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Abstract 

 

Keyword search in relational databases allows the user to search information without knowing 

database schema and using structural query language. As results needed by user are assembled from 

connected tuples of multiple relations, ranking keyword queries are needed to retrieve relevant 

results. For a given keyword query, we first generate candidate networks and also produce 

connected tuple trees according to the generated candidate networks by reducing the size of 

intermediate joining results. We then model the generated connected tuple trees as a document and 

evaluate score for each document to estimate its relevance. Finally, we retrieve top-k keyword 

queries by ranking the results. In this paper, we propose a new ranking method based on virtual 

document. We also propose Top-k CTT algorithm by using the frequency threshold value. The 

experimental results are shown by comparison of the proposed ranking method and the previous 

ranking methods on IMDB and DBLP datasets. 

Keywords— Candidate Network; Connected Tuple Tree; Top-k; Keyword Query; Keyword Search; 

Relational Databases;  

 

1. INTRODUCTION 

 

The most critical and valuable amount of data 

such as business data has been stored in 

relational databases. Relational database 

management system (RDBMS) is a DBMS in 

which data is saved in tables and the 

relationships among the data are saved in tables. 

The data can be reassembled and accessed in 

many different ways without change the table 

forms. Most commercial RDBMS uses a 

structured query language (SQL) to access the 

database. With more and more data being stored 

in relational database, it has become crucial for 

users to be able to search and browse the 

information stored in them. Keyword search in 

relational databases enables ordinary users, who 

do not understand the database schema and 

SQL, to find the connected tuple sets among the 

tuples stored in relations, with a given set of 

keywords. The existing methods of keyword 

search in relational databases can be broadly 

classified into two categories that are schema 

based method and graph based method. 

In schema based keyword search in relational 

database, it has a common method that is 

generating candidate network in schema graph 

transformed from relations. Data is stored in the 

form of columns, tables and primary key to 

foreign key relationships in relational databases. 

According to develop the schema graph, we 

illustrate two schema graphs as examples. 

Figure 1 shows the schema graph of publication 

database from DBLP dataset. The movies 

database schema graph of IMDB dataset shows 

in Figure 2. For a given keyword query, the 

logical unit of answers needed by users is not 

limited to an individual column value or ever an 

individual tuple. It may be multiple tuples 

joined together. Given keyword search in 

relational databases, generating minimum 

joining tuples sets of relations that contained 

keyword is called candidate network (CN), such 

as SQL. A candidate network must satisfy the 

two conditions, total and minimal. Because it is 

meaningless if two tuples in a candidate 

network are too far away from each other, the 

maximum numbers of tuples allowed in a 
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candidate network are needed to specify (Yu & 

Qin, 2010).  

Suppose user wants to get the papers written 

by ―Jinlin Chen‖ from DBLP database. The 

system generates the relevant CNs, such as 

Person ⋈ Relation-Person-InProceeding ⋈ 

InProceeding, with multiple tuples from 

different relations joined by foreign keys. 

Generating all valid candidate networks that are 

called connected tuple trees (CTTs) by joining 

tuples from multiple relations. There are many 

connected tuple trees that can be results for the 

query. These results are not surely useful to the 

user. We need to compute a single score for 

each CN in order to rank the relevant results. 

So, a ranking method is essential for getting 

user satisfaction. For the ranking method, some 

systems considered each text column as a 

collection and each value in the text column as 

document by using IR weighting methods. The 

results are ranked according to a final score that 

is obtained by dividing the sum of all these 

scores by the number of tuples in the tuple trees. 

These methods can help improve the keyword 

search quality in relational database.  

Recently, several researchers have been done 

on keyword search systems for relational 

databases (Baid, 2010; Qin & Yu, 2009; 

Stefanidis & Drosou, 2010; Wang, 2007; Li & 

Zhu, 2008). In candidate network generation, 

DISCOVER (Hristidis & Papakonstaninou, 

2002) and Liu & Yu & Meng (2006) developed 

the CN generation algorithm based on a 

breadth-first traversal in the search space. 

SPARK (Luo & Wang, 2011) is subsequently 

improved the CN generation algorithm by 

canonical. In the ranking strategy, IR-Style 

(Hristidis & Gravano, 2003) incorporated a 

state-of-the-art IR ranking method to address 

the retrieval effectiveness issue and presented 

several efficient query execution algorithms 

optimized for returning top-k relevant answers. 

Liu & Yu & Meng (2006) improved the ranking 

method in IR-Style by adapting four 

normalizations. Both two systems considered 

each text column as a collection and each value 

in the text column as document. BANKS 

(Aditya  & Bhalotia, 2002) and BANKSII 

(Kacholia & Pandit, 2005) took another 

approach by modeling the database content as a 

graph and proposed sophisticated ranking and 

query execution algorithms. The theoretical 

aspect of efficient query processing for top-k 

keyword queries is studied in (Ding & Yu, 

2007; Kashem & Chowdhury, 2010, Xu & 

Ishikawa, 2009; Kimelfeld & Sagiy, 2006). 

SPARK (2011) further modified the ranking 

method of IR-Style by introducing the concept 

of a virtual document and presented efficient 

query evaluation algorithms for their ranking 

method. Despite the existing studies, there are 

still several issues with existing ranking 

methods. Some of the existing ranking methods 

may produce the meaningless results which are 

disappointed for user.   

In this paper, we focus on retrieving the top-k 

rank relevant results with given keyword query.  

We propose a new ranking method based on 

virtual document. The proposed ranking method 

can produce meaningful results by applying two 

factors, content factor and structural factor. The 

proposed ranking method can evaluate the 

accurate scores of the relevant results from 

relational database for the user. If query 

processing algorithms is not optimized for the 

ranking method and top-k queries, the query 

execution time will become prohibitively large 

for large databases. We also propose the Top-k 

CTT algorithm by using frequency threshold 

value. The proposed Top-k CTT algorithm can 

retrieve the efficient top-k queries. We conduct 

the experimental results on DBLP and IMDB 

databases. The results show that the proposed 

ranking method supports effective keyword 

search on large amounts of relational data. 

The rest of the paper is organized as follows: 

Section 2 discusses the related work. Section 3 

presents the basic concept of keyword query 

and CN. Section 4 presents the CN generation. 

Section 5 illustrates the CN evaluation. Section 

6 discusses the ranking method and the query 

processing in Section 7. Section 8 shows the 

experimental results and Section 9 concludes 

this paper. 

 

2. RELATED WORK 

The techniques to support keyword search in 

relational databases can be divided into two 

categories. One type of methods is based on 
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modeling data as a graph, and the results as 

subtrees or sub-graphs. Another type of 

methods is based on relational databases where 

structured data are stored. One important issue 

of keyword search in relational databases is the 

efficiency and effectiveness. 

