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Abstract: Big data analytics is the process of examining large amounts of data of a variety  
of types to uncover hidden patterns, unknown correlations and other useful information.  
Hadoop-based platform emerges to deal with big data. In Hadoop NameNode is used to store 
metadata in a single system’s memory, which is a performance bottleneck for scale-out. Gluster 
file system has no performance bottlenecks related to metadata. To achieve massive performance, 
scalability and fault tolerance for big data analytics, a big data platform is proposed. The 
proposed big data platform consists of big data storage and big data processing. The Hadoop big 
data platform and the proposed big data platform are implemented on commodity Linux virtual 
machines clusters and performance evaluations are conducted. According to the evaluation 
analysis, the proposed big data platform provides better scalability, fault tolerance, and faster 
query response time than the Hadoop platform. 
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1 Introduction 

Today, information is generated continuously around  
the globe. Almost every growing organisation wants to 
automate most of its business processes and is using IT  
to support every conceivable business function. This is 
resulting into huge amount of data being generated in the 
form of transactions and interactions. Web has become an 
important interface for interactions with suppliers and 
customers generating the huge amount of data in the form of 

e-mails, etc. Besides this, there is a huge amount of data 
emitted automatically in the form of logs like network logs 
and web server logs. 

Various telecom service providers get huge amount of 
data in the form of conversations and call data records. 
Various social N/W sites have started getting TBs of data 
every day in the form of tweets, blogs, comments, photos 
and videos, etc. Facebook generates 4 TBs of compressed 
data every day. Web Companies like these get huge amount 
of click stream data generated daily as well. Hospitals have 
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data about the patients, their diseases and the data generated 
by various medical devices as well. Sensors used in various 
machines used for production keep generating so much of 
event data in seconds. Almost every sector like transport, 
finance is seeing a tsunami of data. 

Now the important question that arises at this point of 
time is how do we store and process such huge amount of 
data most of which is Semi structured or Unstructured. 
There is a high-level categorisation of big data platforms to 
store and process them in a scalable, fault tolerant and 
efficient manner (http://bigdataanalytics.blogspot.com). The 
first category includes massively parallel processing or MPP 
Data warehouses that are designed to store huge amount of 
structured data across a cluster of servers and perform 
parallel computations over it. Most of these solutions follow 
shared nothing architecture which means that every node 
will have a dedicated disk, memory and processor. All the 
nodes are connected via high speed networks. As they are 
designed to hold structured data so there is a need to extract 
the structure from the data using an ETL tool and populate 
these data sources with the structured data. 

These MPP data warehouses include: 

• MPP databases: these are generally the distributed 
systems designed to run on a cluster of commodity 
servers, e.g., AsternCluster, Greenplum, DATAllegro, 
IBM DB2, Kognitio WX2, Teradata 

• appliances: a purpose-built machine with preconfigured 
MPP hardware and software designed for analytical 
processing, e.g., Oracle optimised Warehouse, Teradata 
Machines, Netezza Performance Server and Sun’s Data 
Warehousing Appliance 

• columnar databases: they store data in columns instead 
of rows, allowing greater compression and faster query 
performance, e.g., Sybase IQ, Vertica, InfoBright Data 
Warehouse, ParAccel. 

Another category includes distributed file systems like 
Hadoop to store huge unstructured data and perform 
MapReduce computations on it over a cluster built of 
commodity hardware. Pavlo et al. (2009) described and 
compared MapReduce paradigm and parallel DBMSs for 
large scale data analysis and defined a benchmark 
consisting of a collection of tasks to be run on an  
open source version of MR as well as on two parallel 
DBMSs. Hadoop is a popular open source MapReduce 
implementation which is being used in companies like 
Yahoo, Facebook, etc., to store and process extremely large 
datasets on commodity hardware. However, in Hadoop the 
NameNode can become a performance bottleneck because it 
keeps the directory tree of all files in the Hadoop distributed 
file system. The architecture within Gluster does not  
depend on metadata in any way. Therefore, Gluster has no  
 
 
 
 
 

performance bottlenecks and no inconsistency risks related 
to metadata. In addition, using Hadoop was not easy for end 
users, especially for those users who were not familiar with 
MapReduce. The MapReduce programming model is very 
low level and requires developers to write custom programs 
which are hard to maintain and reuse. Hadoop lacked the 
expressiveness of popular query languages like SQL and as 
a result users ended up spending hours to write programs for 
even simple analysis. In order to analyse this data more 
productively, the query capabilities of Hadoop need to be 
improved. So, several application development languages 
have emerged to make it easier to write MapReduce 
programs in Hadoop and that run on top of Hadoop. Among 
them, Hive, Pig, and Jaql are popular. 

