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Abstract 
Nowadays, replication technique is widely used in data 

center storage systems to prevent data loss. Data 

popularity is a key factor in data replication as popular 

files are accessed most frequently and then they become 

unstable and unpredictable. Moreover, replicas 

placement is one of key issues that affect the performance 

of the system such as load balancing, data locality etc. 

Data locality is a fundamental problem to data-parallel 

applications that often happens (i.e., a data block should 

be copied to the processing node when a processing node 

does not possess the data block in its local storage), and 

this problem leads to the decrease in performance. To 

address these challenges, this paper proposes a dynamic 

replication management scheme based on data popularity 

and data locality; it includes replica allocation and 

replica placement algorithms. Data locality, disk 

bandwidth, CPU processing speed and storage utilization 

are considered in the proposed data placement algorithm 

in order to achieve better data locality and load 

balancing effectively. Our proposed scheme will be 

effective for large-scale cloud storage. 

 

Keywords- Replication, Data Popularity, Data locality, 

Storage utilization, Disk Bandwidth 

 

1. Introduction 
 

Cloud storage is a technology that allows us to save 

files in storage and then access those files via Cloud. The 

cloud storage system convergences data storage among 

multiple servers into a single storage pool and provides 

users with immediate access to a broad range of resources 

and applications hosted in the infrastructure of another 

organization via a web service interface [6]. 

Cloud storage systems may consist of a cluster of 

storage nodes or even geographically distributed data 

centers. At present, the existing Cloud storage products 

are Google (Google File System GFS), Amazon (Simple 

Storage Service S3), IBM (Blue Cloud), Yahoo (Hadoop 

Distributed File System HDFS) etc. HDFS provides 

reliable storage and high throughput access to application 

data. In HDFS, data is split in a fixed size (e.g., 32MB, 

64MB, and 128MB) and the split data blocks (chunks) are 

distributed and stored in multiple data nodes with 

replication.  

In HDFS, to provide data locality, Hadoop tries to 

automatically collocate the data with the computing node. 

Hadoop schedules Map tasks to set the data on same node 

and the same rack. Data locality is a principal factor of 

Hadoop’s performance. The data locality problem occurs 

when the assigned node should load the data block from a 

different node storing the data block. Data locality means 

the degree of distance between data and the processing 

node for the data.  

There are two ways in order to improve data locality: 

      1.  The replica allocation problem occurs when 

popular data are assigned a larger number of 

replicas to improve data locality of concurrent 

accesses. 

      2.  The replica placement problem occurs when 

different data blocks accessed concurrently are 

placed on different nodes to reduce contention 

on a particular node. 

There are three types of data locality in Hadoop:  node 

locality, rack locality and rack-off locality. Uniform data 

replication is used in current implementations of 

MapReduce systems (e.g., Hadoop). The concept of 

popularity of files is introduced to replication strategies 

for selecting a popular file in reality. File popularity 

represents whether a file has been hot in recent time 

intervals, which is computed by file access rate.  

 In this paper, therefore, data popularity based 

replication method is proposed to overcome the problems 

of static replication in HDFS and to support better 

efficiency in cloud storage. Firstly, the rate of change of 

file popularity is calculated by analyzing the access 

histories with first order differential equation. Secondly, 

the replication degree for each file is calculated according 

to the rate of change of file popularity. Finally, the 

replicas will be placed based on proposed data placement 

algorithm.  

 The rest of this paper is organized as follows. Section 

2 describes related works and background theory is 

presented in section 3. Section 4 presents proposed 

system architecture and finally, section 5 describes the 

conclusion and future work. 

 

2. Related Works 
 

In cloud storage environment, data can be stored with 

some geographical or logical distance and this data is 

accessible to cloud based applications. Data is replicated 
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and stored in multiple data nodes to provide high 

availability and load balancing. There were several 

previous researches of data replication in HDFS. A cost 

effective replication management scheme for cloud 

storage cluster was proposed by Qingsong Wei [2]. That 

paper aimed to improve file availability by centrally 

determining the ideal number of replicas for a file, and an 

adequate placement strategy based on the blocking 

probability. However, this method wasn’t good for very 

large file that was file size was Terabyte and the effects of 

increasing locality were not studied.  

