
 1

Dynamic Replication Management Scheme for Cloud Storage

May Phyo Thu, Khine Moe Nwe, Kyar Nyo Aye

University of Computer Studies, Yangon

mayphyothu.mpt1@gmail.com, khinemoenwe@ucsy.edu.mm, kyarnyoaye@gmail.com

Abstract
Nowadays, replication technique is widely used in data

center storage systems to prevent data loss. Data

popularity is a key factor in data replication as popular

files are accessed most frequently and then they become

unstable and unpredictable. Moreover, replicas

placement is one of key issues that affect the performance

of the system such as load balancing, data locality etc.

Data locality is a fundamental problem to data-parallel

applications that often happens (i.e., a data block should

be copied to the processing node when a processing node

does not possess the data block in its local storage), and

this problem leads to the decrease in performance. To

address these challenges, this paper proposes a dynamic

replication management scheme based on data popularity

and data locality; it includes replica allocation and

replica placement algorithms. Data locality, disk

bandwidth, CPU processing speed and storage utilization

are considered in the proposed data placement algorithm

in order to achieve better data locality and load

balancing effectively. Our proposed scheme will be

effective for large-scale cloud storage.

Keywords- Replication, Data Popularity, Data locality,

Storage utilization, Disk Bandwidth

1. Introduction

Cloud storage is a technology that allows us to save

files in storage and then access those files via Cloud. The

cloud storage system convergences data storage among

multiple servers into a single storage pool and provides

users with immediate access to a broad range of resources

and applications hosted in the infrastructure of another

organization via a web service interface [6].

Cloud storage systems may consist of a cluster of

storage nodes or even geographically distributed data

centers. At present, the existing Cloud storage products

are Google (Google File System GFS), Amazon (Simple

Storage Service S3), IBM (Blue Cloud), Yahoo (Hadoop

Distributed File System HDFS) etc. HDFS provides

reliable storage and high throughput access to application

data. In HDFS, data is split in a fixed size (e.g., 32MB,

64MB, and 128MB) and the split data blocks (chunks) are

distributed and stored in multiple data nodes with

replication.

In HDFS, to provide data locality, Hadoop tries to

automatically collocate the data with the computing node.

Hadoop schedules Map tasks to set the data on same node

and the same rack. Data locality is a principal factor of

Hadoop’s performance. The data locality problem occurs

when the assigned node should load the data block from a

different node storing the data block. Data locality means

the degree of distance between data and the processing

node for the data.

There are two ways in order to improve data locality:

 1. The replica allocation problem occurs when

popular data are assigned a larger number of

replicas to improve data locality of concurrent

accesses.

 2. The replica placement problem occurs when

different data blocks accessed concurrently are

placed on different nodes to reduce contention

on a particular node.

There are three types of data locality in Hadoop: node

locality, rack locality and rack-off locality. Uniform data

replication is used in current implementations of

MapReduce systems (e.g., Hadoop). The concept of

popularity of files is introduced to replication strategies

for selecting a popular file in reality. File popularity

represents whether a file has been hot in recent time

intervals, which is computed by file access rate.

 In this paper, therefore, data popularity based

replication method is proposed to overcome the problems

of static replication in HDFS and to support better

efficiency in cloud storage. Firstly, the rate of change of

file popularity is calculated by analyzing the access

histories with first order differential equation. Secondly,

the replication degree for each file is calculated according

to the rate of change of file popularity. Finally, the

replicas will be placed based on proposed data placement

algorithm.

 The rest of this paper is organized as follows. Section

2 describes related works and background theory is

presented in section 3. Section 4 presents proposed

system architecture and finally, section 5 describes the

conclusion and future work.

2. Related Works

In cloud storage environment, data can be stored with

some geographical or logical distance and this data is

accessible to cloud based applications. Data is replicated

user
Text Box
1st International Conference on Advanced Information Technologies (ICAIT), Nov. 1 - 2, 2017, Yangon, Myanmar

user
Text Box
ISBN 978-99971-0-381-9 © 2017 ICAIT

user
Text Box
icait2017@uit.edu.mm

 2

and stored in multiple data nodes to provide high

availability and load balancing. There were several

previous researches of data replication in HDFS. A cost

effective replication management scheme for cloud

storage cluster was proposed by Qingsong Wei [2]. That

paper aimed to improve file availability by centrally

determining the ideal number of replicas for a file, and an

adequate placement strategy based on the blocking

probability. However, this method wasn’t good for very

large file that was file size was Terabyte and the effects of

increasing locality were not studied.

