
Int. J. Big Data Intelligence, Vol. 2, No. 2, 2015 127

Copyright © 2015 Inderscience Enterprises Ltd.

A platform for big data analytics on distributed
scale-out storage system

Kyar Nyo Aye*
Software Department,
Computer University (Thaton),
The Union of Myanmar
Email: kyarnyoaye@gmail.com
*Corresponding author

Thandar Thein
Hardward Department,
University of Computer Studies (Yangon),
The Union of Myanmar
Email: thandartheinn@gmail.com

Abstract: Big data analytics is the process of examining large amounts of data of a variety
of types to uncover hidden patterns, unknown correlations and other useful information.
Hadoop-based platform emerges to deal with big data. In Hadoop NameNode is used to store
metadata in a single system’s memory, which is a performance bottleneck for scale-out. Gluster
file system has no performance bottlenecks related to metadata. To achieve massive performance,
scalability and fault tolerance for big data analytics, a big data platform is proposed. The
proposed big data platform consists of big data storage and big data processing. The Hadoop big
data platform and the proposed big data platform are implemented on commodity Linux virtual
machines clusters and performance evaluations are conducted. According to the evaluation
analysis, the proposed big data platform provides better scalability, fault tolerance, and faster
query response time than the Hadoop platform.

Keywords: big data; big data analytics; big data platform; Hadoop MapReduce; Gluster file
system; Apache Pig; Apache Hive; Jaql.

Reference to this paper should be made as follows: Aye, K.N. and Thein, T. (2015) ‘A platform
for big data analytics on distributed scale-out storage system’, Int. J. Big Data Intelligence,
Vol. 2, No. 2, pp.127–141.

Biographical notes: Kyar Nyo Aye is a Tutor of Software Department at Computer University
(Thaton). She received her degree of Bachelor of Computer Science (BCSc), the degree of
Bachelor of Computer Science (Honours), and the degree of Master of Computer Science in
2004, 2005, and 2009. She received her PhD in 2013. Her research interests include information
retrieval, distributed databases, distributed systems, cloud computing, mobile computing, big
data analytics and big data technologies.

Thandar Thein received her MSc (Computer Science) and PhD in 1996 and 2004, respectively
from University of Computer Studies, Yangon (UCSY), Myanmar. She did her post doctorate
research in Korea Aerospace University. She is currently a Professor of UCSY. Her research
interests include cloud computing, mobile cloud computing, big data, digital forensic, security
engineering, and network security and survivability.

1 Introduction

Today, information is generated continuously around
the globe. Almost every growing organisation wants to
automate most of its business processes and is using IT
to support every conceivable business function. This is
resulting into huge amount of data being generated in the
form of transactions and interactions. Web has become an
important interface for interactions with suppliers and
customers generating the huge amount of data in the form of

e-mails, etc. Besides this, there is a huge amount of data
emitted automatically in the form of logs like network logs
and web server logs.

Various telecom service providers get huge amount of
data in the form of conversations and call data records.
Various social N/W sites have started getting TBs of data
every day in the form of tweets, blogs, comments, photos
and videos, etc. Facebook generates 4 TBs of compressed
data every day. Web Companies like these get huge amount
of click stream data generated daily as well. Hospitals have

128 K.N. Aye and T. Thein

data about the patients, their diseases and the data generated
by various medical devices as well. Sensors used in various
machines used for production keep generating so much of
event data in seconds. Almost every sector like transport,
finance is seeing a tsunami of data.

Now the important question that arises at this point of
time is how do we store and process such huge amount of
data most of which is Semi structured or Unstructured.
There is a high-level categorisation of big data platforms to
store and process them in a scalable, fault tolerant and
efficient manner (http://bigdataanalytics.blogspot.com). The
first category includes massively parallel processing or MPP
Data warehouses that are designed to store huge amount of
structured data across a cluster of servers and perform
parallel computations over it. Most of these solutions follow
shared nothing architecture which means that every node
will have a dedicated disk, memory and processor. All the
nodes are connected via high speed networks. As they are
designed to hold structured data so there is a need to extract
the structure from the data using an ETL tool and populate
these data sources with the structured data.

These MPP data warehouses include:

• MPP databases: these are generally the distributed
systems designed to run on a cluster of commodity
servers, e.g., AsternCluster, Greenplum, DATAllegro,
IBM DB2, Kognitio WX2, Teradata

• appliances: a purpose-built machine with preconfigured
MPP hardware and software designed for analytical
processing, e.g., Oracle optimised Warehouse, Teradata
Machines, Netezza Performance Server and Sun’s Data
Warehousing Appliance

• columnar databases: they store data in columns instead
of rows, allowing greater compression and faster query
performance, e.g., Sybase IQ, Vertica, InfoBright Data
Warehouse, ParAccel.