The aim of this paper is to propose big data platform 
that is built upon open source and built on Hadoop 
MapReduce, Gluster File System, Apache Pig, Apache Hive 
and Jaql. The rest of the paper is organised as follows: in 
Section 2, we explain big data concepts and technologies 
such as big data and big data analytics. In Section 3 we 
introduce our proposed big data platform and performance 
evaluations are conducted in Section 4. Then vendor 
products for big data analytics are explained in Section 5 
and conclusion is described in Section 6. 

2 Big data concepts and technologies 

This section provides an overview of big data, big data 
Analytics, Hadoop and MapReduce framework, Apache 
Pig, Apache Hive, Jaql, Gluster File System and big data 
platform. Due to space constraints, some aspects are 
explained in a highly simplified manner. A detailed 
description of them can be found in Eaton et al. (2011), 
Carter (2011) and Russom (2011). 

2.1 Big data 

Big data are datasets that grow so large that they become 
awkward to work with using on-hand database management 
tools. Difficulties include capture, storage, search, sharing, 
analytics, and visualising. There are three characteristics of 
Big data: volume, variety, and velocity. 

• Volume: volume is the first and most notorious feature. 
It refers to the amount of data to be handled. The sheer 
volume of data being stored today is exploding. In the 
year 2000, 800,000 petabytes (PB) of data were stored 
in the world. This number is expected to reach  
35 zettabytes (ZB) by 2020. Organisations that do not 
know how to manage massive volumes of data are 
overwhelmed by it. But the opportunity exists, with the 
right technology platform, to analyse almost all of the 
data to gain better insights. 
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• Variety: variety represents all types of data. With the 
explosion of sensors, and smart devices, as well as 
social collaboration technologies, data in an enterprise 
has become complex, because it includes not only 
traditional relational data, but also raw, semistructured, 
and unstructured data. To capitalise on the big data 
opportunity, enterprises must be able to analyse all 
types of data, both relational and non-relational: text, 
sensor data, audio, video, transactional, and more. 

• Velocity: a conventional understanding of velocity 
typically considers how quickly the data is arriving and 
stored, and its associated rates of retrieval. However, 
today the term velocity is defined to data in motion: the 
speed at which the data is flowing. More and more of 
the data being produced today have a very short  
shelf-life, so organisations must be able to analyse this 
data in near real time if they hope to find insights in this 
data. 

There are two types of big data: data at rest (e.g., collection 
of what has streamed, web logs, e-mails, social media, 
unstructured documents and structured data from disparate 
system) and data in motion (e.g., Twitter/Facebook 
comments, stock market data and sensor data). So dealing 
effectively with big data requires performing analytics 
against the volume and variety of data while it is still in 
motion, not just after it is at rest. 

2.2 Big data analytics 

Big data analytics is the application of advanced analytic 
techniques to very big datasets. Advanced analytics is a 
collection of techniques and tool types, including predictive 
analytics, data mining, statistical analysis, complex SQL, 
data visualisation, artificial intelligence, natural language 
processing, and database methods that support analytics 
(such as MapReduce, in-database analytics, in-memory 
database, columnar data stores). 

There are three approaches for big data analytics: direct 
analytics over MPP DW, indirect analytics over Hadoop and 
direct analytics over Hadoop. 

• Direct analytics over MPP DW: the first approach for 
big data analytics is using a BI tool directly over any of 
the MPP DW. For any analytical request by the user the 
BI tool will send SQL queries to these DWs. These 
DWs will execute the queries in a parallel manner 
across the cluster and return the data to BI tool for 
further analytics. 

• Indirect analytics over Hadoop: the second approach is 
indirect analytics over Hadoop which processes, 
transforms and structures the data inside Hadoop and 
then exports the structured data into RDBMS. The BI 

tool will work with the RDBMS to provide the 
analytics. 

• Direct analytics over Hadoop: The last approach is 
performing analytics directly over Hadoop. In this case 
all the queries will be executed as MR jobs over big 
unstructured data placed into Hadoop. 

2.3 Hadoop and MapReduce framework 

Apache Hadoop is an open source software project that 
enables the distributed processing of large datasets across 
clusters of commodity servers. It is designed to scale up 
from a single server to thousands of machines, with a very 
high degree of fault tolerance. Rather than relying on  
high-end hardware, the resiliency of these clusters comes 
from the software’s ability to detect and handle failures at 
the application layer (Shvachko et al., 2010; Agrawal, 2011; 
White, 2009; HDFS Architecture Guide). 

