

15

Efficient Checkpoint Interval for Speculative Execution in MapReduce

Naychi Nway Nway

University of Information Technology

Yangon, Myanmar

naychinwaynway@uit.edu.mm

Ei Chaw Htoon

University of Information Technology

Yangon, Myanmar

eichawhtoon@uit.edu.mm

Abstract
The MapReduce has become popular in big data

environment due to its efficient parallel processing.

However, MapReduce still has the problem from job

delay caused by straggling tasks, which prolong job

completion time. In MapReduce framework, although the

existing speculative execution mechanism mitigate

stragglers, its tasks are slower than their original tasks so

this makes job completion time get long when straggling

tasks occur. So, in this paper, a checkpoint mechanism is

proposed in order to increase the efficiency of speculative

execution of MapReduce, and not to prolong job

completion time in case of straggling tasks. However,

MapReduce produces too much intermediate data; as a

result, checkpoint of every intermediate data can still

decrease the performance of MapReduce. So, to avoid this

problem, the proposed system evaluates checkpoint

interval in order to reduce job completion time in case of

stragglers. Then, the proposed system defines stragglers

using LATE scheduler. The proposed checkpoint interval

is based on five parameters: expected job completion time

without checkpointing, checkpoint overhead time, rework

time, down time and restart time. Experimental results

show that the proposed system leads to less completion

time, rework time and checkpoint overhead.

Keywords- MapReduce, straggling task, big data,

checkpoint interval, completion time

1. Introduction

Data-intensive applications process vast amounts of
data with special-purpose programs. Even though the
computations behind these applications are conceptually
simple, the size of input datasets requires them to be run
over thousands of computing nodes [6]. For this, Google
developed the MapReduce framework [5], which allows
non-expert users to run complex tasks easily over very
large datasets on large clusters. The large datasets are
often messy that causes I/O overload and contain skewed
data. This may, in turn, cause a task or even an
application to be long completion time. It points out that
MapReduce has a performance problem while slow tasks
also called stragglers occur.

The impact of stragglers can be considerable in terms
of performance. In MapReduce process, after map stages,

the intermediate data is produced and it is the input for
reduce stages [1]. So, intermediate data is important to be
a successful MapReduce process. Although MapReduce
can restart the process and produce intermediate data
again when slow tasks occur, it can prolong job
completion time.

A few of straggler mitigation techniques have been
developed and can be divided into two classes: black-
listing and speculative execution [9]. Blacklisting uses a
user-provided health-check script to detect the status of
the slaves. If a slave is not performing properly, it can be
blacklisted so that no job will be scheduled to run on it.
However, a strict or incorrect health-check program will
result in reduced numbers of resources. Besides,
stragglers can arise on the non-blacklisted machines at
times, often due to some complex reasons like I/O
contentions, background services, and hardware
behaviors. In speculative execution, the master schedules
speculative tasks for those straggling tasks and puts them
in the queue. They will be launched when there are
available slots. For each original task, the scheduler also
ensures that at most one speculative task is running at a
time. The original task is killed if the speculative task
finishes first and vice versa.

 Although the original speculative execution has fault-
tolerance feature, it has drawback because of re-executing
tasks from start as their original tasks. It re-reads the input
data, re-copies the intermediate data and re-computes the
processed data so straggling tasks cause the job
completion time to take longer [9].

Therefore, in this paper, checkpoint interval-based

speculative execution is proposed to reduce the job

completion time when straggling tasks occur in Hadoop

MapReduce. This proposed checkpoint interval is

calculated before starting the process of map tasks. After

defining checkpoint interval, checkpoint file is created in

local disk of a node and takes checkpoint according to

proposed checkpoint interval. The proposed system

evaluates the performance of job completion time based

on mean time between slow tasks, which is the expected

time between two slow tasks for a repairable system. The

evaluations measure the performance of job completion

time of the proposed system, original MapReduce and one

of the related works. And then, the experiments show that

this proposed system takes less overhead, completion time

and rework time because of proposed checkpointing

strategy.
The paper is structured as follows:

16

the related work of proposed system is discussed in
Section 2. Section 3 explains the basic flow and built-in
speculative execution of MapReduce. The checkpoint
interval and implementation of proposed system are
described in Section 4. Section 5 describes the
experimental results and finally, the conclusion of this
paper is presented in Section 6.

2. Related Work

MapReduce [1] is a parallel programming model
which is originally proposed by Google in 2004 to deal
with the rapidly increasing demand of processing mass
data concurrently. Through well-defined interfaces and
runtime support library, MapReduce can automatically
perform the large-scale computing tasks in parallel, hide
the underlying implementation details, and reduce the
difficulty of parallel programming, which makes
MapReduce become one of the most widely used parallel
programming models in the concurrent processing vast
amount of data.