One approach, Latest Access Largest Weight (LALW) 

algorithm [8], that was proposed by R.S. Chang and 

H.P.Chang for data grids. LALW found out the most 

popular file in the end of each time interval and calculated 

a suitable number of copies for that popular file and 

decides which grid sites were suitable to locate the 

replicas. 

A. Hunger and J. Myint compared two data 

popularity-based replication algorithms: PopStore and 

Latest Access Largest Weight (LALW) [1]. In that paper, 

both algorithms found more popular files according to the 

time intervals through the concept of Half-life. However, 

this paper did not consider for load balance in replica 

placement. 

Recently, a few studies attempted to improve data 

locality with data replication in Hadoop. Scarlett [5] 

adopted a proactive replication scheme that periodically 

replicates files based on predicted data popularity. It  

focused on data that receives at least three concurrent 

accesses. However, it did not consider node popularity 

caused by co-location of moderately popular data. 

In DARE[ 3], the authors proposed a dynamic data 

replication scheme based on access patterns of data blocks 

during runtime to improve data locality. DARE adopted a 

reactive approach that probabilistically retained remotely 

retrieved data and evicted aged replicas. DARE allowed 

to increase the data replication factor automatically by 

replicating the data to the fetched node. However, 

removing the replicated data was performed when only 

the available data storage was insufficient. Thus, it had a 

limit to provide the optimized replication factor with data 

access patterns. 

In [9], the authors proposed a delay scheduling method 

that focused on the conflict between data locality and 

fairness among jobs. Although the delay scheduling 

method was designed to improve data locality, it let the 

jobs wait for a small amount of time, resulting in violating 

the fairness for jobs. Moreover, delay scheduling made 

assumptions that might not hold universally: (a) task 

durations were short and bimodal, and (b) a fixed waiting 

time parameter worked for all loads and skewness of 

traffic. These assumptions made it difficult for delay 

scheduling to adapt to changes in workload, network 

conditions, or node popularity.  

In [4], the authors proposed an efficient data 

replication scheme based on access count prediction in a 

Hadoop framework. This data replication scheme 

determined the replication factor with the predicted data 

access count, whether it generated a new replica or it used 

the loaded data as cache selectively. Although this 

scheme was designed to improve data locality, it 

considered file level replication did not consider block 

level replication. 

 

3. Background Theory 
 

In large-scale distributed system, replication is a 

general technology that can improve the efficiency of data 

access and the fault-tolerance. Data locality is a principal 

factor of Hadoop’s performance. In Hadoop scheduling 

policy, the data locality problem occurs; that is, the 

assigned node should load the data block from a different 

node storing the data block. The proposed dynamic 

replication management scheme considers the data 

popularity and data locality. This section describes 

architecture of Hadoop cluster and data locality. 

 

3.1 Architecture of Hadoop Cluster 

 
Hadoop is an open source software framework that 

supports data intensive distributed applications. The 

architecture of a Hadoop cluster can be divided into two 

layers: MapReduce and HDFS (Hadoop Distributed File 

System). The MapReduce layer maintains MapReduce 

jobs and their tasks, and the HDFS layer is responsible for 

storing and managing data blocks and their metadata. 

HDFS stores three replicas of each block like Google File 

System (GFS) [7].  

A job tracker in the master node splits a MapReduce 

job into several tasks and the split tasks are scheduled to 

task trackers by the job tracker. For the purpose of 

monitoring the state of task trackers, the job tracker 

aggregates the heartbeat messages from the task trackers. 

When storing input data into the HDFS, the data are split 

in fixed sized data blocks with replication (the default 

replication factor is 3) and the split data blocks (chunks) 

are stored in slave nodes. A task tracker of a slave node is 

in charge of scheduling tasks in the node. A task tracker 

requests a task from a job tracker by sending a heartbeat 

message when it has an empty task slot.  

When storing input data from a client, the data are 

divided into chunks and the chunks are stored to nodes. 