Several researchers have been done on early 

keyword search systems for relational databases 

(Agrawal & Chaudhuri, 2002; Hristidis & 

Papakonstaninou, 2002). Early works in schema 

graph approach like DBXplorer (Agrawal & 

Chaudhuri, 2002) and DISCOVER simply 

consider the number of joins in the tuple trees. 

DISCOVER (2003) adapted IR-style document-

relevant ranking strategies to the problem of 

processing free-form keyword queries over 

RDBMSs. DISCOVER also proposed IR-style 

ranking method in straightforward manner to 

rank tuple trees by assuming OR semantics for 

answers. This method had not considered the 

effectiveness of the query results. Liu & Yu & 

Meng (2006) described the ranking formula by 

adapting four normalizations: tuple tree size 

normalization, document length normalization, 

document frequency normalization and inter-

document weight normalization. This score 

function is not monotonic due to the four 

normalizations. 

SPARK (2011) proposed to model a joining 

tuple tree as a virtual document. SPARK 

studied the tree level ranking function which 

does not satisfy tuple monotonicity. In order to 

handle such non-monotonic score functions, a 

new monotonic upper bound function is 

introduced. The intuition behind the upper 

bound function is that, if the upper bound score 

is already smaller than the score of a certain 

result, then all the upper bound scores of unseen 

tuples will be smaller than the score of this 

result due to the monotonicity of the upper 

bound function. SPARK proposed two new 

algorithms that are Skyline-Sweeping algorithm 

and Block-Pipelined algorithm. 

BANKS (2002) also found tuple trees from 

the data graph directly by using the Steiner tree 

algorithm. For a data graph, it uses PageRank 

style methods to assign weights to tuples and 

edges between them. A combination of tuple 

weights and edge weights is used to compute 

the confidence of a tuple tree. BANKSII (2005) 

is an improvement of BANKS which introduces 

a novel technique of bidirectional expansion to 

improve search efficiency. Li & Feng (2008) 

proposed a new concept referred to as a 

compact Steiner Tree, which can be used to 

approximate the Steiner tree problem for 

answering top-k keyword queries efficiently. 

They also proposed a novel structure-aware 

index to support keyword search. In order to 

balance the importance of individual nodes and 

the structural cohesiveness of the results, 

Xiaohui  & Huxia (2012) proposed a random 

walk model with message passing to match the 

characteristics of keyword search in databases. 
 

3. PRELIMINARIES 

3.1 Data Model 
 

A relational database can be viewed as a 

graph which represents a relational model such 

as schema graph Gs (V, E). A relation database 

is a collection of relations. Each relation in the 

database corresponds to a vertex in Gs, denoted 

as the set of relation schemas {R1,R2,…}. 

Edges represent the foreign key to primary key 

relationships between pairs of relation schemas, 

Ri and Rj, denoted Ri→Rj. A relation on relation 

schema Rj is an instance of the relation schema, 

such as a set of tuples, conforming to the 

relation schema. The graph can be as a directed 

or undirected graph. It can be captured every 

granularity level of the schema elements. 

 

 
Figure 1. Publication Database Schema Graph 

 

We use directed schema graphs that show in 

Figure 1 and Figure 2 as the schema graph of 

publication database and movies database 

schema graph. For simplicity, we assume all 



 

4 

 

primary key and foreign key attributes are made 

of same attribute with attribute of related 

relation. There are no self loops and at most one 

primary-foreign key relationship between any 

two relations. 
 

 
 

Figure 2. Movies Database Schema Graph 

 

3.2 Connected Tuple Tree 

 

A keyword query (Q) consists of a list of 

keywords {k1,k2,…,kq}, and searches 

interconnected tuples that contain the given 

keywords. For a given query Q, a result is the 

set of all possible joining networks of tuples. A 

joining network of tuple is a connected tuple 

tree. Each node ti is a tuple in the database, and 

each pair of adjacent tuples in CTT is connected 

via a foreign key to primary key relationship. 

Suppose (Ri,Rj) is an edge in the schema graph. 

Let ti Є Ri, tj Є Rj, and (ti join tj) Є (Ri join 

Rj). Then (ti,tj) is an edge in the connected 

tuple tree. The size of a CTT is the number of 

tuples involved. Note that a single tuple is the 

connected tuple tree with size 1. The size of 

CTT can have arbitrarily large size, when there 

exists a many to many relationship in the 

schema graph. Therefore, the size of connected 

tuple tree is needed to only data bound. 

 

3.3 Candidate Network 

 

Each connected tuple tree is the sets 

consisting of relational names that produced by 

a relational algebra expression, if each tuple in 

one relation contains a term of the keywords. 

For a given keyword query Q, the query tuple 

set R
N
 is a set of all tuples which belong to 

relation R that contain at least one keyword of 

the query Q. We denote R
F
 the free tuple set 

which is the set of all tuples in relation R and 

we use R
Q
 to denote a tuple set, which can be 

either a non-free tuple set or a free tuple set. A 

candidate network is a tree of tuple sets R
N 

or 

R
F
 with the restriction that every node must be a 

query tuple set. Every edge (Ri
Q
,Rj

Q
) in a CN 

corresponds to an edge (Ri,Rj) in the schema 

graph Gs. The size of a CN is the number of its 

tuple sets.   

In the framework of RDBMS, a keyword 

query is processed in the two main steps that are 

candidate network generation and candidate 

network evaluation. In candidate network 

generation step, it generates a set of CNs over 

schema graph Gs. The set of CNs shall be sound 

or complete and duplicate-free upon the 

maximal size. In candidate network evaluation 

step, it evaluates the generated CNs by reducing 

the size of intermediate joining results. We 

present how to generate minimal number of 

CNs and how to evaluate the generated CNs in 

Section 4 and Section 5. 

 

4. CANDIDATE NETWORK GENERATION 

In schema-based keyword search in 

relational database, the generating all candidate 

networks for keyword query Q satisfy the two 

properties, such as complete and duplication-

free, which are listed below.  

Property1. The set contains all CNs with no 

more than    MAXN (completeness). 

Property2. Every two CNs are not isomorphic 

to each other (duplication-free).  