Hadoop enables a computing solution that is: 

• Scalable: new nodes can be added as needed and added 
without needing to change data formats, how data is 
loaded, how jobs are written, or the applications on top. 

• Cost effective: Hadoop brings massively parallel 
computing to commodity servers. The result is a 
sizeable decrease in the cost per terabyte of storage, 
which in turn makes it affordable to model all data. 

• Flexible: Hadoop is schema-less, and can absorb any 
type of data, structured or not, from any number of 
sources. Data from multiple sources can be joined and 
aggregated in arbitrary ways enabling deeper analyses 
than any one system can provide. 

• Fault tolerant: when a node fails, the system redirects 
work to another location of the data and continues 
processing. 

A MapReduce framework typically divides the input  
dataset into independent tasks which are processed by the 
map tasks in a completely parallel manner. The framework 
sorts the outputs of the maps, which are then input to the 
reduce tasks. Typically both the input and the output of the 
 jobs are stored in a file-system. The framework takes care 
of scheduling tasks, monitoring them and reexecuting  
the failed tasks (Dean and Ghemawat, 2008; http://Hadoop. 
apache.org/MapReduce). Hadoop is supplemented by an 
ecosystem of Apache projects, such as Pig and Hive, that 
extend the value of Hadoop and improves its usability. 
Figure 1 shows MapReduce data flow with multiple reduce 
tasks. 
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Figure 1 MapReduce data flow with multiple reduce tasks (see online version for colours) 

 

 
2.4 High level query languages 

There are three high level query languages for big data 
analytics: Apache Pig, Apache Hive and Jaql 
(http://www.macs.hw.ac.uk/~rs46/files/publications/MapRe
duce-Languages/Comparison_Of_High_Level_Data_ 
Query_Languages.pdf.). 

2.4.1 Apache Pig 

Apache Pig (Olston et al., 2008) is a platform for analysing 
large datasets that consists of a high-level language  
for expressing data analysis programs, coupled with 
infrastructure for evaluating these programs. Pig is made up 
of two components: the first is the language itself, which is 
called PigLatin, and the second is a runtime environment 
where PigLatin programs are executed. The Pig runtime 
environment translates the program into a set of map and 
reduce tasks and runs them. This greatly simplifies the work 
associated with the analysis of large amounts of data and 
lets the developer focus on the analysis of the data rather 
than on the individual map and reduce tasks. 

2.4.2 Apache Hive 

Apache Hive (Thusoo et al., 2010) is an open source data 
warehousing solution built on top of Hadoop. Hive  
supports queries expressed in a SQL-like declarative 
language – HiveQL, which are compiled into MapReduce 
jobs that are executed using Hadoop. In addition, HiveQL 
enables users to plug in custom MapReduce scripts into 
queries. The language includes a type system with support 
for tables containing primitive types, collections like arrays 
and maps, and nested compositions of the same. Hive also 
includes a system catalogue – Metastore – that contains 
schemas and statistics, which are useful in data exploration, 
query optimisation and query compilation. 

2.4.3 Jaql 

Jaql (Beyer et al., 2011) is a functional, declarative query 
language that is designed to process large datasets. For 
parallelism, Jaql rewrites high-level queries into low-level  
 

queries consisting of MapReduce jobs. Jaql is primarily a 
query language for JavaScript Object Notation (JSON). 
JSON is the popular data interchange format because it is 
easy for humans to read, and because of its structure, it is 
easy for applications to parse or generate. Both Jaql and 
JSON are record-oriented models, and thus fit together 
perfectly. JSON is not the only format that Jaql supports, 
Jaql is extremely flexible and can support many 
semistructured data sources such as XML, CSV, flat files 
and more. 

2.5 Gluster file system 

GlusterFS is a scalable open source clustered file system 
that offers a global namespace, distributed front end, and 
scales to hundreds of petabytes without difficulty. It is also 
a software-only, highly available, scalable, centrally 
managed storage pool for unstructured data. It is also  
scale-out file storage software for NAS, object, big data. By 
leveraging commodity hardware, Gluster also offers 
extraordinary cost advantages benefits that are unmatched in 
the industry. There are many advantages of Gluster over any 
other file systems. These advantages are: 

• it is faster for each individual operation because it 
calculates metadata using algorithms and that approach 
is faster than retrieving metadata from any storage 
media 

• it is faster for large and growing individual systems 
because there is never any contention for any single 
instance of metadata stored at only one location 

• it is faster and achieves true linear scaling for 
distributed deployments because each node is 
independent in its algorithmic handling of its own 
metadata, eliminating the need to synchronise metadata 

• it is safer in distributed deployments because it 
eliminates all scenarios of risk which are derived from 
out-of-synch metadata (Gluster, 2011). 