RAFTing MapReduce presented in [6] tries to create
several kinds of checkpoint to handle different failures.
RAFT-LC is a local checkpointing algorithm that allows
a map task to store progress metadata on local disk and
later restores based on this in case of failures. RAFTing
mappers push data to reducers instead of the opposite
way and make the intermediate data replicated without
bringing much overhead.

In [7], authors also proposed new scheduling
algorithm in order to improve the speculative re-
execution of straggling tasks in MapReduce. ESMAR
differentiates historical stage weight information on each
node and divides them into k clusters in order to identify
straggling tasks accurately.

In paper [9], the author introduced two checkpoint
algorithms to eliminate the costs of re-reading, re-
copying, and re-computing the partially processed data.
It makes an input checkpoint to record the location of
unprocessed input data, while the output checkpoint
consists of spilled files and their index information.
Yong proposed a first-order model that defines the
optimal checkpoint interval in terms of checkpoint
overhead and mean time to interrupt (MTTI). Yong’s
model does not consider failures during checkpointing
and recovery [8].

Given the checkpointing parameters such as
checkpoint latency and MTTI, Daly’s model [3] provides
a method for computing the optimal checkpoint which is
associated with the optimal execution time. Checkpoints
are created when the progress reaches 0.5 (or) 0.25 by
calculation progress rate and estimated task execution
time [2].

In original version of MapReduce [1], all of the
straggling tasks are re-executed again in case of slow
tasks. As a result, the job completion time can be long
because of starting the tasks from scratch. In work [2],
when the checkpoints are created in 25% of execution
time, the speculative execution before 25% is not

recovered. To overcome the problem of previous work in
[1] and [2], the proposed system defines a checkpoint
interval that influences the number of checkpoint
operations performed during an application’s execution.
To ensure that checkpoints can be used effectively, the
proposed system evaluates checkpoint interval and finds
stragglers using LATE scheduler that aims to recover
from straggling tasks and to improve performance as the
main goal. Unlike original MapReduce, the proposed
system reschedules the straggling tasks without starting
again. The experiments show the performance comparison
among original MapReduce, the proposed system and one
of the related work [2].

3. The MapReduce Framework

3.1. Execution Flow of MapReduce

MapReduce [4] adopts a two-stage and shared-nothing
design. The first stage, the map stage, takes a list of key
value pairs as input, and applies a map function on each
of the pairs to generate arbitrary number of intermediate
key value pairs. In the second stage, all the intermediate
values associated with the same keys are grouped together
as a list, and a reduce function takes each of the groups as
input to generate another arbitrary number of final output
key value pairs. The paradigm behind MapReduce is a
quite simple behavior because a map or reduce function
calls on a key value pair that shall depend neither on other
pairs nor on the processing order. This makes it easy to
split the whole job into smaller independent subtasks that
can run in parallel.

The input data files of MapReduce are usually stored
on a DFS (distributed file system) such as HDFS, an open-
source implementation of GFS. The data files are split into
small pieces logically, every one of which will be fed to a
map task. Map tasks, also known as mappers, parse raw
input data that splits into k1 v1 pairs, and invoke the map
function on every single pair, the generated k2 and v2
pairs are written to a memory buffer. When the buffer
verges to overflow, the mapper flushes it to a local disk
file, which is called a spill. A mapper may create several
spill files, however, it will merge the spill files into a
single output file on local disk after all input records are
processed.

There are usually several reduce tasks, or reducers, key
value pairs with the same key hash value that goes to the
same reducer. As a result, the single map output file shall
be logically spilt into parts; each part will be fed to a
reducer. A reduce task can be summarized to 3 main
phases: shuffle, sort and reduce. During the shuffle phase,
reducers copy outputs from each mapper, and merge the
outputs into fewer amounts of files in the sort phase. The
shuffle phase and sort phase often overlap in practice, but
the reduce phase shall not start until the shuffle phase
finishes, which is limited by the MapReduce semantics.