Another category includes distributed file systems like
Hadoop to store huge unstructured data and perform
MapReduce computations on it over a cluster built of
commodity hardware. Pavlo et al. (2009) described and
compared MapReduce paradigm and parallel DBMSs for
large scale data analysis and defined a benchmark
consisting of a collection of tasks to be run on an
open source version of MR as well as on two parallel
DBMSs. Hadoop is a popular open source MapReduce
implementation which is being used in companies like
Yahoo, Facebook, etc., to store and process extremely large
datasets on commodity hardware. However, in Hadoop the
NameNode can become a performance bottleneck because it
keeps the directory tree of all files in the Hadoop distributed
file system. The architecture within Gluster does not
depend on metadata in any way. Therefore, Gluster has no

performance bottlenecks and no inconsistency risks related
to metadata. In addition, using Hadoop was not easy for end
users, especially for those users who were not familiar with
MapReduce. The MapReduce programming model is very
low level and requires developers to write custom programs
which are hard to maintain and reuse. Hadoop lacked the
expressiveness of popular query languages like SQL and as
a result users ended up spending hours to write programs for
even simple analysis. In order to analyse this data more
productively, the query capabilities of Hadoop need to be
improved. So, several application development languages
have emerged to make it easier to write MapReduce
programs in Hadoop and that run on top of Hadoop. Among
them, Hive, Pig, and Jaql are popular.

The aim of this paper is to propose big data platform
that is built upon open source and built on Hadoop
MapReduce, Gluster File System, Apache Pig, Apache Hive
and Jaql. The rest of the paper is organised as follows: in
Section 2, we explain big data concepts and technologies
such as big data and big data analytics. In Section 3 we
introduce our proposed big data platform and performance
evaluations are conducted in Section 4. Then vendor
products for big data analytics are explained in Section 5
and conclusion is described in Section 6.

2 Big data concepts and technologies

This section provides an overview of big data, big data
Analytics, Hadoop and MapReduce framework, Apache
Pig, Apache Hive, Jaql, Gluster File System and big data
platform. Due to space constraints, some aspects are
explained in a highly simplified manner. A detailed
description of them can be found in Eaton et al. (2011),
Carter (2011) and Russom (2011).

2.1 Big data

Big data are datasets that grow so large that they become
awkward to work with using on-hand database management
tools. Difficulties include capture, storage, search, sharing,
analytics, and visualising. There are three characteristics of
Big data: volume, variety, and velocity.

• Volume: volume is the first and most notorious feature.
It refers to the amount of data to be handled. The sheer
volume of data being stored today is exploding. In the
year 2000, 800,000 petabytes (PB) of data were stored
in the world. This number is expected to reach
35 zettabytes (ZB) by 2020. Organisations that do not
know how to manage massive volumes of data are
overwhelmed by it. But the opportunity exists, with the
right technology platform, to analyse almost all of the
data to gain better insights.

 A platform for big data analytics on distributed scale-out storage system 129

• Variety: variety represents all types of data. With the
explosion of sensors, and smart devices, as well as
social collaboration technologies, data in an enterprise
has become complex, because it includes not only
traditional relational data, but also raw, semistructured,
and unstructured data. To capitalise on the big data
opportunity, enterprises must be able to analyse all
types of data, both relational and non-relational: text,
sensor data, audio, video, transactional, and more.

• Velocity: a conventional understanding of velocity
typically considers how quickly the data is arriving and
stored, and its associated rates of retrieval. However,
today the term velocity is defined to data in motion: the
speed at which the data is flowing. More and more of
the data being produced today have a very short
shelf-life, so organisations must be able to analyse this
data in near real time if they hope to find insights in this
data.

There are two types of big data: data at rest (e.g., collection
of what has streamed, web logs, e-mails, social media,
unstructured documents and structured data from disparate
system) and data in motion (e.g., Twitter/Facebook
comments, stock market data and sensor data). So dealing
effectively with big data requires performing analytics
against the volume and variety of data while it is still in
motion, not just after it is at rest.

2.2 Big data analytics

Big data analytics is the application of advanced analytic
techniques to very big datasets. Advanced analytics is a
collection of techniques and tool types, including predictive
analytics, data mining, statistical analysis, complex SQL,
data visualisation, artificial intelligence, natural language
processing, and database methods that support analytics
(such as MapReduce, in-database analytics, in-memory
database, columnar data stores).

There are three approaches for big data analytics: direct
analytics over MPP DW, indirect analytics over Hadoop and
direct analytics over Hadoop.

• Direct analytics over MPP DW: the first approach for
big data analytics is using a BI tool directly over any of
the MPP DW. For any analytical request by the user the
BI tool will send SQL queries to these DWs. These
DWs will execute the queries in a parallel manner
across the cluster and return the data to BI tool for
further analytics.

• Indirect analytics over Hadoop: the second approach is
indirect analytics over Hadoop which processes,
transforms and structures the data inside Hadoop and
then exports the structured data into RDBMS. The BI

tool will work with the RDBMS to provide the
analytics.