We proposed a new CN generation 

(AT_CNGen) algorithm based on adjacent tuple 

list in our previous work (Thein & Thwin, 

2012). AT_CNGen algorithm generate all CNs 

for a given query Q and schema graph SG.  In 

order to generate valid CNs, AT_CNGen 

algorithm first accepts the adjacent tuple lists as 

input. During each CN generation, AT_CNGen 

calls the two procedures which get a query tuple 

sets T for a given query Q and take the adjacent 

tuple list for getting query tuple sets. Each 

adjacent tuple list d adds a CN, if d is a valid 

CN and is not duplicated on each others. If d is 

invalid and identical, d is pruned. Finally, 
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AT_CNGen algorithm generates all candidate 

networks no more than the maximal number of 

tuple sets for the user input keywords. The 

generated CNs is only data bounded by 

following Properties 1 and 2. For example, we 

illustrate the adjacent tuple list for query Q = 

―Chen Web Springer‖ in DBLP and the 

adjacent tuple list for query Q = ―Black Jack 

David‖ in IMDB that are shown in Figure 1 and 

Figure 2.  

 

Figure 3. Adjacent Tuple List for DBLP 
 

 

Figure 4. Adjacent Tuple List for IMDB 

 

5. Candidate Network Evaluation 

 

We present the generating CTTs by 

executing the generated CNs in order to get the 

results. For a given query Q, the connected 

tuple tree is generated according to an evaluated 

CN that is some tuples coming from different 

relations. For each pair of adjacent tuple sets Ri, 

Rj in connected tuple tree, there is an edge 

(Ri,Rj) in SG. We proposed D_CNEval 

algorithm for the CN evaluation in our previous 

work (Thein & Thwin, 2012). D_CNEval 

algorithm is observed that there is substantial 

evaluating the common join expressions among 

CNs. As a consequence, the computational 

efforts can be saved if multiple CNs can be 

executed in a calculated way that minimizes the 

sizes of joining intermediate results. Each CTT 

that defined satisfaction in order to properties 3 

and 4 as follow: 

Property3. If a node in connected tuple tree is 

one of tuples in relation, it contains at 

least one keyword in query Q 

(completeness). 

Property4. There is no duplicate tuple with each 

other in the connected tuple tree 

(duplication-free).  

The examples of evaluated CN for Q = ―Chen 

Web Springer‖ in DBLP and Q = ―Black Jack 

David‖ in IMDB that are shown in Figure 10 

and Figure 11. 

Figure 5. Processing of Evaluated CN on DBLP 
 

 
Figure 6. Processing of Evaluate CN on IMDB 
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6.  RANKING METHOD 

6.1 Problems of Existing Ranking Methods 

 

To rank documents, IR systems assign a score 

for each document as an estimation of the 

document relevance to the given query. In IR, a 

document is a basic information unit stored in a 

text database. It is also the basic unit of answers 

needed by users. A similarity value between a 

given query and a document is computed to rank 

documents. In relational keyword search, the 

basic text information unit stored in a relational 

database is a text column value (Liu & Yu, 

2006; Xiaohui & Huxia, 2012). The basic unit of 

answers needed by users is a connected tuple 

tree which is assembled by joining multiple 

tuples, each of which may contain zero, one or 

multiple text column values. A similarity value 

between a given query and a connected tuple 

tree needs to be computed to rank connected 

tuple trees.   

In general, retrieval effectiveness is vital to 

keyword search on relational database due to the 

fuzzy nature of keyword queries. In a keyword 

query, each query result is assigned a relevance 

score and all results are presented in decreasing 

order of that score. There are three ranking 

methods considered by existing relational 

keyword search systems. The first ranking 

method is the IR score of attribute values. The 

IR score of an attribute value is computed 

according to the number of keywords it 

contained. Traditional information retrieval 

weighting methods, such as TF-IDF weighting, 

can be used to compute the IR score. In 

DISCOVER, the IR score of an attribute value is 

computed by database system. The second 

ranking method is the structure or semantics of 

result trees. Result trees refer to connection trees 

used by BANKS, join trees used by DBXplorer, 

and candidate networks used by DISCOVER. A 

result tree is scored by its size which is the 

number of nodes or edges in BANKS, 

DBXplorer and DISCOVER. In addition, it is 

useful to score a result tree by its semantics. The 

third ranking method is the semantics of links. 

The score of a node depends on the links 

between it and the other nodes. The score 

functions used by existing relational keyword 

search systems are related to the definition of 

query result. If a query result contains many 

nodes, the IR score of attribute values and the 

structure of result trees are considered. If a 

query result contains only one node, the 

structure of result trees is not necessary to be 

considered.  

 In summary, most of existing ranking systems 

have considered the size of an answer as a 

ranking factor to compute the relevance. The 

basic idea of the ranking method is: assign to 

each tuple in the joined tuple tree a score by 

using a standard IR-ranking formula, and 

combine the individual scores together by using 

an aggregation function, such as SUM, to obtain 

the final score (Xu & Ishikawa, 2009).  In this 

method, the ranking results contain a large 

amount of one keyword query over results that 

contain all or most keyword queries but only 

once. This method is contradicted to user 

perception by ranking results. To solve this 

problem, we propose a new ranking method 

based on the virtual document to retrieve the 

relevant ranking results by supporting modified 

IR ranking score. 

 

6.2 Proposed Ranking Method 

 

The proposed ranking method is presented 

by applying two factors, such as content factor 

and structural factor, on virtual document. The 

content factor is computed with the local score 

and global score. The structural factor is 

calculated for the size normalization. 

 

6.2.1 Modeling Connected Tuple Tree as a 

Virtual Document 

 

A model is proposed on the idea of modeling 

a connected tuple tree as a virtual document in 

our previous work (Thein, 2012). Consequently, 

the entire results produced by a CTT will be 

modeled as a document collection that is a 

string. The rationale is that most of the CTTs 

carry certain distinct semantics. E.g., P1 → I2 

gives all details about author and their related 

inproceeding that are collectively relevant to the 

query and form integral logical information 

units. In fact, it was split into multiple tables 

due to the normalization requirement imposed 



 

7 

 

by the physical implementation of the 

RDBMSs. SPARK proposed the idea of 

modeling a CN as a virtual document. In our 

model, we first execute a CTT as SQL queries. 

Then, the executed queries are modeled as a 

string and this string is dynamically stored into 

hash table. By the way, we avoid the modeling 

identical document. We show the related virtual 

document for each CTT as example in Figure 7. 

