the

number of nodes or edges in BANKS,

DBXplorer and DISCOVER. In addition, it is

useful to score a result tree by its semantics. The

third ranking method is the semantics of links.

The score of a node depends on the links

between it and the other nodes. The score

functions used by existing relational keyword

search systems are related to the definition of

query result. If a query result contains many

nodes, the IR score of attribute values and the

structure of result trees are considered. If a

query result contains only one node, the

structure of result trees is not necessary to be

considered.

 In summary, most of existing ranking systems

have considered the size of an answer as a

ranking factor to compute the relevance. The

basic idea of the ranking method is: assign to

each tuple in the joined tuple tree a score by

using a standard IR-ranking formula, and

combine the individual scores together by using

an aggregation function, such as SUM, to obtain

the final score (Xu & Ishikawa, 2009). In this

method, the ranking results contain a large

amount of one keyword query over results that

contain all or most keyword queries but only

once. This method is contradicted to user

perception by ranking results. To solve this

problem, we propose a new ranking method

based on the virtual document to retrieve the

relevant ranking results by supporting modified

IR ranking score.

6.2 Proposed Ranking Method

The proposed ranking method is presented

by applying two factors, such as content factor

and structural factor, on virtual document. The

content factor is computed with the local score

and global score. The structural factor is

calculated for the size normalization.

6.2.1 Modeling Connected Tuple Tree as a

Virtual Document

A model is proposed on the idea of modeling

a connected tuple tree as a virtual document in

our previous work (Thein, 2012). Consequently,

the entire results produced by a CTT will be

modeled as a document collection that is a

string. The rationale is that most of the CTTs

carry certain distinct semantics. E.g., P1 → I2

gives all details about author and their related

inproceeding that are collectively relevant to the

query and form integral logical information

units. In fact, it was split into multiple tables

due to the normalization requirement imposed

7

by the physical implementation of the

RDBMSs. SPARK proposed the idea of

modeling a CN as a virtual document. In our

model, we first execute a CTT as SQL queries.

Then, the executed queries are modeled as a

string and this string is dynamically stored into

hash table. By the way, we avoid the modeling

identical document. We show the related virtual

document for each CTT as example in Figure 7.

CTT Document

P1→I2 Jinlin Chen→An Adaptive Web Content

Delivery System

P1→I1 Jinlin Chen→Visual Based Content

Understanding towards Web Adaptation

P2→I3 Peter P.Chen→ER Model, XML and the Web

Figure 7. Related Virtual Document for a CTT

6.2.2 Content Factor

To compute content factor of a CTT, we use

two IR ranking methods such as TF-IDF and

Extended Boolean Model. The TF-IDF score

emphasizes keyword matching, while Extended

Boolean Model score emphasizes the similarity

between keyword and a virtual document as a

whole. To calculate the global score of a CTT,

we model a CTT as a virtual document by

concatenating the text contents of tuples in the

CTT and a TF-IDF score for the virtual

document is calculated without assuming tuples

matching a certain keyword are uniformly and

independently distributed in each relation. We

obtain a local score for each virtual document to

calculate a numeric score for each keyword.

6.2.2.1 Local Score

By adopting such a virtual document, we

assign an IR ranking score, such as scorea, to a

CTT by using Equation (1).

)idfln(*
ndl

ntf
)D,k(scorea  (1)

)CTT(avgdl

dl
*s)s1(ndl CTT

Dk



 (2)

))CTT(tfln(1ntf
Dk

k


 (3)





Dk i1

i
k

}kf,...,kfmax{

kf
)CTT(tf

(4)







Dk

k

)CTT(N

1)CTT(df
idf (5)

, where ntf indicates the normalized term

frequency, ndl is the normalized document

length which is the length of modeling CTT.

idf is the inverse document frequency and

tfk(CTT) denotes the number of occurrences of

the CTT in a document.

Equation (2) used to compute value of

document length normalization, which dlCTT is

the length of CTT. In our experiment, s is

complete to 0.2 for all condition. Equation (5)

computes the inverse document frequency for

each modeling connected tuple tree. We can get

the value of N(CTT) which is the number of

CTT. We observe that the idf equation in IR

cannot directly use because this equation cannot

calculate to get normalize value. For this case,

we compute idf value in order to Equation (5) to

get normalize value. Equation (3) evaluates the

normalized trem frequency, whereas Equation

(4) used to compute the number of occurrences

of the CTT which belongs to the connected

tuple tree such as document.