The job tracker deals with a MapReduce job request from 

a client. Upon reception of a job request, the job tracker 

divides a job into tasks, and then, the tasks are assigned to 

task trackers. At this stage, it schedules tasks by 

considering data locality. Next, each task tracker assigns a 

task to a node, and then, the node performs the task by 

loading the data block from HDFS when needed. 
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Users submit jobs consisting of a map function and a 

reduce function. Hadoop breaks each job into tasks. First, 

input data are divided into fixed size units processed 

independently and in parallel by map tasks, which are 

executed distributively across the nodes in the cluster. 

There is one map task per input block. After the map tasks 

are executed, their output is shuffled, sorted and then 

processed in parallel by one or more reduce tasks. 

 

3.2 Data Locality 
 

Data in Hadoop is stored in HDFS. This data is 

divided into blocks and stored across the data nodes in a 

Hadoop cluster. When a MapReduce job is executed 

against the dataset, the individual Mappers will process 

the blocks (input splits). When data is not available for 

Mapper in the same node, then data has to copied over the 

network from the data node that has data to the data node 

that is executing the Mapper task. This is known as a data 

locality.  

Data locality related with the distance between data 

and the processing node. So, if the closer distance 

between data and node, it has the better data locality. 

There are three types of data locality in Hadoop:   

(1) Node locality: when data for processing are 

stored in the local storage, 

(2) Rack locality: when data for processing are not 

stored in the local storage, but another node 

within the same rack, 

(3) Rack-off locality: when data for processing are 

not stored in the local storage and nodes within 

the same rack, but another node in a different 

rack. 

Figure 1 shows three types of data locality in Hadoop: 

node locality, rack locality, and rack-off locality. 

 

 
Figure 1. Types of data locality 

 

Among these types of data locality, the most preferred 

scenario is node locality and the least preferred scenario is 

rack-off locality. The data locality problem is a situation 

where a task is scheduled with rack or rack-off locality. 

Moreover, the overhead of rack-off locality is greater than 

that of rack locality. To prevent the data locality problem, 

we propose a dynamic data replication scheme using 

prediction by the access count of data files and a data 

placement algorithm reducing case of rack and rack-off 

locality.  

 

4. Proposed System Architecture 
 

The basic idea of replication is based on the different 

replication degree per data file. Maintaining the static 

number of replicas in the system results highly storage 

cost for unpopular data and inefficient for most accessed 

data. Moreover, maintaining too much   replication degree 

than the current access count for a data file does not 

always guarantee the better data locality for all data 

blocks.  

The goal of proposed system is to design an adaptive 

replication scheme that seeks to increase data locality by 

replicating “popular” data while keeping a minimum 

number of replicas for unpopular data. Because the nature 

of data access pattern is random, a method that predicts 

the rate of change of file popularity for the next time slot 

is required. The proposed system flow diagram is shown 

in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Proposed system flow diagram 

 

The proposed scheme includes three-step processes: , 

the rate of change of file popularity will be calculated 

using first order differential equation in the first step and 

Start 

 

End 

 

Calculation of the rate of change of file 

popularity using first order differential 

equation 

 

Calculation of the replication degree of each 

file 

Placement of data into nodes by using 

proposed data placement algorithm 
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the number of replicas of each file will be calculated  in 

the second step and then the replicas will be placed into 

nodes based on proposed data placement algorithm in the 

third step. 

 

4.1. Proposed Popularity Growth Rate Algorithm 

 
In this step, the rate of change of file popularity will be 

calculated using first order differential equation.  LALW 

and Pop-Store algorithms applied half-life strategy which 

means the weight of the records in an interval decays to 

half of its previous weight.  

The idea of popularity is the assumption that the rate at 

which a popularity of an item grows at a certain time is 

proportional to the total popularity of the item at that 

time.  In mathematical terms, if P(t) denotes the total 

population at time t, then this assumption can be 

expressed as  

                  
𝑑𝑝

𝑑𝑡
= 𝑘𝑃(𝑡)         (1) 

where P(t) denotes population at time t and k is the 

growth constant or the decay constant, as appropriate. If k 

> 0, we have growth, and if k <0, we have decay. It is a 

linear differential equation which solve into 

             𝑃(𝑡) = 𝑃0𝑒𝑘𝑡               (2)  
Then,  

              𝑘 =  
ln (

𝑃(𝑡)

𝑃0
)

𝑡
         (3) 

Where P0 is the initial population, i.e. p (0) = P0, and k 

is called the growth or the decay constant. In this step, the 

rate of change of file popularity will be calculated by 

using Yahoo Hadoop audit log file [10] as data source. 