• Direct analytics over Hadoop: The last approach is
performing analytics directly over Hadoop. In this case
all the queries will be executed as MR jobs over big
unstructured data placed into Hadoop.

2.3 Hadoop and MapReduce framework

Apache Hadoop is an open source software project that
enables the distributed processing of large datasets across
clusters of commodity servers. It is designed to scale up
from a single server to thousands of machines, with a very
high degree of fault tolerance. Rather than relying on
high-end hardware, the resiliency of these clusters comes
from the software’s ability to detect and handle failures at
the application layer (Shvachko et al., 2010; Agrawal, 2011;
White, 2009; HDFS Architecture Guide).

Hadoop enables a computing solution that is:

• Scalable: new nodes can be added as needed and added
without needing to change data formats, how data is
loaded, how jobs are written, or the applications on top.

• Cost effective: Hadoop brings massively parallel
computing to commodity servers. The result is a
sizeable decrease in the cost per terabyte of storage,
which in turn makes it affordable to model all data.

• Flexible: Hadoop is schema-less, and can absorb any
type of data, structured or not, from any number of
sources. Data from multiple sources can be joined and
aggregated in arbitrary ways enabling deeper analyses
than any one system can provide.

• Fault tolerant: when a node fails, the system redirects
work to another location of the data and continues
processing.

A MapReduce framework typically divides the input
dataset into independent tasks which are processed by the
map tasks in a completely parallel manner. The framework
sorts the outputs of the maps, which are then input to the
reduce tasks. Typically both the input and the output of the
 jobs are stored in a file-system. The framework takes care
of scheduling tasks, monitoring them and reexecuting
the failed tasks (Dean and Ghemawat, 2008; http://Hadoop.
apache.org/MapReduce). Hadoop is supplemented by an
ecosystem of Apache projects, such as Pig and Hive, that
extend the value of Hadoop and improves its usability.
Figure 1 shows MapReduce data flow with multiple reduce
tasks.

130 K.N. Aye and T. Thein

Figure 1 MapReduce data flow with multiple reduce tasks (see online version for colours)

2.4 High level query languages

There are three high level query languages for big data
analytics: Apache Pig, Apache Hive and Jaql
(http://www.macs.hw.ac.uk/~rs46/files/publications/MapRe
duce-Languages/Comparison_Of_High_Level_Data_
Query_Languages.pdf.).

2.4.1 Apache Pig

Apache Pig (Olston et al., 2008) is a platform for analysing
large datasets that consists of a high-level language
for expressing data analysis programs, coupled with
infrastructure for evaluating these programs. Pig is made up
of two components: the first is the language itself, which is
called PigLatin, and the second is a runtime environment
where PigLatin programs are executed. The Pig runtime
environment translates the program into a set of map and
reduce tasks and runs them. This greatly simplifies the work
associated with the analysis of large amounts of data and
lets the developer focus on the analysis of the data rather
than on the individual map and reduce tasks.

2.4.2 Apache Hive

Apache Hive (Thusoo et al., 2010) is an open source data
warehousing solution built on top of Hadoop. Hive
supports queries expressed in a SQL-like declarative
language – HiveQL, which are compiled into MapReduce
jobs that are executed using Hadoop. In addition, HiveQL
enables users to plug in custom MapReduce scripts into
queries. The language includes a type system with support
for tables containing primitive types, collections like arrays
and maps, and nested compositions of the same. Hive also
includes a system catalogue – Metastore – that contains
schemas and statistics, which are useful in data exploration,
query optimisation and query compilation.

2.4.3 Jaql

Jaql (Beyer et al., 2011) is a functional, declarative query
language that is designed to process large datasets. For
parallelism, Jaql rewrites high-level queries into low-level

queries consisting of MapReduce jobs. Jaql is primarily a
query language for JavaScript Object Notation (JSON).
JSON is the popular data interchange format because it is
easy for humans to read, and because of its structure, it is
easy for applications to parse or generate. Both Jaql and
JSON are record-oriented models, and thus fit together
perfectly. JSON is not the only format that Jaql supports,
Jaql is extremely flexible and can support many
semistructured data sources such as XML, CSV, flat files
and more.

2.5 Gluster file system

GlusterFS is a scalable open source clustered file system
that offers a global namespace, distributed front end, and
scales to hundreds of petabytes without difficulty. It is also
a software-only, highly available, scalable, centrally
managed storage pool for unstructured data. It is also
scale-out file storage software for NAS, object, big data. By
leveraging commodity hardware, Gluster also offers
extraordinary cost advantages benefits that are unmatched in
the industry. There are many advantages of Gluster over any
other file systems. These advantages are:

• it is faster for each individual operation because it
calculates metadata using algorithms and that approach
is faster than retrieving metadata from any storage
media

• it is faster for large and growing individual systems
because there is never any contention for any single
instance of metadata stored at only one location

• it is faster and achieves true linear scaling for
distributed deployments because each node is
independent in its algorithmic handling of its own
metadata, eliminating the need to synchronise metadata

• it is safer in distributed deployments because it
eliminates all scenarios of risk which are derived from
out-of-synch metadata (Gluster, 2011).