Both performance and capacity can be scaled out linearly in 
Gluster by employing three fundamental techniques: 
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• the elimination of metadata 

• effective distribution of data to achieve scalability and 
reliability 

• the use of parallelism to maximise performance via a 
fully distributed architecture 

Figure 2 describes the Gluster file system architecture. 

Figure 2 Gluster file system architecture (see online version  
for colours) 

 

2.6 Big data platform 

Big data platform cannot just be a platform for processing 
data; it has to be a platform for analysing that data to extract 
insight from an immense volume, variety, and velocity of 
that data. The main components in the big data platform 
provide: 

• deep analytics: a fully parallel, extensive and extensible 
toolbox full of advanced and novel statistical and data 
mining capabilities 

• high agility: the ability to create temporary analytics 
environments in an end-user driven, yet secure and 
scalable environment to deliver new and novel insights 
to the operational business 

• massive scalability: the ability to scale analytics and 
sandboxes to previously unknown scales while 
leveraging previously untapped data potential 

• low latency: the ability to instantly act based on  
these advanced analytics in the operational,  
production environments (http://blogs.oracle.com/ 
datawarehousing/entry/big_data_achieve_the_ 
impossible). 

3 Proposed big data platform 

The proposed big data platform performs large-scale data 
analysis by using MapReduce framework on unstructured  
 

data stored in GlusterFS over distributed scale-out storage 
system. GlusterFS can provide these features: scalability to 
petabytes and beyond, affordability (use of commodity 
hardware), flexibility (deploy in any environment), linearly 
scalable performance, high availability, and superior storage 
economics. By combining these advantages of GlusterFS 
with parallel data processing, schema free processing and 
simplicity of MapReduce programming model, the proposed 
big data platform can perform large scale data analysis 
efficiently and effectively. The proposed big data platform 
is shown in Figure 3. 

The proposed big data platform consists of four layers: 
application layer, processing layer, interface layer and 
storage layer. 

• Application layer: multiple GlusterFS clients use high 
level query languages such as Hive, Pig, and Jaql to 
submit analytical jobs. These jobs are compiled into 
MapReduce jobs. Pig uses MapReduce to execute all of 
its data processing. It compiles the Pig Latin scripts that 
users write into a series of one or more MapReduce 
jobs that it then executes. In Hive, all commands and 
queries go to the Driver, which compiles the input, 
optimise the computation required, and executes the 
required steps, usually with MapReduce jobs. The 
Metastore is a separate relational database where Hive 
persists table schemas and other system metadata. Jaql 
consists of a scripting language and compiler, as well as 
a runtime component for Hadoop. The Jaql compiler 
automatically rewrites Jaql scripts so they can run in 
parallel on Hadoop. 

• Processing layer: the jobtracker coordinates all these 
MapReduce jobs by scheduling tasks to run on 
tasktrackers. The tasktrackers run map tasks and reduce 
tasks. 

• Interface layer: the file system function calls flow from 
MapReduce jobs to the Gluster java library through the 
FUSE mount. These file system calls are translated into 
POSIX file system calls. 

• Storage layer: the Gluster storage pool is a trusted 
network of storage servers which consist of one or 
more bricks. A brick is the GlusterFS basic unit of 
storage, represented by an export directory. 

3.1 Big data analytics on proposed platform 

The proposed platform can handle any data type such as call 
data records, web clickstreams, network logs, and so on. 
Hadoop MapReduce processes these data that are stored in 
GlusterFS on commodity servers to extract useful 
information for users. Users can use high level query 
languages such as Hive, Pig and Jaql to get analytical 
results. Figure 4 describes the conceptual architecture of big 
data analytics on proposed platform. 
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Figure 3 Proposed big data platform (see online version for colours) 

 

Figure 4 Conceptual architecture of big data analytics on the proposed platform (see online version for colours) 

 

 
3.2 Gluster file system server volumes 

There are seven types of GlusterFS server volumes. These 
are: 

• Distributed volume: it randomly distributes files 
throughout the bricks in the volume. It can be used in 
environments where the requirement is to scale storage 

and the redundancy is either not important or is 
provided by other hardware or software layers. 

• Replicated volume: it creates copies of files across 
multiple bricks in the volume. It can be used in 
environments where high-availability and  
high-reliability are critical. 
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• Striped volume: it stripes data across bricks in the 
volume. For best results, it should be used only in high 
concurrency environments accessing very large files. 

• Distributed replicated volume: it distributes files across 
replicated bricks in the volume. It can be used in 
environments where the requirement is to scale storage 
and high-reliability is critical. 