Users can enable audit logging from the NameNode. 

Audit events are emitted as a set of key/value pairs for the 

following keys as shown in table 1. 

 

Table 1. Key/Value Pairs of User Audit Log 
Key Value 

ugi <user>, <group>[,<group>]* 

ip <client ip address> 

cmd (open|create|delete|rename|mkdirs|listStatus|

setReplication|setOwner|setPermission) 

src <path> 

dst (<path>|”null”) 

perm (<user>:<group>:<perm mask>|”null”) 

 

The Yahoo HDFS User Audit log format is shown in 

figure 3.  

 

 

2016-12-10 11:11:59,693 INFO 

org.apache.hadoop.hdfs.server.namenode.FSNamesystem.

audit: ugi=hduser ip=/134.91.100.59  cmd=delete 

src=/app/hadoop/tmp/test.txt  dst=null perm=null 

 

Figure 3. HDFS user audit log format 

 

To get the frequency count of each file, user audit log 

is split into small files based on timeslot duration and 

number of records. Then the required fields are extracted 

such as Date, Time, IP and src.  After that, the user access 

frequency is counted from src source link from figure 4. 

In each time slot, the access frequency is counted and 

stored for individual files. Then the rate of change of file 

popularity of each file is calculated on each time slot 

according to table 2 and algorithm 1. 

 

Table 2. Notations Used in Popularity  Growth 

Rate Algorithm 

Notation Description 

P(tf) Popularity values of file f  

AF(tf) Total access frequency of file f at 

each time slot  

inLog The input log file 

k The rate of change of file 

popularity 

 
Algorithm 1: Popularity Growth Rate Algorithm 

Input: inLog 

Output: k 

1.    Read inLog  

2.  Calculate access frequency of each file by   using 

             P(𝑡𝑓) = AF(𝑡𝑓) , ∀ f ∈ F 

3.   Calculate the rate of change of file popularity k of 

each file by substituting P(t) = P(𝑡𝑓)  in (3)         
4.    return k. 

Figure 4. Popularity growth rate algorithm 

 

In order to verify our proposed popularity growth rate 

algorithm,   we suppose three files (x1, x2 and x3) in three 

time slots. Each time slot duration is set as 10 seconds, 

therefore, (t1= t2 = t3= 10 seconds). Let P0 = 1, P (t) = 

AF(𝑡𝑓 ) and calculate k by using equation (3). Suppose 

access frequencies of file x1, x2 and x3 in time slot 1 are 

40, 1100 and 200. In time slot 1, the rate of change of file 

popularity k in file x1, x2 and x3 is 0.3688, 0.7003 and 

0.5298. Also, in time slot 2, access frequencies of file x1, 

x2 and x3 are 400, 100 and 900. Therefore, the rate of 

change of file popularity k in file x1, x2 and x3 for time 

slot 2 is 0.5991, 0.4605 and 0.6802. Also, in time slot 3, 

access frequencies of file x1, x2 and x3 are 2200, 1200 

and 20. Therefore, the rate of change of file popularity k 
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in file x1, x2 and x3 for time slot 3 is 0.7696, 0.7090 and 

0.2996. 

According to the rate of change of file popularity, 

replica degree for each file is considered as follows. If the 

rate of change of file popularity is greater than 0.0, then 

existing replica degree is increased by one. If the rate of 

change of file popularity is less than 0.0, then existing 

replica degree is decreased by one. If the rate of change of 

file popularity is equal to 0.0 then existing replica degree 

is remained unchanged. Otherwise, if the accessed file is 

new and there is no access record history, the replica 

degree for this file will be assigned 3 as like HDFS 

default replica number. 