Both performance and capacity can be scaled out linearly in
Gluster by employing three fundamental techniques:

 A platform for big data analytics on distributed scale-out storage system 131

• the elimination of metadata

• effective distribution of data to achieve scalability and
reliability

• the use of parallelism to maximise performance via a
fully distributed architecture

Figure 2 describes the Gluster file system architecture.

Figure 2 Gluster file system architecture (see online version
for colours)

2.6 Big data platform

Big data platform cannot just be a platform for processing
data; it has to be a platform for analysing that data to extract
insight from an immense volume, variety, and velocity of
that data. The main components in the big data platform
provide:

• deep analytics: a fully parallel, extensive and extensible
toolbox full of advanced and novel statistical and data
mining capabilities

• high agility: the ability to create temporary analytics
environments in an end-user driven, yet secure and
scalable environment to deliver new and novel insights
to the operational business

• massive scalability: the ability to scale analytics and
sandboxes to previously unknown scales while
leveraging previously untapped data potential

• low latency: the ability to instantly act based on
these advanced analytics in the operational,
production environments (http://blogs.oracle.com/
datawarehousing/entry/big_data_achieve_the_
impossible).

3 Proposed big data platform

The proposed big data platform performs large-scale data
analysis by using MapReduce framework on unstructured

data stored in GlusterFS over distributed scale-out storage
system. GlusterFS can provide these features: scalability to
petabytes and beyond, affordability (use of commodity
hardware), flexibility (deploy in any environment), linearly
scalable performance, high availability, and superior storage
economics. By combining these advantages of GlusterFS
with parallel data processing, schema free processing and
simplicity of MapReduce programming model, the proposed
big data platform can perform large scale data analysis
efficiently and effectively. The proposed big data platform
is shown in Figure 3.

The proposed big data platform consists of four layers:
application layer, processing layer, interface layer and
storage layer.

• Application layer: multiple GlusterFS clients use high
level query languages such as Hive, Pig, and Jaql to
submit analytical jobs. These jobs are compiled into
MapReduce jobs. Pig uses MapReduce to execute all of
its data processing. It compiles the Pig Latin scripts that
users write into a series of one or more MapReduce
jobs that it then executes. In Hive, all commands and
queries go to the Driver, which compiles the input,
optimise the computation required, and executes the
required steps, usually with MapReduce jobs. The
Metastore is a separate relational database where Hive
persists table schemas and other system metadata. Jaql
consists of a scripting language and compiler, as well as
a runtime component for Hadoop. The Jaql compiler
automatically rewrites Jaql scripts so they can run in
parallel on Hadoop.

• Processing layer: the jobtracker coordinates all these
MapReduce jobs by scheduling tasks to run on
tasktrackers. The tasktrackers run map tasks and reduce
tasks.

• Interface layer: the file system function calls flow from
MapReduce jobs to the Gluster java library through the
FUSE mount. These file system calls are translated into
POSIX file system calls.

• Storage layer: the Gluster storage pool is a trusted
network of storage servers which consist of one or
more bricks. A brick is the GlusterFS basic unit of
storage, represented by an export directory.

3.1 Big data analytics on proposed platform

The proposed platform can handle any data type such as call
data records, web clickstreams, network logs, and so on.
Hadoop MapReduce processes these data that are stored in
GlusterFS on commodity servers to extract useful
information for users. Users can use high level query
languages such as Hive, Pig and Jaql to get analytical
results. Figure 4 describes the conceptual architecture of big
data analytics on proposed platform.

132 K.N. Aye and T. Thein

Figure 3 Proposed big data platform (see online version for colours)

Figure 4 Conceptual architecture of big data analytics on the proposed platform (see online version for colours)

3.2 Gluster file system server volumes

There are seven types of GlusterFS server volumes. These
are:

• Distributed volume: it randomly distributes files
throughout the bricks in the volume. It can be used in
environments where the requirement is to scale storage

and the redundancy is either not important or is
provided by other hardware or software layers.

• Replicated volume: it creates copies of files across
multiple bricks in the volume. It can be used in
environments where high-availability and
high-reliability are critical.

 A platform for big data analytics on distributed scale-out storage system 133

• Striped volume: it stripes data across bricks in the
volume. For best results, it should be used only in high
concurrency environments accessing very large files.

• Distributed replicated volume: it distributes files across
replicated bricks in the volume. It can be used in
environments where the requirement is to scale storage
and high-reliability is critical.

• Distributed striped volume: it stripes files across two or
more nodes in the cluster. It should be used in
environments where the requirement is to scale storage
and in high concurrency environments accessing very
large files is critical.