• Distributed striped volume: it stripes files across two or 
more nodes in the cluster. It should be used in 
environments where the requirement is to scale storage 
and in high concurrency environments accessing very 
large files is critical. 

• Striped replicated volume: it stripes data across 
replicated bricks in the cluster. It should be used in 
highly concurrent environments where there is parallel 
access of very large files and performance is critical. 

• Distributed striped replicated volume: it distributes 
striped data across replicated bricks in the cluster. It 
should be used in highly concurrent environments 
where there is parallel access of very large files and 
performance is critical. 

Enhanced Hadoop gluster connector can support 
MapReduce workloads on all these volume types. To 
achieve linear scalability and high performance for big data 
analytics, striped replicated volume and distributed striped 
replicated volume are the best storage options. 

4 Performance evaluation 

We have evaluated the performance of two big data 
platforms on three commodity Linux clusters – first cluster 
with two virtual machines (testbed 1), second cluster with 
three virtual machines (testbed 2), and third cluster with 

four virtual machines (testbed 3). The VMs are 
interconnected via a 1 Gigabit ethernet. The host machine 
runs Windows 7 Ultimate and has Intel Core i7-3.40 GHz 
processor, 4 GB physical memory, and 950 GB disk. As 
software components, Hadoop 0.20.2, Gluster 3.4.0, Hive 
0.9.0, Pig 0.10.0 and Jaql 0.5.1 are used. Table 1 shows the 
experimental setup to evaluate the query performance of 
two big data platforms. 

Table 1 Experimental setup for performance evaluations 

Testing environments Testing parameters 

Cluster 1 (2VMs) 
Cluster 2 (3VMs) 

Commodity Linux VMs 
clusters 

Cluster 3 (4VMs) 
Intel ® Core™ i7-2600 
CPU at 3.40 GHz 
4 GB RAM 
1 TB hard disk 

Host specification 

1 Gigabit ethernet 
Processing system 
• Hadoop 0.20.2 
Storage system 
• Gluster 3.4.0 
High level query languages 
• Hive 0.9.0 

• Pig 0.10.0 

Software components 

• Jaql 0.5.1 

The parameters of testbed 1, testbed 2, and testbed 3 are 
shown in Tables 2 to 4 respectively. 

Table 2 Specification of testbed 1 

MapReduce + HDFS cluster MapReduce + GlusterFS cluster 

VM1 VM2 

 

VM1 VM2 

Intel ® Core™ 
i7-2600 CPU at 
3.40 GHz 

Intel ® Core™ 
i7-2600 CPU at 

3.40 GHz 

 Intel ® Core™ 
i7-2600 CPU at 

3.40 GHz 

Intel ® Core™ 
i7-2600 CPU at 

3.40 GHz 
1,024 MB RAM 512 MB RAM  1,024 MB RAM 512 MB RAM 
50 GB hard disk 50 GB hard disk  50 GB hard disk 50 GB hard disk 
NN 
SNN 
DN 

DN  Gluster storage pool 
(VM1 + VM2) 

JT  JT 
TT 

TT 
 TT 

TT 

Notes: VM1 = Virtual Machine1 NN = NameNode JT = JobTracker 
VM2 = Virtual Machine2 DN = DataNode TT = TaskTracker 
SNN = Secondary NameNode 
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Table 3 Specification of testbed 2 

MapReduce + HDFS cluster MapReduce + GlusterFS cluster 

VM1 VM2 VM3 

 

VM1 VM2 VM3 

Intel ® Core™ 
i7-2600 CPU at 
3.40 GHz 

Intel ® Core™ 
i7-2600 CPU at 

3.40 GHz 

Intel ® Core™ 
i7-2600 CPU at 

3.40 GHz 

 Intel ® Core™ 
i7-2600 CPU at 

3.40 GHz 

Intel ® Core™ 
i7-2600 CPU at 

3.40 GHz 

Intel ® Core™ 
i7-2600 CPU at 

3.40 GHz 
1,024 MB RAM 512 MB RAM 512 MB RAM  1,024 MB RAM 512 MB RAM 512 MB RAM 
50 GB hard disk 50 GB hard disk 50 GB hard disk  50 GB hard disk 50 GB hard disk 50 GB hard disk 
NN 
SNN 
DN 

DN DN  Gluster storage pool 
(VM1 + VM2) 

JT  JT 
TT 

TT TT 
 TT 

TT TT 

Notes: VM1 = Virtual Machine1 NN = NameNode JT = JobTracker 
VM2 = Virtual Machine2 DN = DataNode TT = TaskTracker 
VM3 = Virtual Machine3 SNN = Secondary NameNode 
VM4 = Virtual Machine4 