 

4.2. Proposed Data Placement Algorithm 

 
 After determining the number of replicas, we will 

consider how to place these replicas efficiently in order to 

improve data locality and load balancing. In this step, let 

me assume that the jobs will have to access this replica in 

the next time slot. The incoming job is broken into tasks 

and each map task is assigned into nodes within the 

cluster. There is one map task per input block.  

 In this system, the input data file is divided into 64 

MB blocks and place them into blocks within the cluster. 

For instance, if the replica for this file is 3 and this file has 

4 blocks, then the total replica block number of this file is 

12. Let the maximum number of replicas be the number 

of nodes in the cluster and the minimum number of 

replicas be 1.  

 Suppose that at the assigned node, there is no replica 

block for the incoming map task. In this case, this system 

considers for improvement of node locality. In this case, 

the remote data retrieval is performed by loading the 

replica data block into this node. While loading this data 

block, if the load factor of this node is less than the 

predefined threshold, this replica data block is loaded into 

this node. Otherwise, the replacement is performed by 

replacing this replica data block with existing block into 

this node.  

 The proposed data replacement algorithm is based on 

Least Recently Used (LRU). It will be more reliable than 

the LRU and will have the more efficient results than the 

LRU algorithm because it considers access frequency for 

replacement. Firstly, this proposed algorithm considers 

the block with minimum access frequency for 

replacement. Secondly, if one or more blocks with 

minimum access frequency, it considers least recently 

accessed block (outgoing block) for replacement 

according to LRU mechanism. The proposed enhanced 

LRU replacement algorithm is shown in figure 5. 

 

 

 

 

Algorithm 2: Enhanced LRU Algorithm 

Step 1. When loading the replica data block into the 

assigned node, it will calculate total number of access 

frequencies (TAF) for all blocks in that node.  

Step 2. If only one block with minimum TAF is found, 

that block will be selected to evict from that node. 

Step 3. If one or more minimum TAF blocks are found, 

least recently accessed block (outgoing block) will be 

selected to evict from that node as LRU. 

Figure 5. Enhanced LRU Algorithm 

 

 The existing Hadoop block placement strategy does 

not take into account DataNodes’ utilization, which leads 

to in an imbalanced load. Since the DataNode selection 

for the block placement is random, the disk bandwidth of 

the allotted DataNode may be less than or greater than the 

available bandwidth. This policy assumes that all nodes in 

the cluster are homogeneous, and randomly place blocks 

without considering any nodes’ resource characteristics, 

which decreases self-adaptability of the system. 

Therefore, this system considers the heterogeneous 

environment for nodes in the cluster. We need to consider 

the load factor such as storage utilization, disk bandwidth 

and CPU processing speed. During the process of 

placement, the storage utilization, disk bandwidth and 

CPU processing speed of DataNode are important factors 

to affect the load balancing in HDFS. Therefore, the 

capacity of DataNode stored should be proportional to its 

total disk capacity, in the condition of effective load 

balancing. We can carry out the storage utilization model 

as 

𝑈(𝐷𝑖) =  
𝐷𝑖  (𝑢𝑠𝑒)

𝐷𝑖  (𝑡𝑜𝑡𝑎𝑙)
         (4) 

Where,𝑈(𝐷𝑖) is the storage utilization of the ith DataNode. 

𝐷𝑖(𝑢𝑠𝑒)  is the used disk capacity of the ith DataNode, and 

its unit is GB. 𝐷𝑖(𝑡𝑜𝑡𝑎𝑙)  is the total disk capacity of the 

ith DataNode, it is a fixed value of each DataNode, and its 

unit is GB.  

 Then, we can carry out the disk bandwidth model as 

𝐵𝑊(𝐷𝑖) =  
𝑇𝑏

𝑇𝑠

      (5) 

Where,  𝐵𝑊(𝐷𝑖)  is the disk bandwidth of the ith 

DataNode. 𝑇𝑏  is the total number of bytes transferred, and 

𝑇𝑠  is the total time between the first request for service 

and the completion of the last transfer.  