17

Figure 1. Proposed system architecture

3.2. Speculative Execution in MapReduce

Firstly, all the tasks for the jobs are launched in

Hadoop MapReduce. The JobTracker monitors the
progress of each task using a progress score between 0 and
1. The average progress score of each category of tasks
(maps or reduces) is used as the threshold for speculative
execution: if a task’s progress score is less than the
average minus 0.2, it is considered as a straggler. The
speculative tasks are launched for those tasks that have
been running for some time (at least one minute) and have
not made any much progress, on average, as compared
with other tasks from the job. The speculative task is killed
if the original task completes before the speculative task,
on the other hand, the original task is killed if the
speculative task finishes before it [11]. However,
speculative execution re-executes from start as their
original tasks so speculative execution in MapReduce
cause the job completion time to get long although it has
fault-tolerance features. So, this paper uses LATE[7]
which defines a task is straggling or not. After that, based
on expected job completion time, the formulated
checkpoint interval is proposed in order to keep going after
straggler tasks. So, the proposed system can save a lot of
time when straggling tasks are involved.

4. Proposed System

In this paper, a checkpointing strategy for MapReduce

is proposed, which defines checkpoint interval to improve
the efficiency of checkpoint in speculative execution and
the job completion time. To preserve this, Figure 1 shows
the architecture of the proposed system.

4.1. Expected Job Completion Time without

Failure

Although original MapReduce processes with its own

speculative execution for stragglers, it reworks a task from
start. So, stragglers in MapReduce make a job completion
time long because they require finished process ranges to
be executed again. The main design goal of this proposed
system is to provide a checkpointing strategy by
permitting the tasks to checkpoint at formulated
checkpoint interval.

Initially, the input file is taken from HDFS and
InputFormat class is used to split the input into multiple
file splits. After dividing the file, this proposed system
will calculate checkpoint interval, and then, based on this
interval, creates the checkpoint to keep track of progress
of MapReduce job. All of task progresses are saved in
checkpoint file before the execution of one Mapper task.
The checkpoint file is saved in local disk of the node that
runs the current MapReduce process so the node can
restart tasks from recent status with the help of checkpoint
file when straggling tasks occur. To calculate the
proposed checkpoint interval, firstly, the system
calculates the expected job completion time [4] without
checkpoint using (1)

where Tc means job completion time, Tn means the

numbers of tasks, w means number of workers, Jt means
time to take JVM, Dsize means input data size and Jp

means processing size of JVM per second.

Evaluate checkpoint interval
and

Find stragglers

Input File

Map Task

Map Task

Map Task

Buffer

Buffer

Buffer

Reduce Task

Reduce Task

Reduce Task

HDFS Worker
Nodes

Map Task Buffer Spill files
on disk

Merge
on disk

Reduce Task HDFS

 (1)

 𝑇𝑐=

𝑇𝑛

𝑤
 ∗ 𝐽𝑡 +

𝐷𝑠𝑖𝑧𝑒

𝐽𝑝

18

4.2. Checkpoint Interval Model

The proposed checkpoint interval is based on Daly’s

model [3] except downtime parameter. The proposed
system adds downtime parameter because there are many
map tasks in MapReduce, which are important for
successful completion of a MapReduce job. So, the
downtime is needed to consider as a parameter for
calculating checkpoint interval. The checkpoint interval
model is defined by five parameters given in Table 1.

Table 1. Checkpoint interval parameters

Based on job completion time, the system calculates

interval between checkpoint files that minimizes the time
lost when slow tasks occur using (2).

Completion Time is defined as actual completion time

without checkpoints. Completion Time will be Tc and
Overhead Time will be β(C(𝜏)-1) where C(𝜏) is the
number of checkpoint taken and one is subtracted because
there is no need to write checkpoint files in the last
segment. For Rework Time, it will be described by
½(𝜏+β)N(𝜏) where N(𝜏) is the expected numbers of
interrupt. Down Time is used as DN(𝜏) and finally,
Restart Time is RN(𝜏), the amount of time required to
restart into total number of slow tasks. So, the system
constructs the formula as (3)

Next, the system determines the numbers of interrupt

N(𝜏)and numbers of checkpoints are calculated by
dividing completion time by checkpoint interval. The
expected numbers of interrupt can be calculated by the
product of numbers of checkpoints required to complete
calculation and the probability of each segment failing as
in (4)

Then, N(𝜏) is substituted in (3):

Using (5), the system finds the minima with respect to

𝜏 that set the derivation to zero.

Instead of expanding the exponential term, recast (6)

as follows:

The system which calculates a Taylor series expansion

for natural logarithm of g(𝜏) is as follows:

𝜏

 (𝜏)

 (𝜏)

(
 (𝜏)

 (𝜏)
)

(
 (𝜏)

 (𝜏)
)

Reduce the (8) to quadratic form as in (9)

Finally, the value of 𝜏 which minimize (5) as follows:

According to the above derivation, checkpoint interval

for MapReduce process can be calculated using (10). The
input for checkpoint interval is checkpoint overhead,
restart time, mean time between slow tasks and down time
of a MapReduce job.