Table 4 Specification of testbed 3 

MapReduce + HDFS cluster MapReduce + GlusterFS cluster 

VM1 VM2 VM3 VM4 

 

VM1 VM2 VM3 VM4 

Intel ® 
Core™ 
i7-2600 CPU 
at 3.40 GHz 

Intel ® 
Core™ 

i7-2600 CPU 
at 3.40 GHz 

Intel ® 
Core™ 

i7-2600 CPU 
at 3.40 GHz 

Intel ® 
Core™ 

i7-2600 CPU
at 3.40 GHz 

 Intel ® 
Core™ 

i7-2600 CPU
at 3.40 GHz 

Intel ® 
Core™ 

i7-2600 CPU
at 3.40 GHz 

Intel ® 
Core™ 

i7-2600 CPU 
at 3.40 GHz 

Intel ® 
Core™ 

i7-2600 CPU 
at 3.40 GHz 

1,024 MB 
RAM 

512 MB 
RAM 

512 MB 
RAM 

512 MB 
RAM 

 1,024 MB 
RAM 

512 MB RAM 512 MB 
RAM 

512 MB 
RAM 

50 GB 
hard disk 

50 GB 
hard disk 

50 GB 
hard disk 

50 GB 
hard disk 

 50 GB 
hard disk 

50 GB 
hard disk 

50 GB 
hard disk 

50 GB 
hard disk 

NN 
SNN 
DN 

DN DN DN  Gluster storage pool 
(VM1 + VM2) 

JT JT 
TT 

TT TT TT  
TT 

TT TT TT 

Notes: VM1 = Virtual Machine1 NN = NameNode JT = JobTracker 
VM2 = Virtual Machine2 DN = DataNode TT = TaskTracker 
VM3 = Virtual Machine3 SNN = Secondary NameNode 
VM4 = Virtual Machine4 

 
US census dataset (http://www2.census.gov/census_2010/ 
04-Summary_File_1) is used to evaluate the performance of 
two big data platforms. The dataset consists of 331 tables. 
Population table is used to evaluate the query performance 
of two big data platforms. It consists of 12,905,514 records 
for 52 states (50 US states, the District of Columbia, and 
Puerto Rico). Table 5 describes the data dictionary of 
population table. 

Striped replicated volume is used for storage in testbed 1 
and testbed 3 and distributed striped replicated volume is 
used in testbed 2. To create a striped replicated volume in 
testbed 1: # gluster volume create population volume  
stripe 2 replica 2 server1:/exp1 server2:/exp2 server1:/exp3 
server2:/exp4. 

The striped replicated volume used in testbed 1 is shown 
in Figure 5. 

Table 5 Data dictionary of population table 

Field name Data dictionary reference name 

ID Record ID 
FILEID File identification 
STUSAB State/US abbreviation 
CHARITER Characteristic iteration 
CIFSN Characteristic iteration file sequence number 
LOGRECNO Logical record number 
P0010001 Population 
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Figure 5 Striped replicated volume for testbed 1 (see online 
version for colours) 

 

To create a distributed striped replicated volume in  
testbed 2: # gluster volume create population volume  
stripe 2 replica 2 server1:/exp1 server2:/exp2 server3:/exp3 
server1:/exp4 server2:/exp5 server3:/exp6 server1:/exp7 
server2:/exp8, 

The distributed striped replicated volume used in  
testbed 2 is described in Figure 6. 

To create a striped replicated volume in testbed 3:  
# gluster volume create population volume stripe 2  
replica 2 server1:/exp1 server2:/exp2 server3:/exp3 
server4:/exp4. 

The striped replicated volume used in testbed 3 is shown 
in Figure 7. 

4.1 Sample analytical workloads 

Four queries are used as sample analytical workloads  
for performance evaluation of two big data platforms. 
Figure 8 shows HiveQL, PigLatin, and Jaql for the first 
query. 

The first section in Figure 8 shows HiveQL of creating a 
population table, loading the file into the table, and  
finding the records where population is greater than 30,000. 
The second section describes a pig program that takes  
a file composed of population data, selects only those 
records whose population is greater than 30,000, and 
displays the result. The last section shows a Jaql sample  
that finds the records where population is greater than 
30,000. 

Figure 9 illustrates HiveQL, PigLatin, and Jaql for the 
second query. 