Then, the CPU processing speed is used as one of the 

important factors and each node has different CPU 

processing speed due to the heterogeneous environment.  

Among these three factors, storage utilization is set as 

first priority, disk bandwidth as second priority and CPU 

processing speed as last priority. So, we put the 

coefficients of storage utilization, disk bandwidth and 

CPU processing speed are set as 0.5, 0.3 and 0.2. 

Therefore, we can carry out the load factor model as 
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𝐿𝐹(𝐷𝑖) = 0.5𝑈(𝐷𝑖) + 0.3𝐵𝑊(𝐷𝑖) + 0.2𝑆𝑃(𝐷𝑖)     (6) 

 

 The predefined threshold Ti of the ith cluster is 

assumed as the sum of maximum storage utilization, 

maximum disk bandwidth and maximum CPU processing 

speed in cluster is divided by the number of nodes in the 

cluster. Therefore, we can carry out the predefined 

threshold of cluster Ci as  

 

𝑇𝑖   =  
𝑀𝑎𝑥𝑖   (𝑈) +  𝑀𝑎𝑥𝑖   (𝐵𝑊) + 𝑀𝑎𝑥𝑖   (𝑆𝑃) 

𝑁
   (7) 

 Where, 𝑇𝑖  is the predefined threshold of the ith cluster 

and 𝑁 is the number of nodes in the ith cluster. If the load 

factor of this node is less than the predefined threshold, 

this replica data block is loaded into this node. Therefore, 

the storage utilization, disk utilization and CPU 

processing speed of DataNode are  used in proposed data 

placement algorithm as shown in table 3 and algorithm 3. 

 

Table 3. Notations Used in Data Placement Algorithm 

Notatio

n 

Description 

DN DataNodes list 

BW Bandwidth 

U Storage utilization 

RP Replica List 

MT Map task list 

SP CPU processing speed 

C Cluster list 

LF Load factor list 

 

5. Conclusion 
  

 In cloud storage environment, data can be stored with 

some geographical or logical distance and this data is 

accessible for cloud based applications. Data is replicated 

and stored in multiple data nodes to provide for data 

availability. In this paper, a dynamic replication 

management scheme is proposed for cloud storage. At 

each time intervals, the proposed system collects the data 

access history in cloud storage. According to access 

frequencies for all files that have been requested, the 

change of popularity rate can be calculated and replicated 

them to suitable DataNodes in order to achieve load 

balance and node locality of system. As a future work, 

many experimental evaluations have to be carried out in 

order to get the efficiency of proposed data placement 

algorithm. In addition, many experimental evaluations 

have to be performed in order to get better threshold value 

and load factor value. And as well, replica deallocation 

will be considered for overall system improvement. 

 

 

 

 

Algorithm 3: Data Placement Algorithm 
Input: DataNodes List DN= {DN1, DN2,.., DNn }, 

Replica List RP ={ RP1, RP2, RP3,…., RPn }, Map Task 

List MT = {MT1,MT2,MT3,…,MTn}, Load Factor List  

LF = {LF1,LF2,LF3,…., LFn}, Predefined Threshold Ti, 

Cluster List C = {C1, C2, C3,…., Cn} 

Output: DataNodes List DN 

 for each incoming map task MT do 

   for each DataNode DN do 

       Check node locality of task MTi 

       if there is node locality then assign task MTi   to that 

DataNode DNi 

       else  

           Perform remote data replica retrieval for task MTi 

           Calculate storage utilization U of this assigned 

DataNode DNi using (4) 

           Calculate disk bandwidth BW of this assigned 

DataNode DNi using (5) 

           Check CPU processing speed SP of this assigned 

DataNode DNi 

           Calculate load factor LFi for this assigned 

DataNode DNi using (6) 

          Calculate predefined threshold Ti for the cluster Ci 

          if LFi  > predefined threshold Ti then  

          Perform replacement using algorithm 2  

          Place replica RPi for this task on that DataNode 

DNi 

          break  

          else  

            Place replica RPi for this task on that DataNode 

DNi 

           break 

       end if 

  end if 

 end for 

end for 

Figure 6. Data Placement Algorithm 
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