
  

1 

 

Comparative Study of  Association  Rules Mining  

 

Thi Dar Aye, Khin Mar Soe                                                                                                     
University of Computer Studies, Yangon, Myanmar                                            

thidaraye925@gmail.com, kmsucsy@gmail.com 

 

                         Abstract 

Association rule mining is a technique to find 
useful patterns and associations in transactional 
databases. The mining of association rules can be 
mapped into the problem of discovering large 
(frequent) itemsets where is a grouped of items which 
appear in a sufficient number of transaction. The 
discovery of interesting association relationships  
among huge amount of business transaction records 
can help in many business decision making process . 
There are many association rules mining algorithms. 
But this system is intended to make the comparative 
study of three association rules mining algorithms 
such as  DHP algorithm, PHP algorithm and Hybrid 
Approach of Support-Ordered Tree and PHP based 
on same dataset. Both DHP and PHP algorithm use 
hash base method and pruning method to reduce 
database size. DHP use direct hashing technique. 
PHP use perfect hashing technique. The two dataset, 
Kyar Nyo Pan Stationary Store and Orange 
minimarket  are used. 

Keywords: association rule, database, frequent 
pattern , itemset. 

1.  Introduction 

Data mining has attracted a growing amount of 
attention in database communities due to its wide 
applicability in retail industry for improving 
marketing strategy. Since the amount of sales data is 
huge, it is important to implement efficient 
algorithms to conduct mining on these data. 

One of the most important data mining problems 
is mining association rules. Mining association rules 
can be decomposed into two sub-problems. First , it 
is needed to identify all sets of items (itemsets) that 
are contained in a sufficient number of transactions 
above the minimum support (requirement). These 
itemsets are referred to as large itemsets. Once all 
large itemsets are obtained, the desired association 
rules can be generated in a straightforward manner. 
The overall performance of association rules mining 

is depended on the first step. Therefore, many 
researcher focused on the performance of the finding 
frequent itemsets. This system compare algorithm 
DHP, PHP, Hybrid approach of Support-Order Tree 
and PHP for efficient large itemset generation.   

2.  Association Rules Mining 

Mining association rules are to find interesting 
association or correlation relationships among a large 
set of data that frequently occur together, and then 
formulate rules that characterize these relationships. 
Mining association rules is composed of the 
following two steps – 

• To discover the large itemsets, i.e., all sets 
of large itemsets.  

• To use the large itemsets to generate the 
association rules for the database. 

• The overall performance of mining 
association rules is   determined by the first 
step. Let I= {i1,i2,…,im} be a set of literals, 
called items. Let D be a set of transactions, 
where each transaction, T is a set of items 
such that T  I. Each transaction is 
associated  with an identifier, called TID. 
Let X be a set of items. A transaction T is 
said to contain X if and only if X  T. An 
association rule is an implication of the form 
X Y, where X I , Y  I and X ∩ 
Y=ф. The rule X  Y holds in the 
transaction set D  with confidence c if c% of 
transactions in D that contain X  also contain 
Y. The rule X  Y has support s in the 
transaction set D if s% of transactions in D 
contains X  Y. [1] 

3. Direct Hashing and Pruning (DHP) 
Algorithm 

DHP algorithm is based on Apriori algorithm. 
This algorithm will utilize a hash method for 
candidate itemset generation during the initial 



  

2 

 

iterations and employ pruning techniques to 
progressively reduce the transaction database size.    
It has two major features:  

• one is efficient generation of large itemsets 
• other is effective reduction on transaction 

database size. 

As in Apriori, in each pass the set of large 
itemsets, Li, is used to form the set of candidate large 
itemsets Ci+1 by joining Li, with Li on (i-1). Then 
the database is scanned and it will count the  support 
of each itemset r the processing cost of determining 
Li will be. By constructing a significantly smaller C2, 
DHP can also generate a much smaller D3 to derive 
C3.[2] 

During the first pass of DHP algorithm, get a set 
of large 1-itemsets and makes a hash tables (H2) for 
2-itmsets. In later passes, generates the set of 
candidate itemsets Ck based on the hash table Hk 
generated in previous pass, determines the set of 
large k-itemsets Lk, reduces the size of databases for 
the next large itemsets and makes a hash table for 
candidate large (k+1)-itemsets.The same process is 
perform until reduce database is empty.  

DHP reduces the database size progressively by 
not only trimming each individual  transaction size 
but also pruning the number of transactions in the 
database. Any subset of a large itemset must be a 
large itemset by itself. This fact suggests that a 
transaction be used to determine the set of large 
(k+1)-itemsets only if it consists of (k+1) large k-
itemsets in the previous pass.   

 

Figure 1. Sample Generation of candidate itemsets 
with DHP Algorithm 

 

Figure 2. Sample Reducing Database size 

4.  Perfect Hashing and Database Pruning 
(PHP) Algorithm 

The PHP algorithm is based on DHP algorithm. 
The difference of PHP algorithm is that, it uses 
perfect hashing in order to create a hash table for the 
candidate k+1 itemsets. As perfect hashing is used, 
the hash table contains the actual counts of the 
candidate k+1 itemsets. Hence we do not need to 
make extra processing to count the occurrences of 
candidate k+1 itemsets as in the DHP algorithm. The 
algorithm also prunes the database at each step in 
order to reduce the search space. 