 
CTT Document 

P1→I2 Jinlin Chen→An Adaptive Web Content 

Delivery System 

P1→I1 Jinlin Chen→Visual Based Content 

Understanding towards Web Adaptation 

P2→I3 Peter P.Chen→ER Model, XML and the Web 

 

Figure 7. Related Virtual Document for a CTT 

 

6.2.2 Content Factor 

 

To compute content factor of a CTT, we use 

two IR ranking methods such as TF-IDF and 

Extended Boolean Model. The TF-IDF score 

emphasizes keyword matching, while Extended 

Boolean Model score emphasizes the similarity 

between keyword and a virtual document as a 

whole. To calculate the global score of a CTT, 

we model a CTT as a virtual document by 

concatenating the text contents of tuples in the 

CTT and a TF-IDF score for the virtual 

document is calculated without assuming tuples 

matching a certain keyword are uniformly and 

independently distributed in each relation. We 

obtain a local score for each virtual document to 

calculate a numeric score for each keyword. 

 

6.2.2.1 Local Score 

 

By adopting such a virtual document, we 

assign an IR ranking score, such as scorea, to a 

CTT by using Equation (1).  

 

)idfln(*
ndl

ntf
)D,k(scorea   (1) 

)CTT(avgdl

dl
*s)s1(ndl CTT

Dk



  (2) 

))CTT(tfln(1ntf
Dk

k


  (3) 





Dk i1

i
k

}kf,...,kfmax{

kf
)CTT(tf  

(4) 







Dk

k

)CTT(N

1)CTT(df
idf  (5) 

, where ntf indicates the normalized term 

frequency, ndl is the normalized document 

length which is the length of modeling CTT.  

idf is the inverse document frequency and 

tfk(CTT) denotes the number of occurrences of 

the CTT in a document.  

Equation (2) used to compute value of 

document length normalization, which dlCTT is 

the length of CTT. In our experiment, s is 

complete to 0.2 for all condition. Equation (5) 

computes the inverse document frequency for 

each modeling connected tuple tree. We can get 

the value of N(CTT) which is the number of 

CTT. We observe that the idf equation in IR 

cannot directly use because this equation cannot 

calculate to get normalize value. For this case, 

we compute idf value in order to Equation (5) to 

get normalize value. Equation (3) evaluates the 

normalized trem frequency, whereas Equation 

(4) used to compute the number of occurrences 

of the CTT which belongs to the connected 

tuple tree such as document.  

 
Table 1. Evaluating Different Scores for Query ―chen 

web content‖ 
 

For example, we compute each score value 

with ―chen web content‖ query step by step. For 

this query, some examples of the connected 

tuples trees include: P1→I2, P1→I1, P2→I3 

and P3→I4. Note that P3→I4 is not a valid 

result tree to the query, as the leaf node I4 does 

not contribute to a match to the query. A 

CTT t Є CTT  tfchen     tfweb    tfcontent Scorea 

P1→I2 

 

P1 1         0        0 
2.66 

I2 0         1        1 

P1→I1 

 

P1 1         0        0 
2.67 

I1 0         1        1 

P2→I3 

 

P2 1         0        0 
2.17 

I3 0         1        0 
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possible results for this query may be: P1→I2, 

P1→I1, and P2→I3 whereas nodes P1 and P2 

contain the keyword ―chen‖, and nodes I1 and 

I2 contain two keywords ―web‖ and ―content‖, 

I3 contains the keyword ―web‖. Then, we 

model a document for each CTT according to 

Figure 7. For the modeling query of each CTT, 

we calculate each score value by using scorea 

that is shown in Table 1. 

 

6.2.2.2 Global Score 

 

The AND semantics and OR semantics are 

considered for the upper bound of keyword 

query. We believe that users usually prefer 

documents matching many query keywords to 

those matching only few keywords. To quantify 

this factor, we propose to multiply a global 

score to the raw IR ranking score. The proposed 

global score is derived from the Extended 

Boolean Model. The idea of the Extended 

Boolean Model is to make use of partial 

matching and term weights as in the vector 

space model. It combines the characteristics of 

the vector space model with the properties of 

boolean algebra and rank the similarity between 

queries and documents. This way a document 

may be somewhat relevant if it matches some of 

the queried terms and will be returned as a 

result. So, we apply the global score that is 

shown in Equation (6). 

 

 
 6score

p1

m

mj

p

j
w1

1b Dk,

















 






 

where wj is the weight score of a CTT that is 

defined as follow: 

     7idflnntf
j

w Dk, 

 

In Equation (6), p is a tuning parameter. p 

can smoothly switch the completeness factor 

biased towards the OR semantics to the AND 

semantics, when p increases from 1.0 to ∞. In 

our experiment, we observed that a p value of 

2.0 is already good enough to enforce the AND-

semantics for almost all the queries tested.  

 6.2.3 Structural Factor 

The size of the CN or CTT is also an 

important factor. A larger CTT tends to have 

more occurrences of keywords. There is a 

common intuition behind all existing structural 

score. They all try to define a structural size of a 

CTT and then use the inverse of this structural 

size to measure the structural score. Many 

structural size definitions have been proposed. 

For example, existing schema based keyword 

search approaches use the total number of 

tuples in a CTT as the structural size and 

existing graph based keyword search 

approaches use the aggregate of edge weights as 

the structural size. There is a common 

underlying assumption: it is easier to find a 

CTT matching all given keywords in a larger 

CN.  

After computing the modified IR 

scoring method, we then evaluate a score value 

for the size of CTT and the size of the given 

query, especially for a keyword query whose 

relevant results are connected tuple tree 

involving multiple tuples, each of which 

contains a subset of the keywords query. To 

approximately the user perception, we define 

the structural score for a query that is as follow: 

 

 
  
  

 8
l CTT

Q
Dk,

sizen

sizeln
score c 

 

6.2.4 Final Score 

 

The proposed ranking method can be 

conceptually thought as first merging all tuples 

in a CTT into a virtual document, and then 

obtaining its local score in Equation (1), the 

global score in Equation (6), and the structural 

score in Equation (8). Finally, the final score of 

a CTT to a keyword query is the product of all 

the three scores: 

)9)(D,k(score*)D,k(score*)D,k(score)Q,T(score cba

 

We can get the significant score for the 

highest relevant keyword query after computing 

the final score (T,Q) for each connected tuple 

tree. We evaluate each CTT with the proposed 
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ranking method by using two relations: person 

and inproceeding of DBLP dataset. Table 2 

shows the relevant results for query ―chen web 

content‖ with CTT and its final score according 

to multiply each score value of scorea , scoreb 

and scorec. In order to this table, we can see that 

score value of P1→I2 is increased with the 

highest relevant score value. 
 