Table 1. Evaluating Different Scores for Query ―chen

web content‖

For example, we compute each score value

with ―chen web content‖ query step by step. For

this query, some examples of the connected

tuples trees include: P1→I2, P1→I1, P2→I3

and P3→I4. Note that P3→I4 is not a valid

result tree to the query, as the leaf node I4 does

not contribute to a match to the query. A

CTT t Є CTT tfchen tfweb tfcontent Scorea

P1→I2

P1 1 0 0
2.66

I2 0 1 1

P1→I1

P1 1 0 0
2.67

I1 0 1 1

P2→I3

P2 1 0 0
2.17

I3 0 1 0

8

possible results for this query may be: P1→I2,

P1→I1, and P2→I3 whereas nodes P1 and P2

contain the keyword ―chen‖, and nodes I1 and

I2 contain two keywords ―web‖ and ―content‖,

I3 contains the keyword ―web‖. Then, we

model a document for each CTT according to

Figure 7. For the modeling query of each CTT,

we calculate each score value by using scorea

that is shown in Table 1.

6.2.2.2 Global Score

The AND semantics and OR semantics are

considered for the upper bound of keyword

query. We believe that users usually prefer

documents matching many query keywords to

those matching only few keywords. To quantify

this factor, we propose to multiply a global

score to the raw IR ranking score. The proposed

global score is derived from the Extended

Boolean Model. The idea of the Extended

Boolean Model is to make use of partial

matching and term weights as in the vector

space model. It combines the characteristics of

the vector space model with the properties of

boolean algebra and rank the similarity between

queries and documents. This way a document

may be somewhat relevant if it matches some of

the queried terms and will be returned as a

result. So, we apply the global score that is

shown in Equation (6).

 

 
 6score

p1

m

mj

p

j
w1

1b Dk,

















 






where wj is the weight score of a CTT that is

defined as follow:

     7idflnntf
j

w Dk, 

In Equation (6), p is a tuning parameter. p

can smoothly switch the completeness factor

biased towards the OR semantics to the AND

semantics, when p increases from 1.0 to ∞. In

our experiment, we observed that a p value of

2.0 is already good enough to enforce the AND-

semantics for almost all the queries tested.

 6.2.3 Structural Factor

The size of the CN or CTT is also an

important factor. A larger CTT tends to have

more occurrences of keywords. There is a

common intuition behind all existing structural

score. They all try to define a structural size of a

CTT and then use the inverse of this structural

size to measure the structural score. Many

structural size definitions have been proposed.

For example, existing schema based keyword

search approaches use the total number of

tuples in a CTT as the structural size and

existing graph based keyword search

approaches use the aggregate of edge weights as

the structural size. There is a common

underlying assumption: it is easier to find a

CTT matching all given keywords in a larger

CN.

After computing the modified IR

scoring method, we then evaluate a score value

for the size of CTT and the size of the given

query, especially for a keyword query whose

relevant results are connected tuple tree

involving multiple tuples, each of which

contains a subset of the keywords query. To

approximately the user perception, we define

the structural score for a query that is as follow:

 
  
  

 8
l CTT

Q
Dk,

sizen

sizeln
score c 

6.2.4 Final Score

The proposed ranking method can be

conceptually thought as first merging all tuples

in a CTT into a virtual document, and then

obtaining its local score in Equation (1), the

global score in Equation (6), and the structural

score in Equation (8). Finally, the final score of

a CTT to a keyword query is the product of all

the three scores:

)9)(D,k(score*)D,k(score*)D,k(score)Q,T(score cba

We can get the significant score for the

highest relevant keyword query after computing

the final score (T,Q) for each connected tuple

tree. We evaluate each CTT with the proposed

9

ranking method by using two relations: person

and inproceeding of DBLP dataset. Table 2

shows the relevant results for query ―chen web

content‖ with CTT and its final score according

to multiply each score value of scorea , scoreb

and scorec. In order to this table, we can see that

score value of P1→I2 is increased with the

highest relevant score value.

Table 2. Relevant Keyword Queries for Query ―chen web

content‖

7. QUERY PROCESSING

7.1 Problems of Query Processing

The efficiency problem is also important to

user experience. Generating all possible CTTs

will induce prohibitively long query time for

large databases. So, we need to consider

efficiency issues of the relational keyword

search system. In existing relational keyword

search system, the system first generates all

possible CNs. Assume that we can estimate an

upper bound for the highest result score of all

CTTs corresponding to a CN. Each time, the

CN with the highest upper bound is chose. So,

we can find a CTT with the highest score,

corresponding to the chosen CN. Next, we

enumerate possible CTTs using the top-k

algorithms for the chosen CN. For each set of

candidates such as non-free tuple sets, we then

generate all corresponding CTTs by joining

candidates together with free tuples. For each

generated CTT, we update top-k results. This

process is not efficient if the number of tuples is

large, since it needs to join all tuples in each CN

and store a large number of CTTs with the

highest score. Finally, the system stops when

the highest CN upper bound is not higher than

the current top-k result scores (Zhang & IIyas,

2011; Zeng & Bao, 2012). If the system

estimates an invalid upper bound for the highest

result score of all CTTs, it cannot reach to

terminate efficiently. In general, there are still

efficiency issues although the existing relational

keyword search systems consider generating the

efficient results.