4.3. Speculative Execution in Proposed System

After evaluating checkpoint interval, the system

checks stragglers using LATE scheduler. To select tasks
for speculative re-execution, Hadoop default scheduler
monitors the progress of tasks using Progress Score (PS)
between 0 and 1. Suppose: a job has K number of tasks
being executed; a task has a total of N number of
key/value pairs to be processed and M of them have been
processed successfully. Hadoop default scheduler gets PS
according to (11).

Parameters Description

 Mean Time Between Slow Tasks

Β
Checkpoint Overhead-time to take a
checkpoint file

Restart Time- time required before an
application resumes to current work

Rework Time
Time needed to rework job due to slow
tasks

𝐷
Down Time-time that cannot arrive
current running state in case of slow
tasks

𝑁(𝜏)
𝑇𝑐

𝜏
 𝑒

𝜏+𝛽

𝑀 ≅
𝑇𝑐

𝜏

𝜏+𝛽

𝑀

𝑒
𝜏+𝛽
𝑀 𝜏 (𝛽 𝑅 𝐷)𝜏 (𝛽 𝑅)𝑀 𝑅𝑀 𝛽𝑀 0

𝜏 𝛽

𝑀
 𝑙𝑛 *

(𝛽 𝑅)𝑀

𝜏 (𝛽 𝑅 𝐷)𝜏 (𝛽 𝑅 𝐷)𝑀
+ ln 𝑔(𝜏)

𝜏 𝐷𝜏 (𝛽 𝛽(𝑅 𝑀) 𝐷𝑀) 0

𝜏 𝛽 𝛽(𝑅 𝑀) 𝐷𝑀

𝑃𝑆

𝑀

𝑁
 𝐹𝑜𝑟 𝑀𝑎𝑝 𝑇𝑎𝑠𝑘

∗ 𝐾

𝑀

𝑁
 𝐹𝑜𝑟 𝑅𝑒𝑑𝑢𝑐𝑒 𝑇𝑎𝑠𝑘

 T = Completion Time + Overhead Time + Rework

Time+Down Time+Restart Time (2)

(3)

(4)

(5)

(6)

(7)

𝑔(𝜏)

𝑔(𝜏)

𝑔(𝜏)

(8)

(9)

(10)

(11)

𝑇 𝑇𝑐
𝑇𝑐

𝜏
 𝛽

(𝜏 𝛽) 𝐷 𝑅

𝑇𝑐

𝜏

𝜏 𝛽

𝑀

T 𝑇𝑐 (𝐶(𝜏))𝛽

(𝜏 𝛽)𝑁(𝜏) 𝐷𝑁(𝜏) 𝑅𝑁(𝜏)

19

 PSavg =∑ PS[i]/K (12)

 For task Ti: PS[i]< PSavg -20% (13)

Here, it is assumed that a map task spends negligible

time in the order stage and a reduce task has finished K
stages and each stage takes the same amount of time. If
(13) is satisfied, task Ti needs a backup task. The backup
task is started from the last checkpoint interval; as a
result, it saves not only completion time but also rework
time.

5. Experimental Results

To evaluate the effectiveness of this proposed system
in the presence of straggling tasks, the mean times
between slow tasks are thought of the thing. That is,
defining values of mean time between slow tasks in order
to consider the job completion time that is measured from
performance aspect of the proposed system. Compare the
checkpoint overhead aspect and rework time in the case of
straggling tasks. The implementation of the proposed
system is based on Hadoop 2.7.4, Java 1.8 and Hadoop
Distributed File System (HDFS) with data size of 1GB.
The jobs for experiments are word count over user-
submitted comments on StackOverflow. The proposed
jobs contain 8 map tasks and 1 reduce task, each map task
processes about 128 megabytes of data.

In scenario with only slow tasks, Figure 2 shows the

relationship between job completion time and numbers of

checkpoint. It introduces mean time between slow tasks 20

which means slow tasks occur too frequently. This shows

that when slow tasks occur frequently, the system needs to

take more checkpoints in order to save completion time.

To avoid making completion time long, the numbers of

checkpoint should be taken carefully.

As shown in Figure 3, the comparison among the

proposed system, original MapReduce and one of related

works whose checkpoint intervals is 25% of execution

time. In accordance with Equation 10, checkpoint intervals

are calculated based on different mean time between slow

tasks. According to the experiment, the proposed system

takes less completion time not only in mean time between

slow tasks 100 but also in mean time between slow tasks

20. As a result, the proposed checkpoint interval works

efficiently in the case of slow tasks that occur in

MapReduce. Although, the completion time of proposed

system is slightly the same with related work, the

completion time is decreased when slow tasks appear

frequently.