• Striped replicated volume: it stripes data across
replicated bricks in the cluster. It should be used in
highly concurrent environments where there is parallel
access of very large files and performance is critical.

• Distributed striped replicated volume: it distributes
striped data across replicated bricks in the cluster. It
should be used in highly concurrent environments
where there is parallel access of very large files and
performance is critical.

Enhanced Hadoop gluster connector can support
MapReduce workloads on all these volume types. To
achieve linear scalability and high performance for big data
analytics, striped replicated volume and distributed striped
replicated volume are the best storage options.

4 Performance evaluation

We have evaluated the performance of two big data
platforms on three commodity Linux clusters – first cluster
with two virtual machines (testbed 1), second cluster with
three virtual machines (testbed 2), and third cluster with

four virtual machines (testbed 3). The VMs are
interconnected via a 1 Gigabit ethernet. The host machine
runs Windows 7 Ultimate and has Intel Core i7-3.40 GHz
processor, 4 GB physical memory, and 950 GB disk. As
software components, Hadoop 0.20.2, Gluster 3.4.0, Hive
0.9.0, Pig 0.10.0 and Jaql 0.5.1 are used. Table 1 shows the
experimental setup to evaluate the query performance of
two big data platforms.

Table 1 Experimental setup for performance evaluations

Testing environments Testing parameters

Cluster 1 (2VMs)
Cluster 2 (3VMs)

Commodity Linux VMs
clusters

Cluster 3 (4VMs)
Intel ® Core™ i7-2600
CPU at 3.40 GHz
4 GB RAM
1 TB hard disk

Host specification

1 Gigabit ethernet
Processing system
• Hadoop 0.20.2
Storage system
• Gluster 3.4.0
High level query languages
• Hive 0.9.0

• Pig 0.10.0

Software components

• Jaql 0.5.1

The parameters of testbed 1, testbed 2, and testbed 3 are
shown in Tables 2 to 4 respectively.

Table 2 Specification of testbed 1

MapReduce + HDFS cluster MapReduce + GlusterFS cluster

VM1 VM2

VM1 VM2

Intel ® Core™
i7-2600 CPU at
3.40 GHz

Intel ® Core™
i7-2600 CPU at

3.40 GHz

 Intel ® Core™
i7-2600 CPU at

3.40 GHz

Intel ® Core™
i7-2600 CPU at

3.40 GHz
1,024 MB RAM 512 MB RAM 1,024 MB RAM 512 MB RAM
50 GB hard disk 50 GB hard disk 50 GB hard disk 50 GB hard disk
NN
SNN
DN

DN Gluster storage pool
(VM1 + VM2)

JT JT
TT

TT
 TT

TT

Notes: VM1 = Virtual Machine1 NN = NameNode JT = JobTracker
VM2 = Virtual Machine2 DN = DataNode TT = TaskTracker
SNN = Secondary NameNode

134 K.N. Aye and T. Thein

Table 3 Specification of testbed 2

MapReduce + HDFS cluster MapReduce + GlusterFS cluster

VM1 VM2 VM3

VM1 VM2 VM3

Intel ® Core™
i7-2600 CPU at
3.40 GHz

Intel ® Core™
i7-2600 CPU at

3.40 GHz

Intel ® Core™
i7-2600 CPU at

3.40 GHz

 Intel ® Core™
i7-2600 CPU at

3.40 GHz

Intel ® Core™
i7-2600 CPU at

3.40 GHz

Intel ® Core™
i7-2600 CPU at

3.40 GHz
1,024 MB RAM 512 MB RAM 512 MB RAM 1,024 MB RAM 512 MB RAM 512 MB RAM
50 GB hard disk 50 GB hard disk 50 GB hard disk 50 GB hard disk 50 GB hard disk 50 GB hard disk
NN
SNN
DN

DN DN Gluster storage pool
(VM1 + VM2)

JT JT
TT

TT TT
 TT

TT TT

Notes: VM1 = Virtual Machine1 NN = NameNode JT = JobTracker
VM2 = Virtual Machine2 DN = DataNode TT = TaskTracker
VM3 = Virtual Machine3 SNN = Secondary NameNode
VM4 = Virtual Machine4

Table 4 Specification of testbed 3

MapReduce + HDFS cluster MapReduce + GlusterFS cluster

VM1 VM2 VM3 VM4

VM1 VM2 VM3 VM4

Intel ®
Core™
i7-2600 CPU
at 3.40 GHz

Intel ®
Core™

i7-2600 CPU
at 3.40 GHz

Intel ®
Core™

i7-2600 CPU
at 3.40 GHz

Intel ®
Core™

i7-2600 CPU
at 3.40 GHz

 Intel ®
Core™

i7-2600 CPU
at 3.40 GHz

Intel ®
Core™

i7-2600 CPU
at 3.40 GHz

Intel ®
Core™

i7-2600 CPU
at 3.40 GHz

Intel ®
Core™

i7-2600 CPU
at 3.40 GHz

1,024 MB
RAM

512 MB
RAM

512 MB
RAM

512 MB
RAM

 1,024 MB
RAM

512 MB RAM 512 MB
RAM

512 MB
RAM

50 GB
hard disk

50 GB
hard disk

50 GB
hard disk

50 GB
hard disk

 50 GB
hard disk

50 GB
hard disk

50 GB
hard disk

50 GB
hard disk

NN
SNN
DN

DN DN DN Gluster storage pool
(VM1 + VM2)