In this section, we focus on retrieving top-k

query to improve efficiency, when we presented

the CN generation and CN evaluation that is

considered the efficiency. We implement the

top-k query processing in the application level.

We discuss the proposed Top-k CTT algorithm

in the next section.

7.2 Top-k CTT Algorithm

The user is more interested in the top-k

query answers in the potentially huge answer

space. So, we focus on how to retrieve the top-k

results for keyword query. After generating all

CTTs for a keyword query, Top-k CTT

algorithm is presented to retrieve top-k rank

result for the query processing that is shown in

Figure 8. The Top-k CTT algorithm is devised

to perform this task.

We use the non-free tuple sets as input,

which are belong to that CN. And then we use

the frequency threshold T for each list pointing

to the current element. For each CTT, if the

generated CTT is not null, the algorithm first

computes the score according to Equation (9). It

adds the CTT with related score value into hash

table H. After that the sort function sorts each

CTT with maximum score value. If T is equal

or less than the size of H, the algorithm add

CTT with the maximum score value into the

top-k as result until T is equal or less than the

size of H and T is not null. Then if the size of H

is less than the threshold T, the size of H set to

T. Again the algorithm adds CTT with the

maximum score value into the top-k as result

until T is not null. With computing the

threshold T, the algorithm terminates when T is

greater than the size of H. Finally, the algorithm

generates the top-k results as the above

processes.

In Top-k CTT algorithm, the for loop is

achieved at most |M| times for each CTT in M,

where |M| is the size of CTT that is not null. If

CTT in M is null, we can reduce its time in

CTT Score

Jinlin Chen→An Adaptive Web Content

Delivery System

Jinlin Chen→Visual Based Content

Understanding towards Web Adaptation

Peter P.Chen→ER Model, XML and the

Web

1.41

1.33

1.08

10

O(1). Each CTT is ranked in hash table by

calling RankScore function. This step is

increasing the computation time in O(1). So, the

whole hash table is worked in the same |M|

time. After sorting CTT with each score, we

check the size of hash table. If this size is not

zero, while loop is performed at most |N| times

for every connected tuple sets in hash table,

where |N| is the given threshold value. If N is

less than size of result sets in hash table, we add

each result into array. This step is increasing the

computation time in O(1). If N is greater than

maximun number of tuple sets, the algorithm is

terminate. In this step, we can reduce its time in

O(N). Hence the total execution time takes in

the worst case time O(|M|-|N|).

Figure 8. Top-k CTT Algorithm

8. PERFORMANCE EVALUATION

8.1 Evaluation Setup

The search efficiency of proposed algorithms

is evaluated on DBLP and IMDB datasets. All

queries generating algorithms were implemented

in Java, and JDBC was used to connect to the

database. We conducted all the experiments on

Core(TM) 2 Duo CPU and 2GB memory laptop

running XP. We take the average executing time

on running 15 times.

Dataset: We use two real datasets the Original

Digital Bibliography and Library Project

(DBLP) dataset (dblp.uni.trier) and the Internet

Movie Database (IMDB) (imdb.com) in our

evaluation. DBLP contains publications records.

IMDB contains movies records. Table 3 and

Table 4 show the schema and statistic of two

datasets.

Table 3. Statistics of DBLP Dataset

Table 4. Statistics of IMDB Dataset

Query Set: We manually picked a large number

of queries for evaluation. We attempted to

include a wide variety of keywords and their

combinations in the query sets, such as the

selectivity of keywords, the size of the most

relevant answers, the number of potential

relevant answers, etc. We focus on a subset of

the queries in this experiment and test on

Relation Schema #Tuples

Person(Pid,Name)

InProceeding(Iid,Title,Pages,Rid)

Proceeding(Rid,Title,Uid,Sid,…)

Publisher(Uid,Name)

Series(Sid,Title)

RelationPersonInProceeding(Pid,IPid)

174,709

212,273

3,007

86

24

 491,777

Total Number of Tuples 881,876

Relation Schema #Tuples

Actors(Aid,Name)

Directors(Did,Name)

Movies(Mid,Name,Year,Rank)

Movies-Directors(Mid,Did)

Movies-Genres(Mid,Genre)

Roles(Aid,Mid,Role)

817,718

86,880

388,269

406,967

417,784

3,432,630

Total Number of Tuples 5,550,248

Input: A set of CTT, Threshold T

Output: A set of top-k queries Top-k

Let H be the hash table that contains CTT and related

score.

1.Top-k ← Φ

2. H ← Φ

3. For each c Є CTT do

5. If (CTT != Null) Then

6. H.push(CTT,RankScore(CTT))

 // According to the Equation (9).