One approach, Latest Access Largest Weight (LALW)

algorithm [8], that was proposed by R.S. Chang and

H.P.Chang for data grids. LALW found out the most

popular file in the end of each time interval and calculated

a suitable number of copies for that popular file and

decides which grid sites were suitable to locate the

replicas.

A. Hunger and J. Myint compared two data

popularity-based replication algorithms: PopStore and

Latest Access Largest Weight (LALW) [1]. In that paper,

both algorithms found more popular files according to the

time intervals through the concept of Half-life. However,

this paper did not consider for load balance in replica

placement.

Recently, a few studies attempted to improve data

locality with data replication in Hadoop. Scarlett [5]

adopted a proactive replication scheme that periodically

replicates files based on predicted data popularity. It

focused on data that receives at least three concurrent

accesses. However, it did not consider node popularity

caused by co-location of moderately popular data.

In DARE[3], the authors proposed a dynamic data

replication scheme based on access patterns of data blocks

during runtime to improve data locality. DARE adopted a

reactive approach that probabilistically retained remotely

retrieved data and evicted aged replicas. DARE allowed

to increase the data replication factor automatically by

replicating the data to the fetched node. However,

removing the replicated data was performed when only

the available data storage was insufficient. Thus, it had a

limit to provide the optimized replication factor with data

access patterns.

In [9], the authors proposed a delay scheduling method

that focused on the conflict between data locality and

fairness among jobs. Although the delay scheduling

method was designed to improve data locality, it let the

jobs wait for a small amount of time, resulting in violating

the fairness for jobs. Moreover, delay scheduling made

assumptions that might not hold universally: (a) task

durations were short and bimodal, and (b) a fixed waiting

time parameter worked for all loads and skewness of

traffic. These assumptions made it difficult for delay

scheduling to adapt to changes in workload, network

conditions, or node popularity.

In [4], the authors proposed an efficient data

replication scheme based on access count prediction in a

Hadoop framework. This data replication scheme

determined the replication factor with the predicted data

access count, whether it generated a new replica or it used

the loaded data as cache selectively. Although this

scheme was designed to improve data locality, it

considered file level replication did not consider block

level replication.

3. Background Theory

In large-scale distributed system, replication is a

general technology that can improve the efficiency of data

access and the fault-tolerance. Data locality is a principal

factor of Hadoop’s performance. In Hadoop scheduling

policy, the data locality problem occurs; that is, the

assigned node should load the data block from a different

node storing the data block. The proposed dynamic

replication management scheme considers the data

popularity and data locality. This section describes

architecture of Hadoop cluster and data locality.

3.1 Architecture of Hadoop Cluster

Hadoop is an open source software framework that

supports data intensive distributed applications. The

architecture of a Hadoop cluster can be divided into two

layers: MapReduce and HDFS (Hadoop Distributed File

System). The MapReduce layer maintains MapReduce

jobs and their tasks, and the HDFS layer is responsible for

storing and managing data blocks and their metadata.

HDFS stores three replicas of each block like Google File

System (GFS) [7].

A job tracker in the master node splits a MapReduce

job into several tasks and the split tasks are scheduled to

task trackers by the job tracker. For the purpose of

monitoring the state of task trackers, the job tracker

aggregates the heartbeat messages from the task trackers.

When storing input data into the HDFS, the data are split

in fixed sized data blocks with replication (the default

replication factor is 3) and the split data blocks (chunks)

are stored in slave nodes. A task tracker of a slave node is

in charge of scheduling tasks in the node. A task tracker

requests a task from a job tracker by sending a heartbeat

message when it has an empty task slot.

When storing input data from a client, the data are

divided into chunks and the chunks are stored to nodes.

The job tracker deals with a MapReduce job request from

a client. Upon reception of a job request, the job tracker

divides a job into tasks, and then, the tasks are assigned to

task trackers. At this stage, it schedules tasks by

considering data locality. Next, each task tracker assigns a

task to a node, and then, the node performs the task by

loading the data block from HDFS when needed.