 

Figure 6 Distributed striped replicated volume for testbed 2 (see online version for colours) 
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Figure 7 Striped replicated volume for testbed 3 (see online 
version for colours) 

 

Figure 8 HiveQL, PigLatin, and Jaql for the first query 

 

Figure 9 HiveQL, PigLatin, and Jaql for the second query 

 

The first and last sections in Figure 9 show queries to find 
the number of records in population table using Hive and 
Jaql respectively. The second section illustrates a pig 

program that groups the population, and displays the 
number of records in that group. 
Figure 10 describes HiveQL, PigLatin, and Jaql for the third 
query. 

Figure 10 HiveQL, PigLatin, and Jaql for the third query 

 

The first section in Figure 10 shows HiveQL of finding the 
total population for each state. The second section describes 
a pig program that groups the population by the state, and 
displays the sum of the number of population for each state. 
The last section shows a Jaql example that finds the total 
population for each state. 

Figure 11 demonstrates HiveQL, PigLatin, and Jaql for 
the fourth query. 

Figure 11 HiveQL, PigLatin, and Jaql for the fourth query 

 

The first and last sections in Figure 11 show queries to find 
the number of records for each state using Hive and Jaql 
respectively. The second section illustrates a pig program 
that groups the population by the state, and displays the 
number of records for each state. 

4.2 Experimental results 

In this paper, the Hadoop big data platform (MapReduce 
and HDFS) and the proposed big data platform (MapReduce 
and GlusterFS) are implemented on three testbeds and 
performance evaluations are conducted with four queries on 
different record sizes. Figure 12 shows the query execution 
time for query 1 on testbed 1 for various states. The data 
sizes range from 2,571,686 records for ten states to 
12,905,514 records for 52 states. Hive provides the fastest 
query execution time and Pig provides the slowest query 
execution time on both platforms. There are no significant 
differences in query execution time between the two 
platforms. 
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Figure 12 Query 1’s execution time on testbed 1 (see online version for colours) 

 

Figure 13 Query 2’s execution time on testbed 1 (see online version for colours) 

 

Figure 14 Query 3’s execution time on testbed 1 (see online version for colours) 

 

 
Figure 13 displays the query execution time for query 2 on 
testbed 1 for various states. Between ten states and 52 states 
Pig’s query execution time and Jaql’s query execution time 
fluctuate on Hadoop platform. The proposed platform 
provides more stable query execution time than the Hadoop 
platform. 

Figure 14 illustrates the query 3’s execution time on 
testbed 1, measured in seconds over a range from 2,571,686 
records for ten states to 12,905,514 records for 52 states. 
There is a greater difference in Pig’s query execution time 
between the two platforms. Hive’s query execution time and 
Jaql’s query execution time have no significant differences 
between the two platforms. 

According to Figures 12 to 15, the proposed platform 
provides the faster query execution time than the Hadoop 
platform in three query languages. 

The query execution time for query 1 on testbed 2 for 
various states is plotted in Figure 16. The proposed platform 
provides slightly faster query execution time in three query 
languages than the Hadoop platform. Figure 17 displays the 
query execution time for query 2 on testbed 2 for various 
states. Although there are significant differences in Pig’s 
query execution time and Jaql’s query execution time, 
Hive’s query execution time has slight gap between the two 
platforms. 
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Figure 15 Query 4’s execution time on testbed 1 (see online version for colours) 

 

Figure 16 Query 1’s execution time on testbed 2 (see online version for colours) 

 

Figure 17 Query 2’s execution time on testbed 2 (see online version for colours) 

 

 
Figure 18 shows the query execution time for query 3 on 
testbed 2 for various states. Between ten states and 52 states 
Pig’s query execution time fluctuates dramatically, hitting a 
peak of over 110 seconds on Hadoop platform. The 
proposed platform provides more stable query execution 
time than the Hadoop platform. 

Figure 19 illustrates the query execution time for  
query 4 on testbed 2 for various states. According to  
Figure 19, there is fluctuation in Pig’s query execution time 
on the Hadoop platform and Pig gives significant difference 
in query execution time between the two platforms. 

The query execution time for query 1 on testbed 3 for 
various states is shown in Figure 20. There is wild 
fluctuation in Pig’s query execution time on the Hadoop 
platform, but the trend is upward. Hive’s query execution 
time and Jaql’s query execution time have slight differences 

between the two platforms. Figure 21 describes the query 
execution time for query 2 on testbed 3 for various states. 
The proposed platform provides faster query execution time 
in three query languages than the Hadoop platform. 