JT JT
TT

TT TT TT
TT

TT TT TT

Notes: VM1 = Virtual Machine1 NN = NameNode JT = JobTracker
VM2 = Virtual Machine2 DN = DataNode TT = TaskTracker
VM3 = Virtual Machine3 SNN = Secondary NameNode
VM4 = Virtual Machine4

US census dataset (http://www2.census.gov/census_2010/
04-Summary_File_1) is used to evaluate the performance of
two big data platforms. The dataset consists of 331 tables.
Population table is used to evaluate the query performance
of two big data platforms. It consists of 12,905,514 records
for 52 states (50 US states, the District of Columbia, and
Puerto Rico). Table 5 describes the data dictionary of
population table.

Striped replicated volume is used for storage in testbed 1
and testbed 3 and distributed striped replicated volume is
used in testbed 2. To create a striped replicated volume in
testbed 1: # gluster volume create population volume
stripe 2 replica 2 server1:/exp1 server2:/exp2 server1:/exp3
server2:/exp4.

The striped replicated volume used in testbed 1 is shown
in Figure 5.

Table 5 Data dictionary of population table

Field name Data dictionary reference name

ID Record ID
FILEID File identification
STUSAB State/US abbreviation
CHARITER Characteristic iteration
CIFSN Characteristic iteration file sequence number
LOGRECNO Logical record number
P0010001 Population

 A platform for big data analytics on distributed scale-out storage system 135

Figure 5 Striped replicated volume for testbed 1 (see online
version for colours)

To create a distributed striped replicated volume in
testbed 2: # gluster volume create population volume
stripe 2 replica 2 server1:/exp1 server2:/exp2 server3:/exp3
server1:/exp4 server2:/exp5 server3:/exp6 server1:/exp7
server2:/exp8,

The distributed striped replicated volume used in
testbed 2 is described in Figure 6.

To create a striped replicated volume in testbed 3:
gluster volume create population volume stripe 2
replica 2 server1:/exp1 server2:/exp2 server3:/exp3
server4:/exp4.

The striped replicated volume used in testbed 3 is shown
in Figure 7.

4.1 Sample analytical workloads

Four queries are used as sample analytical workloads
for performance evaluation of two big data platforms.
Figure 8 shows HiveQL, PigLatin, and Jaql for the first
query.

The first section in Figure 8 shows HiveQL of creating a
population table, loading the file into the table, and
finding the records where population is greater than 30,000.
The second section describes a pig program that takes
a file composed of population data, selects only those
records whose population is greater than 30,000, and
displays the result. The last section shows a Jaql sample
that finds the records where population is greater than
30,000.

Figure 9 illustrates HiveQL, PigLatin, and Jaql for the
second query.

Figure 6 Distributed striped replicated volume for testbed 2 (see online version for colours)

136 K.N. Aye and T. Thein

Figure 7 Striped replicated volume for testbed 3 (see online
version for colours)

Figure 8 HiveQL, PigLatin, and Jaql for the first query

Figure 9 HiveQL, PigLatin, and Jaql for the second query

The first and last sections in Figure 9 show queries to find
the number of records in population table using Hive and
Jaql respectively. The second section illustrates a pig

program that groups the population, and displays the
number of records in that group.
Figure 10 describes HiveQL, PigLatin, and Jaql for the third
query.

Figure 10 HiveQL, PigLatin, and Jaql for the third query

The first section in Figure 10 shows HiveQL of finding the
total population for each state. The second section describes
a pig program that groups the population by the state, and
displays the sum of the number of population for each state.
The last section shows a Jaql example that finds the total
population for each state.

Figure 11 demonstrates HiveQL, PigLatin, and Jaql for
the fourth query.

Figure 11 HiveQL, PigLatin, and Jaql for the fourth query

The first and last sections in Figure 11 show queries to find
the number of records for each state using Hive and Jaql
respectively. The second section illustrates a pig program
that groups the population by the state, and displays the
number of records for each state.

4.2 Experimental results

In this paper, the Hadoop big data platform (MapReduce
and HDFS) and the proposed big data platform (MapReduce
and GlusterFS) are implemented on three testbeds and
performance evaluations are conducted with four queries on
different record sizes. Figure 12 shows the query execution
time for query 1 on testbed 1 for various states. The data
sizes range from 2,571,686 records for ten states to
12,905,514 records for 52 states. Hive provides the fastest
query execution time and Pig provides the slowest query
execution time on both platforms. There are no significant
differences in query execution time between the two
platforms.