 3

Users submit jobs consisting of a map function and a

reduce function. Hadoop breaks each job into tasks. First,

input data are divided into fixed size units processed

independently and in parallel by map tasks, which are

executed distributively across the nodes in the cluster.

There is one map task per input block. After the map tasks

are executed, their output is shuffled, sorted and then

processed in parallel by one or more reduce tasks.

3.2 Data Locality

Data in Hadoop is stored in HDFS. This data is

divided into blocks and stored across the data nodes in a

Hadoop cluster. When a MapReduce job is executed

against the dataset, the individual Mappers will process

the blocks (input splits). When data is not available for

Mapper in the same node, then data has to copied over the

network from the data node that has data to the data node

that is executing the Mapper task. This is known as a data

locality.

Data locality related with the distance between data

and the processing node. So, if the closer distance

between data and node, it has the better data locality.

There are three types of data locality in Hadoop:

(1) Node locality: when data for processing are

stored in the local storage,

(2) Rack locality: when data for processing are not

stored in the local storage, but another node

within the same rack,

(3) Rack-off locality: when data for processing are

not stored in the local storage and nodes within

the same rack, but another node in a different

rack.

Figure 1 shows three types of data locality in Hadoop:

node locality, rack locality, and rack-off locality.

Figure 1. Types of data locality

Among these types of data locality, the most preferred

scenario is node locality and the least preferred scenario is

rack-off locality. The data locality problem is a situation

where a task is scheduled with rack or rack-off locality.

Moreover, the overhead of rack-off locality is greater than

that of rack locality. To prevent the data locality problem,

we propose a dynamic data replication scheme using

prediction by the access count of data files and a data

placement algorithm reducing case of rack and rack-off

locality.

4. Proposed System Architecture

The basic idea of replication is based on the different

replication degree per data file. Maintaining the static

number of replicas in the system results highly storage

cost for unpopular data and inefficient for most accessed

data. Moreover, maintaining too much replication degree

than the current access count for a data file does not

always guarantee the better data locality for all data

blocks.

The goal of proposed system is to design an adaptive

replication scheme that seeks to increase data locality by

replicating “popular” data while keeping a minimum

number of replicas for unpopular data. Because the nature

of data access pattern is random, a method that predicts

the rate of change of file popularity for the next time slot

is required. The proposed system flow diagram is shown

in figure 2.

Figure 2. Proposed system flow diagram

The proposed scheme includes three-step processes: ,

the rate of change of file popularity will be calculated

using first order differential equation in the first step and

Start

End

Calculation of the rate of change of file

popularity using first order differential

equation

Calculation of the replication degree of each

file

Placement of data into nodes by using

proposed data placement algorithm

 4

the number of replicas of each file will be calculated in

the second step and then the replicas will be placed into

nodes based on proposed data placement algorithm in the

third step.

4.1. Proposed Popularity Growth Rate Algorithm

In this step, the rate of change of file popularity will be

calculated using first order differential equation. LALW

and Pop-Store algorithms applied half-life strategy which

means the weight of the records in an interval decays to

half of its previous weight.

The idea of popularity is the assumption that the rate at

which a popularity of an item grows at a certain time is

proportional to the total popularity of the item at that

time. In mathematical terms, if P(t) denotes the total

population at time t, then this assumption can be

expressed as

𝑑𝑝

𝑑𝑡
= 𝑘𝑃(𝑡) (1)

where P(t) denotes population at time t and k is the

growth constant or the decay constant, as appropriate. If k

> 0, we have growth, and if k <0, we have decay. It is a

linear differential equation which solve into

 𝑃(𝑡) = 𝑃0𝑒𝑘𝑡 (2)
Then,

 𝑘 =
ln (

𝑃(𝑡)

𝑃0
)

𝑡
 (3)

Where P0 is the initial population, i.e. p (0) = P0, and k

is called the growth or the decay constant. In this step, the

rate of change of file popularity will be calculated by

using Yahoo Hadoop audit log file [10] as data source.

Users can enable audit logging from the NameNode.

Audit events are emitted as a set of key/value pairs for the

following keys as shown in table 1.

Table 1. Key/Value Pairs of User Audit Log
Key Value

ugi <user>, <group>[,<group>]*

ip <client ip address>

cmd (open|create|delete|rename|mkdirs|listStatus|

setReplication|setOwner|setPermission)

src <path>

dst (<path>|”null”)

perm (<user>:<group>:<perm mask>|”null”)

The Yahoo HDFS User Audit log format is shown in

figure 3.