Table 2. Relevant Keyword Queries for Query ―chen web 

content‖ 

 

7. QUERY PROCESSING 

7.1 Problems of Query Processing 

 

The efficiency problem is also important to 

user experience. Generating all possible CTTs 

will induce prohibitively long query time for 

large databases. So, we need to consider 

efficiency issues of the relational keyword 

search system. In existing relational keyword 

search system, the system first generates all 

possible CNs. Assume that we can estimate an 

upper bound for the highest result score of all 

CTTs corresponding to a CN. Each time, the 

CN with the highest upper bound is chose. So, 

we can find a CTT with the highest score, 

corresponding to the chosen CN. Next, we 

enumerate possible CTTs using the top-k 

algorithms for the chosen CN. For each set of 

candidates such as non-free tuple sets, we then 

generate all corresponding CTTs by joining 

candidates together with free tuples. For each 

generated CTT, we update top-k results. This 

process is not efficient if the number of tuples is 

large, since it needs to join all tuples in each CN 

and store a large number of CTTs with the 

highest score. Finally, the system stops when 

the highest CN upper bound is not higher than 

the current top-k result scores (Zhang & IIyas, 

2011; Zeng & Bao, 2012). If the system 

estimates an invalid upper bound for the highest 

result score of all CTTs, it cannot reach to 

terminate efficiently. In general, there are still 

efficiency issues although the existing relational 

keyword search systems consider generating the 

efficient results.  

In this section, we focus on retrieving top-k 

query to improve efficiency, when we presented 

the CN generation and CN evaluation that is 

considered the efficiency.  We implement the 

top-k query processing in the application level. 

We discuss the proposed Top-k CTT algorithm 

in the next section. 

 

7.2 Top-k CTT Algorithm 

 

The user is more interested in the top-k 

query answers in the potentially huge answer 

space. So, we focus on how to retrieve the top-k 

results for keyword query. After generating all 

CTTs for a keyword query, Top-k CTT 

algorithm is presented to retrieve top-k rank 

result for the query processing that is shown in 

Figure 8. The Top-k CTT algorithm is devised 

to perform this task.  

We use the non-free tuple sets as input, 

which are belong to that CN. And then we use 

the frequency threshold T for each list pointing 

to the current element. For each CTT, if the 

generated CTT is not null, the algorithm first 

computes the score according to Equation (9). It 

adds the CTT with related score value into hash 

table H. After that the sort function sorts each 

CTT with maximum score value. If T is equal 

or less than the size of H, the algorithm add 

CTT with the maximum score value into the 

top-k as result until T is equal or less than the 

size of H and T is not null. Then if the size of H 

is less than the threshold T, the size of H set to 

T. Again the algorithm adds CTT with the 

maximum score value into the top-k as result 

until T is not null. With computing the 

threshold T, the algorithm terminates when T is 

greater than the size of H. Finally, the algorithm 

generates the top-k results as the above 

processes. 

In Top-k CTT algorithm, the for loop is 

achieved at most |M| times for each CTT in M, 

where |M| is the size of CTT that is not null. If 

CTT in M is null, we can reduce its time in 

CTT Score 

Jinlin Chen→An Adaptive Web Content 

Delivery System 

 

Jinlin Chen→Visual Based Content 

Understanding towards Web Adaptation 

 

Peter P.Chen→ER Model, XML and the 

Web 

1.41 

1.33 

1.08 
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O(1). Each CTT is ranked in hash table by 

calling RankScore function. This step  is 

increasing the computation time in O(1). So, the 

whole hash table is worked in the same |M| 

time. After sorting CTT with each score, we 

check the size of hash table. If this size is not 

zero, while loop is performed at most |N| times 

for every connected tuple sets in hash table, 

where |N| is the given threshold value. If N is 

less than size of result sets in hash table, we add 

each result into array. This step is increasing the 

computation time in O(1). If N is greater than 

maximun number of tuple sets, the algorithm is 

terminate. In this step, we can reduce its time in 

O(N). Hence the total execution time takes in 

the worst case time O(|M|-|N|).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Top-k CTT Algorithm 

8. PERFORMANCE EVALUATION 

8.1 Evaluation Setup 

 

The search efficiency of proposed algorithms 

is evaluated on DBLP and IMDB datasets. All 

queries generating algorithms were implemented 

in Java, and JDBC was used to connect to the 

database. We conducted all the experiments on 

Core(TM) 2 Duo CPU and 2GB memory laptop 

running XP. We take the average executing time 

on running 15 times. 

Dataset: We use two real datasets the Original 

Digital Bibliography and Library Project 

(DBLP) dataset (dblp.uni.trier) and the Internet 

Movie Database (IMDB) (imdb.com) in our 

evaluation. DBLP contains publications records. 

IMDB contains movies records. Table 3 and 

Table 4 show the schema and statistic of two 

datasets. 

Table 3.  Statistics of DBLP Dataset 

 

Table 4. Statistics of IMDB Dataset 

 

Query Set: We manually picked a large number 

of queries for evaluation. We attempted to 

include a wide variety of keywords and their 

combinations in the query sets, such as the 

selectivity of keywords, the size of the most 

relevant answers, the number of potential 

relevant answers, etc. We focus on a subset of 

the queries in this experiment and test on 

Relation Schema #Tuples 

Person(Pid,Name) 

InProceeding(Iid,Title,Pages,Rid) 

Proceeding(Rid,Title,Uid,Sid,…) 

Publisher(Uid,Name) 

Series(Sid,Title) 

RelationPersonInProceeding(Pid,IPid) 

174,709 

212,273 

3,007 

86 

24 

 491,777 

Total Number of Tuples 881,876 

Relation Schema #Tuples 

Actors(Aid,Name) 

Directors(Did,Name) 

Movies(Mid,Name,Year,Rank) 

Movies-Directors(Mid,Did) 

Movies-Genres(Mid,Genre) 

Roles(Aid,Mid,Role) 

817,718 

86,880 

388,269 

406,967 

417,784 

3,432,630 

Total Number of Tuples 5,550,248 

Input: A set of CTT, Threshold T 

Output: A set of top-k queries Top-k 

Let H be the hash table that contains CTT and related 

score. 

1.Top-k ← Φ 

2. H ← Φ 

3. For each c Є CTT do 

5.   If (CTT != Null) Then 

6.      H.push(CTT,RankScore(CTT)) 

 // According to the Equation (9). 

7.   End if 

8.  End for 

9.  H′  ← sortByScore(H) 

10. s ← sizeof(H′) 

11. If (H′.isEMPTY()) Then 

12.      If (T ≤ s) Then 

13.        While (T ≤ s && T != Φ) { 

14.                     Add H′.pop-max() into Top-k } 

15        End if 

16.       Else if (s < T) Then 

17.                 T ←  s  

18.             While (T != Φ) { 

19.                    Add H′.pop-max() into Top-k } 

20        End if 

21.       Else 

22.            break. 