 A platform for big data analytics on distributed scale-out storage system 137

Figure 12 Query 1’s execution time on testbed 1 (see online version for colours)

Figure 13 Query 2’s execution time on testbed 1 (see online version for colours)

Figure 14 Query 3’s execution time on testbed 1 (see online version for colours)

Figure 13 displays the query execution time for query 2 on
testbed 1 for various states. Between ten states and 52 states
Pig’s query execution time and Jaql’s query execution time
fluctuate on Hadoop platform. The proposed platform
provides more stable query execution time than the Hadoop
platform.

Figure 14 illustrates the query 3’s execution time on
testbed 1, measured in seconds over a range from 2,571,686
records for ten states to 12,905,514 records for 52 states.
There is a greater difference in Pig’s query execution time
between the two platforms. Hive’s query execution time and
Jaql’s query execution time have no significant differences
between the two platforms.

According to Figures 12 to 15, the proposed platform
provides the faster query execution time than the Hadoop
platform in three query languages.

The query execution time for query 1 on testbed 2 for
various states is plotted in Figure 16. The proposed platform
provides slightly faster query execution time in three query
languages than the Hadoop platform. Figure 17 displays the
query execution time for query 2 on testbed 2 for various
states. Although there are significant differences in Pig’s
query execution time and Jaql’s query execution time,
Hive’s query execution time has slight gap between the two
platforms.

138 K.N. Aye and T. Thein

Figure 15 Query 4’s execution time on testbed 1 (see online version for colours)

Figure 16 Query 1’s execution time on testbed 2 (see online version for colours)

Figure 17 Query 2’s execution time on testbed 2 (see online version for colours)

Figure 18 shows the query execution time for query 3 on
testbed 2 for various states. Between ten states and 52 states
Pig’s query execution time fluctuates dramatically, hitting a
peak of over 110 seconds on Hadoop platform. The
proposed platform provides more stable query execution
time than the Hadoop platform.

Figure 19 illustrates the query execution time for
query 4 on testbed 2 for various states. According to
Figure 19, there is fluctuation in Pig’s query execution time
on the Hadoop platform and Pig gives significant difference
in query execution time between the two platforms.

The query execution time for query 1 on testbed 3 for
various states is shown in Figure 20. There is wild
fluctuation in Pig’s query execution time on the Hadoop
platform, but the trend is upward. Hive’s query execution
time and Jaql’s query execution time have slight differences

between the two platforms. Figure 21 describes the query
execution time for query 2 on testbed 3 for various states.
The proposed platform provides faster query execution time
in three query languages than the Hadoop platform.

Figure 22 displays the query execution time for query 3
on testbed 3 for various states. The most striking feature is
that Pig’s query execution time fluctuates on the Hadoop
platform from 10 states to 52 states. There are significant
differences in query execution time between the two
platforms. The query execution time for query 4 on
testbed 3 for various states is described in Figure 23. Pig
and Jaql have the greater differences in query execution
time between the two platforms. The proposed platform
provides faster query execution time in three query
languages than the Hadoop platform.

 A platform for big data analytics on distributed scale-out storage system 139

Figure 18 Query 3’s execution time on testbed 2 (see online version for colours)

Figure 19 Query 4’s execution time on testbed 2 (see online version for colours)

Figure 20 Query 1’s execution time on testbed 3 (see online version for colours)

Figure 21 Query 2’s execution time on testbed 3 (see online version for colours)

140 K.N. Aye and T. Thein

Figure 22 Query 3’s execution time on testbed 3 (see online version for colours)

Figure 23 Query 4’s execution time on testbed 3 (see online version for colours)

Table 6 Comparison of two big data platforms

Hadoop platform

(MapReduce + Hadoop
distributed file system)

Proposed platform
(MapReduce + Gluster

file system)

Diverse job
types √ √

Apache Pig √ √
Apache
Hive √ √

Jaql √ √
Better
scalability √

Better
performance √

Fault
tolerance √ √

Faster query
language Hive Hive

As a result of experiments, we can conclude that Hive
provides the fastest query execution time and Pig provides
the slowest query execution time on both platforms.
However, Pig and Jaql have the greater differences in query
execution time between the two platforms. Experimental

results prove that three query languages can provide faster
query execution time on the proposed platform than the
Hadoop platform. Therefore, the proposed big data platform
can support large scale data analysis efficiently and
effectively. Table 6 describes the comparisons of two big
data platforms from various aspects.