2016-12-10 11:11:59,693 INFO

org.apache.hadoop.hdfs.server.namenode.FSNamesystem.

audit: ugi=hduser ip=/134.91.100.59 cmd=delete

src=/app/hadoop/tmp/test.txt dst=null perm=null

Figure 3. HDFS user audit log format

To get the frequency count of each file, user audit log

is split into small files based on timeslot duration and

number of records. Then the required fields are extracted

such as Date, Time, IP and src. After that, the user access

frequency is counted from src source link from figure 4.

In each time slot, the access frequency is counted and

stored for individual files. Then the rate of change of file

popularity of each file is calculated on each time slot

according to table 2 and algorithm 1.

Table 2. Notations Used in Popularity Growth

Rate Algorithm

Notation Description

P(tf) Popularity values of file f

AF(tf) Total access frequency of file f at

each time slot

inLog The input log file

k The rate of change of file

popularity

Algorithm 1: Popularity Growth Rate Algorithm

Input: inLog

Output: k

1. Read inLog

2. Calculate access frequency of each file by using

 P(𝑡𝑓) = AF(𝑡𝑓) , ∀ f ∈ F

3. Calculate the rate of change of file popularity k of

each file by substituting P(t) = P(𝑡𝑓) in (3)
4. return k.

Figure 4. Popularity growth rate algorithm

In order to verify our proposed popularity growth rate

algorithm, we suppose three files (x1, x2 and x3) in three

time slots. Each time slot duration is set as 10 seconds,

therefore, (t1= t2 = t3= 10 seconds). Let P0 = 1, P (t) =

AF(𝑡𝑓) and calculate k by using equation (3). Suppose

access frequencies of file x1, x2 and x3 in time slot 1 are

40, 1100 and 200. In time slot 1, the rate of change of file

popularity k in file x1, x2 and x3 is 0.3688, 0.7003 and

0.5298. Also, in time slot 2, access frequencies of file x1,

x2 and x3 are 400, 100 and 900. Therefore, the rate of

change of file popularity k in file x1, x2 and x3 for time

slot 2 is 0.5991, 0.4605 and 0.6802. Also, in time slot 3,

access frequencies of file x1, x2 and x3 are 2200, 1200

and 20. Therefore, the rate of change of file popularity k

 5

in file x1, x2 and x3 for time slot 3 is 0.7696, 0.7090 and

0.2996.

According to the rate of change of file popularity,

replica degree for each file is considered as follows. If the

rate of change of file popularity is greater than 0.0, then

existing replica degree is increased by one. If the rate of

change of file popularity is less than 0.0, then existing

replica degree is decreased by one. If the rate of change of

file popularity is equal to 0.0 then existing replica degree

is remained unchanged. Otherwise, if the accessed file is

new and there is no access record history, the replica

degree for this file will be assigned 3 as like HDFS

default replica number.

4.2. Proposed Data Placement Algorithm

 After determining the number of replicas, we will

consider how to place these replicas efficiently in order to

improve data locality and load balancing. In this step, let

me assume that the jobs will have to access this replica in

the next time slot. The incoming job is broken into tasks

and each map task is assigned into nodes within the

cluster. There is one map task per input block.

 In this system, the input data file is divided into 64

MB blocks and place them into blocks within the cluster.

For instance, if the replica for this file is 3 and this file has

4 blocks, then the total replica block number of this file is

12. Let the maximum number of replicas be the number

of nodes in the cluster and the minimum number of

replicas be 1.

 Suppose that at the assigned node, there is no replica

block for the incoming map task. In this case, this system

considers for improvement of node locality. In this case,

the remote data retrieval is performed by loading the

replica data block into this node. While loading this data

block, if the load factor of this node is less than the

predefined threshold, this replica data block is loaded into

this node. Otherwise, the replacement is performed by

replacing this replica data block with existing block into

this node.

 The proposed data replacement algorithm is based on

Least Recently Used (LRU). It will be more reliable than

the LRU and will have the more efficient results than the

LRU algorithm because it considers access frequency for

replacement. Firstly, this proposed algorithm considers

the block with minimum access frequency for

replacement. Secondly, if one or more blocks with

minimum access frequency, it considers least recently

accessed block (outgoing block) for replacement

according to LRU mechanism. The proposed enhanced

LRU replacement algorithm is shown in figure 5.