7. End if

8. End for

9. H′ ← sortByScore(H)

10. s ← sizeof(H′)

11. If (H′.isEMPTY()) Then

12. If (T ≤ s) Then

13. While (T ≤ s && T != Φ) {

14. Add H′.pop-max() into Top-k }

15 End if

16. Else if (s < T) Then

17. T ← s

18. While (T != Φ) {

19. Add H′.pop-max() into Top-k }

20 End if

21. Else

22. break.

23. End if

24. Return Top-k.

11

keyword queries on 200 queries for two

datasets. According to the space, we present 20

queries in two datasets that is shown in Figure 9

and Figure 10.

Query Keywords

Q1 nikos constraint

Q2 chen web content

Q3 agent based system

Q4 knowledge based processing

Q5 java programming

Q6 query semantic by davis

Q7 natural language processing

Q8 non-monotonic reasoning

Q9 compiler generator

Q10 relational databases

Figure 9. Keywords Queries on DBLP

Query Keywords

MQ1 alexander

MQ2 hollywood

MQ3 bill harry fighting men

MQ4 blake death

MQ5 elley love story

MQ6 mile allen

MQ7 countdown

MQ8 come away 2005

MQ9 gold anderson

MQ10 black jack david

Figure 10. Keywords Queries on IMDB

8.2 Evaluation Results

To measure the effectiveness, we adopt two

metrics used in previous studies (Liu & Yu &

Meng, 2006; Xu & Ishikawa, 2009): (1) number

of top-1 results that are relevant (#Rel), and (2)

reciprocal rank (R-Rank), for a given query.

The reciprocal rank is 1 divided by the rank at

which the first correct answer is returned or 0 if

no correct results are returned. In order to find

the relevant results, we used the ranking

strategies: DISCOVER (Hristidis & Gravano,

2003), SPARK (Luo & Wang, 2011) and our

ranking method for the same query. Then, we

manually evaluated the results and selected the

relevant result for each query. Also, the

experiments have been conducted on our

proposed ranking method by varying p from 1

to 3 that is shown in Table 5. As the default p =

1 already returns relevant results, but R_Rank

values are affected by the varying p. With

increasing value of p such as p = 3, the R_Rank

value decrease. We observe that p = 2 return the

relevant results and the R_Rank value increase.

Table 5. P’s Impact on #Rel and R_Rank

 P = 1 P = 2 P = 3

#Rel 185 200 60

R_Rank ≥0.5 1 ≤0.166

The evaluation results of DISCOVER,

SPARK and the proposed method are compared

by using the same DBLP and IMDB datasets.

The manually evaluated relevant results are

based on the AND semantics for keyword

queries. Table 6. shows the #Rel and R_Rank

values of previous methods and proposed

ranking method on the top-10 results of the

same queries. When we test all methods on

#Rel and R_Rank, we observe that there is

significantly dissimilar value on these methods.

The proposed ranking method always returns

the relevant results as top-1 result for 100 tested

queries on DBLP. So, R_Rank value of

proposed ranking method is 1. SPARK actually

performs better than DISCOVER, because it

often returns relevant results within the top-6

results, while DISCOVER method often fails to

find any relevant result in the top-10 results.

This is reflected in their R-Rank measures.

Table 6. #Rel and R_Rank for Existing Methods and

Proposed Method on DBLP

 DISCOVER SPARK Proposed Method

#Rel ≤ 25 ≤ 55 100

R_Rank  0.3  0.83 1

The effectiveness is also measured with this

two metric on IMDB, where the effectiveness of

relevant results in IMDB are similar to DBLP.

12

In Table 7, it shows the comparison of

DISCOVER, SPARK and the proposed ranking

method by using R_Rank and #Rel metrics in

order to most queries. Although DISCOVER

got some relevant results on #Rel for small

queries, we see that DISCOVER is more

affected on R-Rank than SPARK. SPARK

actually performs better than DISCOVER,

because it often returns relevant results within

the top-5 results, while DISCOVER method

often returns relevant results in the top-10

results. At that time, the proposed ranking

method can return relevant results as top-1

results for 100 tested queries on IMDB. In

practice, the proposed ranking method achieves

more relevant results than the existing ranking

methods.

Table 7. #Rel and R_Rank for Existing Methods and

Proposed Method on IMDB

 DISCOVER SPARK Proposed Method

#Rel ≤ 27 ≤ 63 100

R_Rank  0.33  0.89 1

8.3 Effectiveness of Proposed Ranking Method

and Existing Ranking Methods

The effectiveness of DISCOVER (Hristidis

& Gravano, 2003), SPARK (Luo & Wang,

2011) and the proposed ranking method is

compared on the same DBLP and IMDB

datasets. The impact of top rank relevant

answers on each query is shown. For query

―nikos clique‖, results are shown in Table 8,

Table 9 and Table 10. DISCOVER ranks in top-

3 answer for this query. But SPARK can rank in

top-1 result. The proposed ranking method can

rank in top-1 result and the next four answers

are the other papers that are written by the

author ―nikos‖. In this query, the proposed

ranking method and SPARK rank the same

inproceeding paper.