23. End if 

24. Return Top-k. 
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keyword queries on 200 queries for two 

datasets. According to the space, we present 20 

queries in two datasets that is shown in Figure 9 

and Figure 10. 

 

Query Keywords 

Q1 nikos constraint 

Q2 chen web content 

Q3 agent based system 

Q4 knowledge based processing 

Q5 java programming 

Q6 query semantic by davis 

Q7 natural language processing 

Q8 non-monotonic reasoning 

Q9 compiler generator 

Q10 relational databases 

 

Figure 9. Keywords Queries on DBLP 

 

Query Keywords 

MQ1 alexander 

MQ2 hollywood 

MQ3 bill harry fighting men 

MQ4 blake death 

MQ5 elley love story 

MQ6 mile allen 

MQ7 countdown 

MQ8 come away 2005 

MQ9 gold anderson 

MQ10 black jack david 

 

Figure 10. Keywords Queries on IMDB 

 

8.2 Evaluation Results 

To measure the effectiveness, we adopt two 

metrics used in previous studies (Liu & Yu & 

Meng, 2006; Xu & Ishikawa, 2009): (1) number 

of top-1 results that are relevant (#Rel), and (2) 

reciprocal rank (R-Rank), for a given query. 

The reciprocal rank is 1 divided by the rank at 

which the first correct answer is returned or 0 if 

no correct results are returned. In order to find 

the relevant results, we used the ranking 

strategies: DISCOVER (Hristidis & Gravano, 

2003), SPARK (Luo & Wang, 2011) and our 

ranking method for the same query. Then, we 

manually evaluated the results and selected the 

relevant result for each query. Also, the 

experiments have been conducted on our 

proposed ranking method by varying p from 1 

to 3 that is shown in Table 5. As the default p = 

1 already returns relevant results, but R_Rank 

values are affected by the varying p. With 

increasing value of p such as p = 3, the R_Rank 

value decrease. We observe that p = 2 return the 

relevant results and the R_Rank value increase.  

Table 5. P’s Impact on #Rel and R_Rank 

 P = 1 P = 2 P = 3 

#Rel 185 200 60 

R_Rank ≥0.5 1 ≤0.166 

 

The evaluation results of DISCOVER, 

SPARK and the proposed method are compared 

by using the same DBLP and IMDB datasets. 

The manually evaluated relevant results are 

based on the AND semantics for keyword 

queries. Table 6. shows the #Rel  and R_Rank 

values of previous methods and proposed 

ranking method on the top-10 results of the 

same queries. When we test all methods on 

#Rel and R_Rank, we observe that there is 

significantly dissimilar value on these methods. 

The proposed ranking method always returns 

the relevant results as top-1 result for 100 tested 

queries on DBLP. So, R_Rank value of 

proposed ranking method is 1. SPARK actually 

performs better than DISCOVER, because it 

often returns relevant results within the top-6 

results, while DISCOVER method often fails to 

find any relevant result in the top-10 results. 

This is reflected in their R-Rank measures.  

Table 6. #Rel and R_Rank for Existing Methods and 

Proposed Method on DBLP 

 DISCOVER SPARK Proposed Method 

#Rel ≤ 25  ≤ 55 100 

R_Rank  0.3  0.83 1 

The effectiveness is also measured with this 

two metric on IMDB, where the effectiveness of 

relevant results in IMDB are similar to DBLP. 
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In Table 7, it shows the comparison of 

DISCOVER, SPARK and the proposed ranking 

method by using R_Rank and #Rel metrics in 

order to most queries. Although DISCOVER 

got some relevant results on #Rel for small 

queries, we see that DISCOVER is more 

affected on R-Rank than SPARK. SPARK 

actually performs better than DISCOVER, 

because it often returns relevant results within 

the top-5 results, while DISCOVER method 

often returns relevant results in the top-10 

results. At that time, the proposed ranking 

method can return relevant results as top-1 

results for 100 tested queries on IMDB. In 

practice, the proposed ranking method achieves 

more relevant results than the existing ranking 

methods.  

Table 7. #Rel and R_Rank for Existing Methods and 

Proposed Method on IMDB 

 DISCOVER SPARK Proposed Method 

#Rel ≤ 27  ≤ 63 100 

R_Rank  0.33  0.89 1 

 

8.3 Effectiveness of Proposed Ranking Method 

and Existing Ranking Methods 

 

The effectiveness of DISCOVER (Hristidis 

& Gravano, 2003), SPARK (Luo & Wang, 

2011) and the proposed ranking method is 

compared on the same DBLP and IMDB 

datasets. The impact of top rank relevant 

answers on each query is shown. For query 

―nikos clique‖, results are shown in Table 8, 

Table 9 and Table 10. DISCOVER ranks in top-

3 answer for this query. But SPARK can rank in 

top-1 result. The proposed ranking method can 

rank in top-1 result and the next four answers 

are the other papers that are written by the 

author ―nikos‖. In this query, the proposed 

ranking method and SPARK rank the same 

inproceeding paper. 

In query ―data mining‖, the proposed method 

and SPARK rank the same paper for top-1 

result, while DISCOVER rank the other paper 

as top-1 result. In this case, all methods rank 

top-1 result that contains the two keywords 

―data‖ and ―mining‖. So, all answers in Table 

11 are acceptable. Then, we test query ―peter 

for semantic web IFIP‖ in top-2 answers. For 

this query, DISCOVER and SPARK cannot 

rank relevant answers that contain all keywords. 

The proposed method ranks in top-1 result with 

the complete keywords. In top-2 result, it is a 

meaningful result that contains three keywords 

although this result cannot all keywords.  All 

results are shown in Table 12, Table 13 and 

Table 14.  