Algorithm 2: Enhanced LRU Algorithm

Step 1. When loading the replica data block into the

assigned node, it will calculate total number of access

frequencies (TAF) for all blocks in that node.

Step 2. If only one block with minimum TAF is found,

that block will be selected to evict from that node.

Step 3. If one or more minimum TAF blocks are found,

least recently accessed block (outgoing block) will be

selected to evict from that node as LRU.

Figure 5. Enhanced LRU Algorithm

 The existing Hadoop block placement strategy does

not take into account DataNodes’ utilization, which leads

to in an imbalanced load. Since the DataNode selection

for the block placement is random, the disk bandwidth of

the allotted DataNode may be less than or greater than the

available bandwidth. This policy assumes that all nodes in

the cluster are homogeneous, and randomly place blocks

without considering any nodes’ resource characteristics,

which decreases self-adaptability of the system.

Therefore, this system considers the heterogeneous

environment for nodes in the cluster. We need to consider

the load factor such as storage utilization, disk bandwidth

and CPU processing speed. During the process of

placement, the storage utilization, disk bandwidth and

CPU processing speed of DataNode are important factors

to affect the load balancing in HDFS. Therefore, the

capacity of DataNode stored should be proportional to its

total disk capacity, in the condition of effective load

balancing. We can carry out the storage utilization model

as

𝑈(𝐷𝑖) =
𝐷𝑖 (𝑢𝑠𝑒)

𝐷𝑖 (𝑡𝑜𝑡𝑎𝑙)
 (4)

Where,𝑈(𝐷𝑖) is the storage utilization of the ith DataNode.

𝐷𝑖(𝑢𝑠𝑒) is the used disk capacity of the ith DataNode, and

its unit is GB. 𝐷𝑖(𝑡𝑜𝑡𝑎𝑙) is the total disk capacity of the

ith DataNode, it is a fixed value of each DataNode, and its

unit is GB.

 Then, we can carry out the disk bandwidth model as

𝐵𝑊(𝐷𝑖) =
𝑇𝑏

𝑇𝑠

 (5)

Where, 𝐵𝑊(𝐷𝑖) is the disk bandwidth of the ith

DataNode. 𝑇𝑏 is the total number of bytes transferred, and

𝑇𝑠 is the total time between the first request for service

and the completion of the last transfer.

Then, the CPU processing speed is used as one of the

important factors and each node has different CPU

processing speed due to the heterogeneous environment.

Among these three factors, storage utilization is set as

first priority, disk bandwidth as second priority and CPU

processing speed as last priority. So, we put the

coefficients of storage utilization, disk bandwidth and

CPU processing speed are set as 0.5, 0.3 and 0.2.

Therefore, we can carry out the load factor model as

 6

𝐿𝐹(𝐷𝑖) = 0.5𝑈(𝐷𝑖) + 0.3𝐵𝑊(𝐷𝑖) + 0.2𝑆𝑃(𝐷𝑖) (6)

 The predefined threshold Ti of the ith cluster is

assumed as the sum of maximum storage utilization,

maximum disk bandwidth and maximum CPU processing

speed in cluster is divided by the number of nodes in the

cluster. Therefore, we can carry out the predefined

threshold of cluster Ci as

𝑇𝑖 =
𝑀𝑎𝑥𝑖 (𝑈) + 𝑀𝑎𝑥𝑖 (𝐵𝑊) + 𝑀𝑎𝑥𝑖 (𝑆𝑃)

𝑁
 (7)

 Where, 𝑇𝑖 is the predefined threshold of the ith cluster

and 𝑁 is the number of nodes in the ith cluster. If the load

factor of this node is less than the predefined threshold,

this replica data block is loaded into this node. Therefore,

the storage utilization, disk utilization and CPU

processing speed of DataNode are used in proposed data

placement algorithm as shown in table 3 and algorithm 3.