In query ―data mining‖, the proposed method

and SPARK rank the same paper for top-1

result, while DISCOVER rank the other paper

as top-1 result. In this case, all methods rank

top-1 result that contains the two keywords

―data‖ and ―mining‖. So, all answers in Table

11 are acceptable. Then, we test query ―peter

for semantic web IFIP‖ in top-2 answers. For

this query, DISCOVER and SPARK cannot

rank relevant answers that contain all keywords.

The proposed method ranks in top-1 result with

the complete keywords. In top-2 result, it is a

meaningful result that contains three keywords

although this result cannot all keywords. All

results are shown in Table 12, Table 13 and

Table 14.

Table 8. Top-5 Answers on DISCOVER for Query ―nikos

clique‖

Table 9. Top-5 Answers on SPARK for Query ―nikos

clique‖

Rank Top-5 Answers on SPARK

1

Nikos Mamoulis, Dimitris Papadias → RPI ←

Constraint-Based Algorithms for Computing

Clique Intersection Joins

2
Mountaz Hascoft-Zizi, Nikos Pediotakis →

RPI ← Visual Relevance Analysis

3

Nikos Mamoulis, Dimitris Papadias → RPI ←

Hierarchical Constraint Satisfaction in Spatial

Databases

4

Nikos Fakotakis,Kyriakos N. Sgarbas → RPI

← Machine Learning in Human Language

Technology

5

Theodoros Bozios,Nikos B. Pronios → RPI

←Multimedia Synchronization: The Role of

the Communication System

Rank Top-5 Answers on DISCOVER

1
Marcello Pelillo → RPI ← Clique Finding

Relaxation Labeling Networks

2

Haris Papageorgiou, Nikos Lourados, Symeon

Retalis,Dimitrios Retalis → RPI ← Kairos: A

Web-Based System for Automatic Generation

of Weather Forecasts in Two Languages,

Greek-English

3

Nikos Mamoulis, Dimitris Papadias → RPI ←

Constraint-Based Algorithms for Computing

Clique Intersection Joins

4

Bruno Courcelle, Johann A. Makowsky, Udi

Rotics → RPI ← Linear Time Solvable

Optimization Problems on Graphs of Bounded

Clique Width

5

Nikos Fakotakis, Kyriakos N. Sgarbas, George

K. Kokkinakis → RPI ← Incremental

Construction of Compact Acyclic NFAs

13

Table 10. Top-5 Answers on Proposed Method for Query

―nikos clique‖

Rank Top-5 Answers on Proposed Method

1

Nikos Mamoulis, Dimitris Papadias → RPI ←

Constraint-Based Algorithms for Computing

Clique Intersection Joins.

2

Siegfried Reich,Dimitris Christodoulakis,

Nikos Karousos,Manolis Tzagarakis → RPI

← Naming as a fundamental concept of open

hypermedia systems.

3

Dimitris Papadias, Nikos I. Karacapilidis →

RPI ← Hermes: Supporting Argumentative

Discourse in Multi-Agent Decision Making.

4

Nikos Mamoulis, Vasilis Delis, Dimitris

Papadias → RPI ← Assessing Multimedia

Similarity: A Framework for Structure and

Motion.

5

Theodoros Bozios,Nikos B. Pronios → RPI

←Multimedia Synchronization: The Role of

the Communication System

Table 11. Top-1 Answer on Query ―data mining‖

Method Top-1 Answer

Proposed

Method

Christos Faloutsos, Tara M.

Madhyastha, Mengzhi Wang, Ngai

Hang Chan → RPI ← Data Mining

Meets Performance Evaluation: Fast

Algorithms for Modeling Bursty

Traffic

DISCOVER

Ben Shneiderman → RPI ← Inventing

Discovery Tools: Combining

Information Visualization with Data

Mining

SPARK

Christos Faloutsos,Tara M.