Figure 22 displays the query execution time for query 3 
on testbed 3 for various states. The most striking feature is 
that Pig’s query execution time fluctuates on the Hadoop 
platform from 10 states to 52 states. There are significant 
differences in query execution time between the two 
platforms. The query execution time for query 4 on  
testbed 3 for various states is described in Figure 23. Pig 
and Jaql have the greater differences in query execution 
time between the two platforms. The proposed platform 
provides faster query execution time in three query 
languages than the Hadoop platform. 
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Figure 18 Query 3’s execution time on testbed 2 (see online version for colours) 

 

Figure 19 Query 4’s execution time on testbed 2 (see online version for colours) 

 

Figure 20 Query 1’s execution time on testbed 3 (see online version for colours) 

 

Figure 21 Query 2’s execution time on testbed 3 (see online version for colours) 
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Figure 22 Query 3’s execution time on testbed 3 (see online version for colours) 

 

Figure 23 Query 4’s execution time on testbed 3 (see online version for colours) 

 

 
Table 6 Comparison of two big data platforms 

 
Hadoop platform 

(MapReduce + Hadoop 
distributed file system) 

Proposed platform 
(MapReduce + Gluster 

file system) 

Diverse job 
types √ √ 

Apache Pig √ √ 
Apache 
Hive √ √ 

Jaql √ √ 
Better 
scalability  √ 

Better 
performance  √ 

Fault 
tolerance √ √ 

Faster query 
language Hive Hive 

As a result of experiments, we can conclude that Hive 
provides the fastest query execution time and Pig provides 
the slowest query execution time on both platforms. 
However, Pig and Jaql have the greater differences in query 
execution time between the two platforms. Experimental 

results prove that three query languages can provide faster 
query execution time on the proposed platform than the 
Hadoop platform. Therefore, the proposed big data platform 
can support large scale data analysis efficiently and 
effectively. Table 6 describes the comparisons of two big 
data platforms from various aspects. 

5 Vendor products for big data analytics 

There are many vendor products to consider for big data 
analytics. In this paper, we discuss two products – IBM big 
data platform and Splunk. IBM (Eaton et al., 2011) offers a 
platform for big data including IBM InfoSphere Biginsights 
and IBM InfoSphere Streams. IBM InfoSphere Biginsights 
represents a fast, robust, and easy-to-use platform for 
analytics on big data at rest. IBM InfoSphere Streams is a 
powerful analytic computing platform that delivers a 
platform for analysing data in real time with micro-latency. 
Splunk (http://www.splunk.com) is a general-purpose 
search, analysis and reporting engine for time-series text 
data, typically machine data. It provides an approach to 
machine data processing on a large scale, based on the 
MapReduce model. Table 5 describes the comparisons of 
proposed platform with vendor products. 
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Table 7 Comparison of proposed platform with vendor products 

 IBM big data platform Splunk Proposed platform 

Volume and variety 
(IBM InfoSphere BigInsights) 

Volume and variety 
(splunk hadoop connect) 

Volume, variety, and 
velocity 

Velocity (IBM InfoSphere streams) Velocity 

Volume and 
variety 

Big data storage general parallel file system-shared nothing 
cluster (GPFS-SNC) 

Hadoop distributed file system 
(splunk hadoop connect) 

Gluster file system 

Temporal MapReduce Processing model Adaptive MapReduce 
Spatial MapReduce 

MapReduce 

Cloud support IBM cloud Splunk storm × 
Query support Pig, Hive, and Jaql Splunk search language Pig, Hive, and Jaql 
Scalability √ √ √ 
Fault tolerance √ √ √ 
Visualisation BigSheets Report builder and dashboard editor × 
Enterprise integration √ √ × 
Graphical user interface BigInsights console Splunk web UI × 

 
6 Conclusions 

Big data is a growing problem for corporations as a result of 
sheer data volume along with radical changes in the types of 
data being stored and analysed, and its characteristics. The 
main challenges of big data analytics are performance, 
scalability and fault tolerance. To address these challenges, 
many vendors have developed big data platforms. In this 
paper, a big data platform for large scale data analysis by 
using Hadoop MapReduce framework and GlusterFS over 
scale-out storage system is proposed. The proposed big data 
platform solves volume and variety issues of big data and 
only supports batch processing. Therefore it is necessary to 
address velocity issue of big data and to support real-time 
processing. A solution to this can be achieved by adding 
complex event processing (CEP) techniques to the proposed 
platform. In addition, the proposed platform does not 
consider visualisation aspects and this can be solved by 
using visualisation tools on the proposed platform. 
Moreover, developing the proposed big data platform 
requires downloading, configuring, and testing the 
individual open source projects such as Hadoop, GlusterFS, 
Pig, Hive and Jaql. The proposed platform should be 
deployed on Amazon Elastic Compute Cloud (EC2) 
instances to support cloud computing infrastructure. 
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