Table 3. Notations Used in Data Placement Algorithm

Notatio

n

Description

DN DataNodes list

BW Bandwidth

U Storage utilization

RP Replica List

MT Map task list

SP CPU processing speed

C Cluster list

LF Load factor list

5. Conclusion

 In cloud storage environment, data can be stored with

some geographical or logical distance and this data is

accessible for cloud based applications. Data is replicated

and stored in multiple data nodes to provide for data

availability. In this paper, a dynamic replication

management scheme is proposed for cloud storage. At

each time intervals, the proposed system collects the data

access history in cloud storage. According to access

frequencies for all files that have been requested, the

change of popularity rate can be calculated and replicated

them to suitable DataNodes in order to achieve load

balance and node locality of system. As a future work,

many experimental evaluations have to be carried out in

order to get the efficiency of proposed data placement

algorithm. In addition, many experimental evaluations

have to be performed in order to get better threshold value

and load factor value. And as well, replica deallocation

will be considered for overall system improvement.

Algorithm 3: Data Placement Algorithm
Input: DataNodes List DN= {DN1, DN2,.., DNn },

Replica List RP ={ RP1, RP2, RP3,…., RPn }, Map Task

List MT = {MT1,MT2,MT3,…,MTn}, Load Factor List

LF = {LF1,LF2,LF3,…., LFn}, Predefined Threshold Ti,

Cluster List C = {C1, C2, C3,…., Cn}

Output: DataNodes List DN

 for each incoming map task MT do

 for each DataNode DN do

 Check node locality of task MTi

 if there is node locality then assign task MTi to that

DataNode DNi

 else

 Perform remote data replica retrieval for task MTi

 Calculate storage utilization U of this assigned

DataNode DNi using (4)

 Calculate disk bandwidth BW of this assigned

DataNode DNi using (5)

 Check CPU processing speed SP of this assigned

DataNode DNi

 Calculate load factor LFi for this assigned

DataNode DNi using (6)

 Calculate predefined threshold Ti for the cluster Ci

 if LFi > predefined threshold Ti then

 Perform replacement using algorithm 2

 Place replica RPi for this task on that DataNode

DNi

 break

 else

 Place replica RPi for this task on that DataNode

DNi

 break

 end if

 end if

 end for

end for

Figure 6. Data Placement Algorithm

6. References

[1] A. Hunger and J. Myint, “Comparative Analysis of Adaptive

File Replication Algorithms for Cloud Data Storage”, 2014

International Conference on Future Internet of Things and

Cloud, 2014.

[2] B. Gong, B. Veeravalli, D. Feng L. Zeng, and Q. Wei,

“CDRM: A Cost-Effective Dynamic Replication Management

Scheme for Cloud Storage Cluster”, 2010 IEEE International

Conference on Cluster Computing, Sep. 2010, pp. 188–196.

[3] C.L. Abad, Yi Lu, R.H. Campbell, “DARE: Adaptive Data

Replication for Efficient Cluster Scheduling”, IEEE

International Conference on Cluster Computing (CLUSTER

2011), pp.159-168, 2011.

[4] D.Lee, J.Lee, and J.Chung , “Efficient Data Replication

Scheme based on Hadoop Distributed File System”,

 7

International Journal of Software Engineering and Its

Applications Vol. 9, No. 12 (2015), pp. 177-186,2015.

[5] G. Ananthanarayanan et al., “Scarlett: Coping with skewed

content popularity in mapreduce clusters,” in Proc. Conf.

Comput. Syst. (EuroSys), 2011, pp. 287–300.

[6] H. Gobioff, S. Ghemawat, and S.-T. Leung, “The Google

File System”, Proceedings of 19th ACM Symposium on

Operating Systems Principles (SOSP 2003), New York, USA,

October, 2003.

[7] H. Hardware, and P. Across, “The Hadoop Distributed File

System: Architecture and Design”, 2007, pp. 1–14.

[8] H.-P. Chang, R.-S. Chang, and Y.-T. Wang, “A dynamic

weighted data replication strategy in data grids”, 2008

IEEE/ACS International Conference on Computer Systems and

Applications, Mar. 2008, pp. 414–421.

 [9] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S.

Shenker, and I. Stoica, “Delay scheduling: A simple technique

for achieving locality and fairness in cluster scheduling”, In

Proceeding of uropean Conference Computer System (EuroSys),

2010.

[10] https://webscope.sandbox.yahoo.com.

[11] Andrew S. Tanenbaum. Modern Operating Systems.

Prentice-Hall, 1992.