Madhyastha, Mengzhi Wang, Ngai

Hang Chan → RPI ← Data Mining

Meets Performance Evaluation: Fast

Algorithms for Modeling Bursty

Traffic

Table 12. Top-2 Answers on DISCOVER for Query

―peter for semantic web IFIP‖

Rank Top-2 Answers on DISCOVER Method

1

Peter A. Flach → RPI ← An Analysis of

Various Forms of ―Jumping to Conclusions‖

→ R → Lecture Notes in Computer Science

2

Maryline Laurent → RPI ← Security Flows

Analysis of the ATM Emulated LAN

Architecture → R → IFIP Conference

Proceedings

Table 13. Top-2 Answers on SPARK for Query ―peter for

semantic web IFIP‖

Rank Top-2 Answers on SPARK

1

Denis Yaro → RPI ← Cooperative

management → R → IFIP Conference

Proceedings

2
Nicklas Lundblad → RPI ← Digital Evidence

→ R → IFIP Conference Proceedings

Table 14. Top-2 Answers on Proposed Method for Query

―peter for semantic web IFIP‖

After studying the effectiveness of keyword

queries on DBLP, we also discuss the

effectiveness of keyword queries on IMDB. In

query ―godfather‖, the proposed method,

DISCOVER and SPARK rank the same movie

for top-1 result that contains the keyword

―godfather‖. So, all answers in Table 15 are

acceptable. When we test the next query ―mile

allen‖, both our proposed method and SPARK

rank in top-1 result for this query. While

DISCOVER can rank in top-6 result but it

cannot rank in top-1 result. All answers are

shown in Table 16, Table 17 and Table 18.

Table 15. Top-1 Answer on Query ―godfather‖

Method Top-1 Answer

Proposed

Method
AlBraggs → R ← Disco Godfather

DISCOVER AlBraggs → R ← Disco Godfather

SPARK AlBraggs → R ← Disco Godfather

Then, we test the query ―gold anderson‖, all

results are shown in Table 19, Table 20 and

Table 21. For this query, DISCOVER ranks in

top-4 result. Thus, SPARK rank in top-2 result.

But the proposed method can rank in top-1

result and the next four answers are the other

movies that are contain at least one keyword.

Rank Top-2 Answers on Proposed Method

1

Peter M. D. Gray, Kit-ying Hui, Alun D.

Preece → RPI ← Mobile Constraints for

Semantic Web Applications → R → IFIP

Conference Proceedings

2

Peter M. D. Gray, Suzanne M. Embury →

RPI ← Compiling a Declarative High-Level

Language for Semantic Integrity Constraints

→ R → IFIP Conference Proceedings

14

Moreover, we see that the proposed method can

rank the top-1 result than DISCOVER and

SPARK within all tested queries.

Table 16. Top-6 Answers on DISCOVER for Query

―mile allen‖

Rank Top-6 Answers on DISCOVER

1
Arthur B.Allen → R ← Ebb Tide [1937] →

MD ← James P. (I)Hogan

2

Allen 'Sugar Bear'Black → R ← Antone's:

Home of the Blues [2004] → MD ←

DanKarlok

3
BabkenAzizian → R ← Eyeball Eddie [2000]

→ MD ← Elizabeth (II)Allen

4
Bob (II)Burns → R ← Beyond the Rockies

[1932] → MD ← Fred (II)Allen

5
Allen (I)Baron → R ← Blast of Silence [1961]

→ MD ← Allen (I)Baron

6 Allen (II)Adams → R ← 8 Mile

Table 17. Top-6 Answers on SPARK for Query ―mile

allen‖

Rank Top-6 Answers on SPARK

1
Allen (II) Adams → R ← 8 Mile [2002] →

MD ← Curtis (I) Hanson

2
AbhiBhattacharya → R ← Dil De Mile Dil

[1978] → MD ← BhishmKohli

3
BabkenAzizian → R ← Eyeball Eddie [2000]

→ MD ← Elizabeth (II) Allen

4
Bob (II) Burns → R ← Beyond the Rockies

[1932] → MD ← Fred (II)Allen

5
Arthur B.Allen → R ← Ebb Tide [1937] →

MD ← James P. (I) Hogan

6
Allen (I) Baron → R ← Blast of Silence

[1961] → MD ← Allen (I) Baron

Table 18. Top-6 Answers on Proposed Method for Query

―mile allen‖

Rank Top-6 Answers on Proposed Method

1
Allen (II) Adams → R ← 8 Mile [2002] →

MD ← Curtis (I) Hanson

2
AbhiBhattacharya → R ← Dil De Mile Dil

[1978] → MD ← BhishmKohli

3
Arthur B.Allen → R ← Ebb Tide [1937] →

MD ← James P. (I) Hogan

4

Allen 'Sugar Bear'Black → R ← Antone's:

Home of the Blues [2004] → MD ←

DanKarlok

5
BabkenAzizian → R ← Eyeball Eddie [2000]

→ MD ← Elizabeth (II) Allen

6
Bob (II) Burns → R ← Beyond the Rockies

[1932] → MD ← Fred (II) Allen

Table 19. Top-5 Answers on DISCOVER for Query

―gold anderson‖

Rank Top-5 Answers on DISCOVER

1
Arthur (II)Anderson → R ← Deathdream

[1974] → MD ← Bob (III)Clark

2
BarringtonBignall → R ← Exit Wounds

[2001] → MD ← AndrzejBartkowiak

3
Anthony (I)Anderson → R ← Cradle 2 the

Grave [2003] → MD ← AndrzejBartkowiak

4
AntonyCarrick → R ← Fields of Gold [2002]

→ MD ← Bill (III) Anderson

5

BobbyCanavarro → R ← Cleopatra Jones and

the Casino of Gold [1975] → MD ←

CharlesBail

Table 20. Top-5 Answers on SPARK for Query ―gold

anderson‖

Rank Top-5 Answers on SPARK

1

BobbyCanavarro → R ← Cleopatra Jones

and the Casino of Gold [1975] → MD ←

CharlesBail

2
AntonyCarrick → R ← Fields of Gold

[2002] → MD ← Bill (III) Anderson

3
BillyBletcher → R ← Desert Gold [1936] →

MD ← James P. (I) Hogan

4
Anthony (I) Anderson → R ← Cradle 2 the

Grave [2003] → MD ← AndrzejBartkowiak

5
Arthur (II)Anderson → R ← Deathdream

[1974] → MD ← Bob (III) Clark

Table 21. Top-5 Answers on Proposed Method for Query

―gold anderson‖

Rank Top-5 Answers on Proposed Method

1
AntonyCarrick → R ← Fields of Gold

[2002] → MD ← Bill (III) Anderson

2

BobbyCanavarro → R ← Cleopatra Jones

and the Casino of Gold [1975] → MD ←

CharlesBail

3
BillyBletcher → R ← Desert Gold [1936]

→ MD ← James P. (I) Hogan

4
Arthur (II) Anderson → R ← Deathdream

[1974] → MD ← Bob (III) Clark

5

Anthony (I) Anderson → R ← Cradle 2

the Grave [2003] → MD ←

AndrzejBartkowiak

In summary, the proposed ranking method

can retrieve the relevant answers in order to two

factors. Firstly, the content factor can calculate

the scores to retrieves answers which match

keywords for both AND semantic and OR

15

semantic. Then, the structural factor can

calculate the scores to retrieves the meaningful

CTT. We observe that proposed ranking method

achieve the better relevant results than the

existing ranking methods by testing above the

queries.

8.4 Efficiency of Query Processing

In this section, we illustrate the efficiency of

query processing by measuring the computation

time for sample queries of DBLP and IMDB

datasets. Given a keyword query, the proposed

algorithm generates the valid CNs. The

generated CNs is evaluated by reducing the size

of intermediate results to get the final results.

The generated CTTs by evaluating CNs are

produced as answers with the top-k query

processing upon the highest score.

Figure 11 shows the execution times by

evaluating the queries in DBLP. In this figure,

Q4 and Q9 can execute the result at minimum

time. Also Q1, Q2 and Q6 can evaluate the

result queries at minimum time although there

are larger numbers of queries than the number

of queries in Q3. Thus, Q3 can produce the

number of relevant queries no more than 10s.

Figure 11. Execution Times for Queries of DBLP

Figure 12, we also present the evaluation of

execution times for the queries in IMDB which

is 6 times larger than DBLP. We can see that

MQ5 can execute the result at minimum time.

Also MQ2, MQ6, MQ7 and MQ9 can evaluate

the result queries at minimum time although

there are joined two or more relations due to the

primary-foreign relationship. We can say that

the execution time of MQ10 is efficient

according to the data structure of IMDB dataset,

although the computation time of this query is

more than the other query. So, we observe that

the top-k CTT algorithm execute the final result

to speed up.

Figure 12. Execution Times for Queries of IMDB

9. CONCLUSION

A keyword search in relational databases

allows ordinary users to find text information in

relational databases with much higher

flexibility. A keyword query in the system is a

list of keywords and does not need to specify

any relation or attributes names. The result to

such a keyword query consists of the minimal

connected tuple trees, which potentially include

tuples from multiple relations in database. To

retrieve relevant queries, we proposed a new

ranking method based on the virtual document

to calculate the score of CTT. The proposed

ranking method can reduce the meaningless

results which are disappointed for user with the

ranking methods in previous works. The

proposed Top-k CTT algorithm retrieved the

top-k rank relevant results efficiently. We

presented the experimental results on DBLP and

IMDB show that the proposed method and

algorithm generate the result approximately for

the user desired query. And the experimental

results are efficiently evaluated by using query

execution strategy.

Efficiency of the system was presented with

the computation times by evaluating the

performance of all algorithms. Also, the

relevant results on top-k value were presented

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10C
o

m
p

u
ta

ti
o

n
 T

im
e(

m
s)

Queries

10

100

1000

10000

100000

C
o

m
p

u
ta

ti
o

n
 T

im
e(

m
s)

Queries

16

by applying proposed ranking method as

effectiveness. According to these experimental

results, the system efficiency is affected as

much as records that is causing the system

overhead. To solve this problem, we consider to

implement the more suitable query execution

algorithms in future.

Acknowledgement

This research is partly supported by the

EKSORDB System for Computer Science

Research.