As another comparison aspect, as in Figure 4, the

experiment will show the checkpoint overhead aspect of

proposed system. The values of x-axis are checkpoint

intervals that are obtained by calculating Equation 10. In

The checkpoint interval values are calculated based on

mean time between slow tasks from 10 to 100 in seconds.

Figure 4 shows the job completion time under different

values of checkpoint overhead. We compare three

different checkpoint overhead times, C=5, C=3 and C=1

in seconds. For these experiments, start time and down

time take 2 seconds. The experiment shows that slightly

difference checkpoint overhead that is negligible for our

proposed system. So, our proposed system is suitable not

only checkpoint overhead in 1 second but also checkpoint

overhead in 5 seconds.

Figure 5 shows the performance of proposed system

based on rework time. It is shown that along with

straggler tasks, the proposed system significantly

decreases job completion time compared with other

systems because of proposed checkpoint interval. The

proposed system can also save rework time because the

system continues the work from last checkpoint in case of

straggling tasks.

Figure 2. Job completion time versus numbers

of checkpoint

Figure 3. Comparison of completion time with
checkpoint overhead=5s, restart
time=2s and downtime=2s

c
o

m
p

le
ti
o

n
 t
im

e
(s

e
c
o
n

d
s
)

numbers of checkpoint

c
o

m
p

le
ti
o

n
 t
im

e
(s

e
c
o
n

d
s
)

mean time between slow tasks (seconds)

K

i=1

20

Figure 5. Comparison of completion time
based on rework time

6. Conclusion

MapReduce is a popular programming model that
allows the user with simple APIs and is able to run big
data applications. The popularity of MapReduce is that it
makes the parallelization easy and has speculative
execution strategy. Although MapReduce is able to retry
the straggling tasks, it performs poorly because it re-
executes all finished ranges again in case of stragglers. As
a result, MapReduce job can prolong job completion time
when straggling tasks occur.
To overcome the limitation of existing speculative
execution in MapReduce, the proposed system uses
checkpointing strategy in order to avoid re-execution of
finished tasks in case of straggling tasks. Proposed
checkpointing mechanism which defines the most suitable
interval to take checkpoints, as a result, saves job
completion time, rework time and checkpoint overhead.

Figure 4. Comparison of checkpoint
overhead

The proposed system implemented on the base of Hadoop
that is the most popular open source implementation of
MapReduce. The proposed system outperforms original

MapReduce while decreasing mean time between slow
tasks.

7. References

[1] B. Cho, I. Gupta, “Making cloud intermediate data fault-

tolerant,” ACM symposium on cloud computing,2010.

[2] C. Lin, T. Chen and Y. Cheng, “On improving fault

tolerance for heterogeneous Hadoop MapReduce clusters,”

IEEE International Conference on Cloud Computing and

Big Data, 2014.

[3] D. John, “Future generation computer systems,” vol.

22,Issue 3, February 2006, pp. 303–312.

[4] H.Wang, H.Chen and F.Hu, “BeTL: MapReduce

checkpoint tactics beneath the task level,” IEEE

Transactions on Services Computing,2016.

[5] J.Dean and S. Ghemawat, “MapReduce: Simplified data

processing on large clusters,” 6th symposium on operating

system design and implementation (OSDI), San Francisco,

December 2004.

[6] J.Quiane Ruiz, C. Pinkel, J.Schad and J. Dittrich,

“RAFTing MapReduce: Fast recovery on the RAFT,” IEEE

International Conference on Data Engineering,2011.

[7] L.Ying, H.Chen and S.Xiaoyu, “ESAMR: An Enhanced

Self-Adaptive MapReduce Scheduling Algorithm,” IEEE

18th International Conference on Parallel and Distributed

Systems, 2012.

[8] W. Yong, “A first order approximation to the optimum

checkpoint interval,” ACM 1974.

[9] Y.Wang, W. Lu, R. Lou and B.Wei, “Journal of grid

computing,” vol.13, Issue 4, December 2015, pp. 587–604 .

[10] Sorting 1PB with MapReduce:

http://googleblog.blogspot.com/ 2008/11/sorting-1pb-

with-mapreduce.html.

[11] https://data-flair.training/blogs/speculative-execution-in-

hadoop-mapreduce/

150

200

250

300

350

400

450

8 12 16 19 22 24 27 29 31 33

C=5 C=3 C=1

checkpoint interval

c
o

m
p

le
ti
o

n
 t
im

e
(s

e
c
o
n

d
s
)

numbers of checkpoint

re
w

o
rk

 t
im

e
(s

e
c
o

n
d

s
)