Table 8. Top-5 Answers on DISCOVER for Query ―nikos 

clique‖ 

 
Table 9. Top-5 Answers on SPARK for Query ―nikos 

clique‖ 

Rank Top-5 Answers on SPARK 

1 

Nikos Mamoulis, Dimitris Papadias → RPI ← 

Constraint-Based Algorithms for Computing 

Clique Intersection Joins 

2 
Mountaz Hascoft-Zizi, Nikos Pediotakis → 

RPI ← Visual Relevance Analysis 

3 

Nikos Mamoulis, Dimitris Papadias → RPI ← 

Hierarchical Constraint Satisfaction in Spatial 

Databases 

4 

Nikos Fakotakis,Kyriakos N. Sgarbas → RPI 

← Machine Learning in Human Language 

Technology 

5 

Theodoros Bozios,Nikos B. Pronios → RPI 

←Multimedia Synchronization: The Role of 

the Communication System 

Rank Top-5 Answers on DISCOVER 

1 
Marcello Pelillo → RPI ← Clique Finding 

Relaxation Labeling Networks 

2 

Haris Papageorgiou, Nikos Lourados, Symeon 

Retalis,Dimitrios Retalis → RPI ← Kairos: A 

Web-Based System for Automatic Generation 

of Weather Forecasts in Two Languages, 

Greek-English                              

3 

Nikos Mamoulis, Dimitris Papadias → RPI ← 

Constraint-Based Algorithms for Computing 

Clique Intersection Joins 

4 

Bruno Courcelle, Johann A. Makowsky, Udi 

Rotics → RPI ← Linear Time Solvable 

Optimization Problems on Graphs of Bounded 

Clique Width 

5 

Nikos Fakotakis, Kyriakos N. Sgarbas, George 

K. Kokkinakis → RPI ← Incremental 

Construction of Compact Acyclic NFAs 
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Table 10. Top-5 Answers on Proposed Method for Query 

―nikos clique‖ 

Rank Top-5 Answers on Proposed Method 

1 

Nikos Mamoulis, Dimitris Papadias → RPI ← 

Constraint-Based Algorithms for Computing 

Clique Intersection Joins. 

2 

Siegfried Reich,Dimitris Christodoulakis, 

Nikos Karousos,Manolis Tzagarakis → RPI 

← Naming as a fundamental concept of open 

hypermedia systems. 

3 

Dimitris Papadias, Nikos I. Karacapilidis → 

RPI ← Hermes: Supporting Argumentative 

Discourse in Multi-Agent Decision Making. 

4 

Nikos Mamoulis, Vasilis Delis, Dimitris 

Papadias → RPI ← Assessing Multimedia 

Similarity: A Framework for Structure and 

Motion. 

5 

Theodoros Bozios,Nikos B. Pronios → RPI 

←Multimedia Synchronization: The Role of 

the Communication System 

 
Table 11. Top-1 Answer on Query ―data mining‖ 

Method Top-1 Answer  

Proposed 

Method 

Christos Faloutsos, Tara M. 

Madhyastha, Mengzhi Wang, Ngai 

Hang Chan → RPI ← Data Mining 

Meets Performance Evaluation: Fast 

Algorithms for Modeling Bursty 

Traffic 

DISCOVER 

Ben Shneiderman → RPI ← Inventing 

Discovery Tools: Combining 

Information Visualization with Data 

Mining 

SPARK 

Christos Faloutsos,Tara M. 

Madhyastha, Mengzhi Wang, Ngai 

Hang Chan → RPI ← Data Mining 

Meets Performance Evaluation: Fast 

Algorithms for Modeling Bursty 

Traffic 

 

Table 12. Top-2 Answers on DISCOVER for Query 

―peter for semantic web IFIP‖ 

Rank Top-2 Answers on DISCOVER Method 

1 

Peter A. Flach → RPI ← An Analysis of 

Various Forms of ―Jumping to Conclusions‖ 

→ R → Lecture Notes in Computer Science 

2 

Maryline Laurent → RPI ← Security Flows 

Analysis of the ATM Emulated LAN 

Architecture → R → IFIP Conference 

Proceedings 

Table 13. Top-2 Answers on SPARK for Query ―peter for 

semantic web IFIP‖ 

Rank Top-2 Answers on SPARK 

1 

Denis Yaro → RPI ← Cooperative 

management → R → IFIP Conference 

Proceedings 

2 
Nicklas Lundblad → RPI ← Digital Evidence 

→ R → IFIP Conference Proceedings 

 
Table 14. Top-2 Answers on Proposed Method for Query 

―peter for semantic web IFIP‖ 

After studying the effectiveness of keyword 

queries on DBLP, we also discuss the 

effectiveness of keyword queries on IMDB. In 

query ―godfather‖, the proposed method, 

DISCOVER and SPARK rank the same movie 

for top-1 result that contains the keyword 

―godfather‖. So, all answers in Table 15 are 

acceptable. When we test the next query ―mile 

allen‖, both our proposed method and SPARK 

rank in top-1 result for this query. While 

DISCOVER can rank in top-6 result but it 

cannot rank in top-1 result. All answers are 

shown in Table 16, Table 17 and Table 18. 

Table 15. Top-1 Answer on Query ―godfather‖ 

Method Top-1 Answer  

Proposed 

Method 
AlBraggs → R ← Disco Godfather 

DISCOVER AlBraggs → R ← Disco Godfather 

SPARK AlBraggs → R ← Disco Godfather 

 

Then, we test the query ―gold anderson‖, all 

results are shown in Table 19, Table 20 and 

Table 21. For this query, DISCOVER ranks in 

top-4 result. Thus, SPARK rank in top-2 result. 

But the proposed method can rank in top-1 

result and the next four answers are the other 

movies that are contain at least one keyword. 

Rank Top-2 Answers on Proposed Method 

1 

Peter M. D. Gray, Kit-ying Hui, Alun D. 

Preece → RPI ← Mobile Constraints for 

Semantic Web Applications → R → IFIP 

Conference Proceedings 

2 

Peter M. D. Gray, Suzanne M. Embury → 

RPI ← Compiling a Declarative High-Level 

Language for Semantic Integrity Constraints 

→ R → IFIP Conference Proceedings 
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Moreover, we see that the proposed method can 

rank the top-1 result than DISCOVER and 

SPARK within all tested queries.  
 

Table 16. Top-6 Answers on DISCOVER for Query 

―mile allen‖ 

Rank Top-6 Answers on DISCOVER 

1 
Arthur B.Allen → R ← Ebb Tide [1937] → 

MD ← James P. (I)Hogan 

2 

Allen 'Sugar Bear'Black → R ← Antone's: 

Home of the Blues [2004] → MD ← 

DanKarlok 

3 
BabkenAzizian → R ← Eyeball Eddie [2000] 

→ MD ← Elizabeth (II)Allen 

4 
Bob (II)Burns → R ← Beyond the Rockies 

[1932] → MD ← Fred (II)Allen 

5 
Allen (I)Baron → R ← Blast of Silence [1961] 

→ MD ← Allen (I)Baron 

6 Allen (II)Adams → R ← 8 Mile 

Table 17. Top-6 Answers on SPARK for Query ―mile 

allen‖ 

Rank Top-6 Answers on SPARK 

1 
Allen (II) Adams → R ← 8 Mile [2002]  → 

MD ← Curtis (I) Hanson 

2 
AbhiBhattacharya → R ← Dil De Mile Dil 

[1978] → MD ← BhishmKohli 

3 
BabkenAzizian → R ← Eyeball Eddie [2000] 

→ MD ← Elizabeth (II) Allen 

4 
Bob (II) Burns → R ← Beyond the Rockies 

[1932] → MD ← Fred (II)Allen 

5 
Arthur B.Allen → R ← Ebb Tide [1937] → 

MD ← James P. (I) Hogan 

6 
Allen (I) Baron → R ← Blast of Silence 

[1961] → MD ← Allen (I) Baron 

 