REFERENCES

Aditya,V., Bhalotia,G., Chakrabarti,S.,

Hulgeri,A., Nakhe,C., Parag,S. (2002).

BANKS: Browsing and keyword searching in

relational databases. In VLDB, (p. 1083–1086).

Agrawal,S., Chaudhuri,S., Das,G. (2002).

DBXplorer: A System for Keyword-Based

Search over Relational Database. Proc. 18
th

 Int.

Conf. on Data Engineering, (p. 5-16).

Baid,A., Rae,I., Li,J., Doan,A., Naughton,J.

(2010). Toward Scalable Keyword Search over

Relational Data. Proc. VLDB Endowment, Vol.

3.

Ding,B., Yu,J.X., Wang,S., Qin,L., Zhang,X.,

Lin,X. (2007). Finding Top-k Min-Cost

Connected Trees in Databases. In ICDE, (p.

836-845).

Hristidis,V., Papakonstaninou,Y. (2002).

DISCOVER: Keyword Search in Relational

Databases. Proc. 28
th

 Int. Conf. on Very Large

Data Bases, (p. 670-681).

Hristidis,V., Gravano,L., Papakonstantinou,Y.

(2003). Efficient IR-Style Keyword Search over

Relational Databases. In Proc. of the 29th

VLDB Conference.

http://www.dblp.uni.trier.de.

http://www.imdb.com/interfaces.

Kashem,M.A., Chowdhury,A.S., Deb,R.,

Jahan,M. (2010) Query Optimization on

Relational Databases for Supporting Top-k

Query Processing Techniques. In JCIT, Vol. 1,

p.53-58.

Kacholia,V., Pandit,S., Chakrabarti,S.,

Sudarshan,S., Desai,R., Karambelkar,H. (2005).

Bidirectional expansion for keyword search on

graph databases. In VLDB, (p. 505-516).

Kimelfeld,B., Sagiv,Y. (2006). Finding and

Approximating Top-k Answers in Keyword

proximity Search. In PODS, (p. 173-182).

Liu,F., Yu,C., Meng,W. (2006). Effective

Keyword Search in Relational Databases. Proc.

2006 ACM SIGMOD Int. Conf. on

Management of data, (p. 563-574).

Li,G., Feng,J., Lin,F., Zhou,L. (2008).

Progressive ranking for efficient keyword

search over relational databases. In Springer,

Vol. 5071, (p.193-97).

Li.P, Zhu.Q., Wang.S. (2008). The Research on

the Algorithms of Keyword Search in

Relational Database. In Springer, (p.134-143).

Luo,Y., Wang,W., Lin,X., Zhou,X. (2011).

SPARK2: Top-k Keyword Query in Relational

Databases. TKDE Special Issue: Keyword

Search on Structured Data.

Qin,L., Yu,J.X., Chang,L. (2009). Keyword

Search in Databases: The Power of RDBMs.

Proc. 35
th

 SIGMOD Int. Conf. on Management

of data, (p. 681-694).

Stefanidis,K., Drosou,M., Pitoura,E. (2010).

PerK: Personalized Keyword Search in

Relational Databases through Preferences. Proc.

13
th

 Int. Conf. on Extending Database

Technology, EDBT, (p. 585-596).

Thein,M.M. (2012). Improved Ranking Method

for Keyword Queries on Relational Database.

Int. Conference on Computer Applications, (p.

351-356).

Thein,M.M, Thwin,M.M.S. (2012). Efficient

Schema Based Keyword Search in Relational

Databases. Int. Journal of Computer Science,

Engineering and Information Technology

(IJCSEIT), Vol. 2, (p. 13-32).

Wang,S., Zhang,J., Peng,Z., Zhan,J., Wang,Q.

(2007). Study on Efficiency and Effectiveness

http://www.dblp.uni.trier.de/
http://www.imdb.com/interfaces

17

of KSORD. APWeb/WAIM Int. Workshops, (p.

6-17).

Xu,Y., Ishikawa,Y., Guan,J. (2009). Effective

Top-k Keyword Search in Relational Databases

Considering Query Semantics. APWeb/WAIM

Int. Workshops, (p. 172–184).

Xiaohui,Y., Huxia,S. (2012). Ranking keyword

search results based on collective importance.

In VLDB.

YU,J.X., Qin,L., Chang,L. (2010). Keyword

Search in Relational Databases: A Survey.

IEEE Data Engineering Bulletin, Vol. 33, (p.

67-78).

Zhang,N., IIyas,I.F., Ozsu,M.T. (2011).

Universal Top-k Keyword Search over

Relational Databases. Technical Report CS-

2011-03.

Zeng.Z., Bao.Z., Ling.T.W., Lee.M.L. (2012).

iSearch: An Interpretation based Framework for

Keyword Search in Relational Databases‖. In

ACM, (p.3-9).