5 Vendor products for big data analytics

There are many vendor products to consider for big data
analytics. In this paper, we discuss two products – IBM big
data platform and Splunk. IBM (Eaton et al., 2011) offers a
platform for big data including IBM InfoSphere Biginsights
and IBM InfoSphere Streams. IBM InfoSphere Biginsights
represents a fast, robust, and easy-to-use platform for
analytics on big data at rest. IBM InfoSphere Streams is a
powerful analytic computing platform that delivers a
platform for analysing data in real time with micro-latency.
Splunk (http://www.splunk.com) is a general-purpose
search, analysis and reporting engine for time-series text
data, typically machine data. It provides an approach to
machine data processing on a large scale, based on the
MapReduce model. Table 5 describes the comparisons of
proposed platform with vendor products.

 A platform for big data analytics on distributed scale-out storage system 141

Table 7 Comparison of proposed platform with vendor products

 IBM big data platform Splunk Proposed platform

Volume and variety
(IBM InfoSphere BigInsights)

Volume and variety
(splunk hadoop connect)

Volume, variety, and
velocity

Velocity (IBM InfoSphere streams) Velocity

Volume and
variety

Big data storage general parallel file system-shared nothing
cluster (GPFS-SNC)

Hadoop distributed file system
(splunk hadoop connect)

Gluster file system

Temporal MapReduce Processing model Adaptive MapReduce
Spatial MapReduce

MapReduce

Cloud support IBM cloud Splunk storm ×
Query support Pig, Hive, and Jaql Splunk search language Pig, Hive, and Jaql
Scalability √ √ √
Fault tolerance √ √ √
Visualisation BigSheets Report builder and dashboard editor ×
Enterprise integration √ √ ×
Graphical user interface BigInsights console Splunk web UI ×

6 Conclusions

Big data is a growing problem for corporations as a result of
sheer data volume along with radical changes in the types of
data being stored and analysed, and its characteristics. The
main challenges of big data analytics are performance,
scalability and fault tolerance. To address these challenges,
many vendors have developed big data platforms. In this
paper, a big data platform for large scale data analysis by
using Hadoop MapReduce framework and GlusterFS over
scale-out storage system is proposed. The proposed big data
platform solves volume and variety issues of big data and
only supports batch processing. Therefore it is necessary to
address velocity issue of big data and to support real-time
processing. A solution to this can be achieved by adding
complex event processing (CEP) techniques to the proposed
platform. In addition, the proposed platform does not
consider visualisation aspects and this can be solved by
using visualisation tools on the proposed platform.
Moreover, developing the proposed big data platform
requires downloading, configuring, and testing the
individual open source projects such as Hadoop, GlusterFS,
Pig, Hive and Jaql. The proposed platform should be
deployed on Amazon Elastic Compute Cloud (EC2)
instances to support cloud computing infrastructure.

References
Agrawal, S. (2011) The Next Generation of Hadoop Map-Reduce,

Apache Hadoop Summit India.
Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh,

M.Y., Kanne, C-C., Özcan, F. and Shekita, E.J. (2011) ‘Jaql:
a scripting language for large scale semistructured data
analysis’, PVLDB, Vol. 4, No. 12, pp.1272–1283.

Carter, P. (2011) Big Data Analytics: Future Architectures,
Skills and Roadmaps for the CIO, IDC, September.

Dean, J. and Ghemawat, S. (2008) ‘MapReduce: simplified data
processing on large clusters’, Communications of the ACM,
January, Vol. 51, No. 1, pp.107–113.

Eaton, C., Deutsch, T., Deroos, D., Lapis, G. and Zikopoulos, P.
(2011) Understanding Big Data: Analytics for Enterprise
Class Hadoop and Streaming Data, McGraw-Hill.

Gluster (2011) Gluster File System Architecture, August.
HDFS Architecture Guide [online] http://Hadoop.apache.org/hdfs/

docs/current/hdfs design.html.
http://www.macs.hw.ac.uk/~rs46/files/publications/MapReduce-

Languages/Comparison_Of_High_Level_Data_Query_Langu
ages.pdf.

Olston, C., Reed, B., Srivastava, U., Kumar, R. and Tomkins, A.
(2008) ‘Pig Latin: a not-so-foreign language for data
processing’, in Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pp.1099–1110, ACM.

Pavlo, A., Paulson, E. and Rasin, A. (2009) ‘A Comparison of
approaches to large-scale data analysis’, in Proceedings of the
35th SIGMOD International Conference on Management of
Data, ACM.

Russom, P. (2011) Big Data Analytics, TDWI Best Practices
Report, Fourth Quarter.

Shvachko, K. et al. (2010) ‘The Hadoop distributed file system’,
Proc. IEEE 26th Symposium on Mass Storage Systems and
Technologies, MSST ‘10, pp.1–10.

Thusoo, A. et al. (2010) ‘Hive – a petabyte scale data warehouse
using Hadoop’, in Proceedings of the IEEE 26th International
Conference on Data Engineering, ICDE ‘10, pp.996–1005.

White, T. (2009) Hadoop: The Definitive Guide, O'Reilly and
Yahoo! Press.