Table 18. Top-6 Answers on Proposed Method for Query 

―mile allen‖ 

Rank Top-6 Answers on Proposed Method 

1 
Allen (II) Adams → R ← 8 Mile [2002]  → 

MD ← Curtis (I) Hanson 

2 
AbhiBhattacharya → R ← Dil De Mile Dil 

[1978] → MD ← BhishmKohli 

3 
Arthur B.Allen → R ← Ebb Tide [1937] → 

MD ← James P. (I) Hogan 

4 

Allen 'Sugar Bear'Black → R ← Antone's: 

Home of the Blues [2004] → MD ← 

DanKarlok 

5 
BabkenAzizian → R ← Eyeball Eddie [2000] 

→ MD ← Elizabeth (II) Allen 

6 
Bob (II) Burns → R ← Beyond the Rockies 

[1932] → MD ← Fred (II) Allen 

Table 19. Top-5 Answers on DISCOVER for Query 

―gold anderson‖ 

Rank Top-5 Answers on DISCOVER 

1 
Arthur (II)Anderson → R ← Deathdream 

[1974] → MD ← Bob (III)Clark 

2 
BarringtonBignall → R ← Exit Wounds 

[2001] → MD ← AndrzejBartkowiak 

3 
Anthony (I)Anderson → R ← Cradle 2 the 

Grave [2003] → MD ← AndrzejBartkowiak 

4 
AntonyCarrick → R ← Fields of Gold [2002] 

→ MD ← Bill (III) Anderson 

5 

BobbyCanavarro → R ← Cleopatra Jones and 

the Casino of Gold [1975] → MD ← 

CharlesBail 

Table 20. Top-5 Answers on SPARK for Query ―gold 

anderson‖ 

Rank Top-5 Answers on SPARK 

1 

BobbyCanavarro → R ← Cleopatra Jones 

and the Casino of Gold [1975] → MD ← 

CharlesBail 

2 
AntonyCarrick → R ← Fields of Gold 

[2002] → MD ← Bill (III) Anderson 

3 
BillyBletcher → R ← Desert Gold [1936] → 

MD ← James P. (I) Hogan 

4 
Anthony (I) Anderson → R ← Cradle 2 the 

Grave [2003] → MD ← AndrzejBartkowiak 

5 
Arthur (II)Anderson → R ← Deathdream 

[1974] → MD ← Bob (III) Clark 

Table 21. Top-5 Answers on Proposed Method for Query 

―gold anderson‖ 

Rank Top-5 Answers on Proposed Method 

1 
AntonyCarrick → R ← Fields of Gold 

[2002] → MD ← Bill (III) Anderson 

2 

BobbyCanavarro → R ← Cleopatra Jones 

and the Casino of Gold [1975] → MD ← 

CharlesBail 

3 
BillyBletcher → R ← Desert Gold [1936] 

→ MD ← James P. (I) Hogan 

4 
Arthur (II) Anderson → R ← Deathdream 

[1974] → MD ← Bob (III) Clark 

5 

Anthony (I) Anderson → R ← Cradle 2 

the Grave [2003] → MD ← 

AndrzejBartkowiak 

In summary, the proposed ranking method 

can retrieve the relevant answers in order to two 

factors. Firstly, the content factor can calculate 

the scores to retrieves answers which match 

keywords for both AND semantic and OR 



 

15 

 

semantic. Then, the structural factor can 

calculate the scores to retrieves the meaningful 

CTT. We observe that proposed ranking method 

achieve the better relevant results than the 

existing ranking methods by testing above the 

queries. 

 

8.4 Efficiency of Query Processing 

 

In this section, we illustrate the efficiency of 

query processing by measuring the computation 

time for sample queries of DBLP and IMDB 

datasets. Given a keyword query, the proposed 

algorithm generates the valid CNs. The 

generated CNs is evaluated by reducing the size 

of intermediate results to get the final results. 

The generated CTTs by evaluating CNs are 

produced as answers with the top-k query 

processing upon the highest score. 

Figure 11 shows the execution times by 

evaluating the queries in DBLP. In this figure, 

Q4 and Q9 can execute the result at minimum 

time. Also Q1, Q2 and Q6 can evaluate the 

result queries at minimum time although there 

are larger numbers of queries than the number 

of queries in Q3. Thus, Q3 can produce the 

number of relevant queries no more than 10s. 
 

 

Figure 11. Execution Times for Queries of DBLP 
 

Figure 12, we also present the evaluation of 

execution times for the queries in IMDB which 

is 6 times larger than DBLP. We can see that 

MQ5 can execute the result at minimum time. 

Also MQ2, MQ6, MQ7 and MQ9 can evaluate 

the result queries at minimum time although 

there are joined two or more relations due to the 

primary-foreign relationship. We can say that 

the execution time of MQ10 is efficient 

according to the data structure of IMDB dataset, 

although the computation time of this query is 

more than the other query. So, we observe that 

the top-k CTT algorithm execute the final result 

to speed up. 
 

 

Figure 12. Execution Times for Queries of IMDB 

 

9. CONCLUSION 

A keyword search in relational databases 

allows ordinary users to find text information in 

relational databases with much higher 

flexibility. A keyword query in the system is a 

list of keywords and does not need to specify 

any relation or attributes names. The result to 

such a keyword query consists of the minimal 

connected tuple trees, which potentially include 

tuples from multiple relations in database.  To 

retrieve relevant queries, we proposed a new 

ranking method based on the virtual document 

to calculate the score of CTT. The proposed 

ranking method can reduce the meaningless 

results which are disappointed for user with the 

ranking methods in previous works. The 

proposed Top-k CTT algorithm retrieved the 

top-k rank relevant results efficiently. We 

presented the experimental results on DBLP and 

IMDB show that the proposed method and 

algorithm generate the result approximately for 

the user desired query. And the experimental 

results are efficiently evaluated by using query 

execution strategy. 

Efficiency of the system was presented with 

the computation times by evaluating the 

performance of all algorithms. Also, the 

relevant results on top-k value were presented 
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by applying proposed ranking method as 

effectiveness. According to these experimental 

results, the system efficiency is affected as 

much as records that is causing the system 

overhead. To solve this problem, we consider to 

implement the more suitable query execution 

algorithms in future.  
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