 So we call the algorithm as Perfect Hashing and 
Pruning (PHP) and the algorithm is as follows: 
During the first pass of PHP algorithm, a hash table 
with size equal to the distinct items in the database is 
created. Each distinct item in the database is mapped 
to different location in the hash table, and this 
method is called as perfect hashing. The  hash table 
adds a new entry if an entry for item x does not exist 
in the hash table and initializes its count to 1, 
otherwise it increments the count of x in the table by 
1. After the first pass, the hash table contains the 
exact number of occurrences of each item in the 
database. By only making one pass over the hash 
table, which is in memory, the algorithm easily 
generates the frequent 1-itemsets. After that 
operation, the hash table prunes all the entries whose 
support is less than the minimum support. In the 
subsequent passes, the algorithm prunes the database 
by discarding the transactions, which have no items 
from frequent itemsets, and also trims the items that 
are not frequent from the transactions. At the same 
time, it generates candidate k-itemsets and counts the 
occurrences of k-itemsets. At the end of the pass, Dk 
contains the pruned database, Hk contains the 



  

3 

 

occurrences of candidate k-itemsets, and Fk is the set 
of frequent k-itemsets. This process continues until 
no new Fk is found.[3] 

 
TID Items 
100 
200 
300 
400 

A C D 
B C E 
A B C E 
B E 

 
A         C        D        B          E                L1   count 

{A}    2                                                                                                      
{B}    3 

       {C}    3 
Making a hash table H2                          {E}    3                                  
100 {AC},{AD},{CD} 
200 {BC},{BE},{CE} 
300 {AB},{AC},{AE},{BC},{BE},{CE}   
400 {BE} 
{AC} {BC} {BE} {CE} {AB} {AE}          L2   count 

      {AC}   2                                                                                                                                            
{BC}    2 
{BE}    3 

                                                                      {CE}   2 
 

Figure 3. Sample Generation of frequent itemsets 
with PHP Algorithm  
 
5.  Supported-Order Tree 
 

The Supported-Order Tree is constructed by 
extracting 1-itemsets and 2-itemsets from all 
transaction and using them to update the Support-
Order Tree. The Support–Order Tree is ordered by 
support count. It has two levels of nodes (excluding 
the  special ROOT node). The bracket number beside 
a node’s label denotes the support count. The 
Support-Order Tree is constructed without the need 
to know the support thresholds; it is support-
independent. Its main advantage lies in its speed in 
discovering L1 and L2. L1 and L2 can be found 
promptly because there is no need to scan the 
database. In addition, the search (depth-first) can be 
stopped at a particular level the moment a node 
representing a nonfrequent itemsets is found because 
the nodes are all support ordered.  Its main weakness 
is that it can only discover L1 and L2. Thus later 
passes are discovered by PHP algorithm. 

A set of Support-Order Tree is built from a 
database to store support counts of all 1-itemsets and 
2-itemsets. We use a special node called ROOT to 
link all these Support-Order Tree together and keep 
them ordered by support count in a way similar to 
their second-level nodes.[4] 

 
 
 
 
 
 
 
 
 
 

Figure 4.  Sample of Support-Order Tree 
 
 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Sample Generation of frequent itemset 
with Support-Order Tree 

 
6. Implementation of the System 

 
In this system, user choose algorithm and then 

input a minimum support to the system. The system 
runs  the algorithm by using the minimum support 
and the dataset. And then return the result to the user. 
After finding all of the result of three frequent 
itemsets algorithm (DHP, PHP, Hybrid), generate the 
comparison chart. 

 
 
 
 

Minimum  
support 

 
 
 
 
 
 

Figure 6.  System Design of our proposed system 

2 3 1 3 3 

2 2 3 2 1 1 

TID Items 
100 
200 
300 
400 

A C D 
B C  
A B C  
C D 

ROOT 

B(2) 

Item Label Tree Node 

B(1) C(2) D(1) C(2)  D(2) 

D(2) C(4) 

C (4) 

Support  Count 

A(2) 

DHP 

database 

result 

PHP 

Hybrid 

result 

result 

Compare 



  

4 

 

7. Experimental Results 
 
All of three algorithm are tested on two different 

datasets. There are Kyar Nyo Pan Stationary dataset 
with average transaction length 9 and the number of 
transaction 5000 and Orange minimarket dataset with 
average transaction length 6 and the number of 
transaction 5000. The frequent itemsets found by the 
three algorithms are the same. Figure 7 and Figure8 
shows that Hybrid Approach of Support-Order tree  
algorithm , for all minimum support values, performs 
better than other two algorithm. Since L1 and L2 can 
be found quickly because there is no need to scan the 
database. PHP algorithm performs better than DHP 
algorithm for all minimum support values. Since PHP 
does not perform extra processing for counting the 
occurrences of each itemset as in DHP.  

 
 
  
      
   
 
 
 
 
 
 
 
 

Figure 7. Support and Run time (sec) by using 
Kyar Nyo Pan Stationary dataset 
 
 Figure 7. represents number of transaction is 
5000, Minimum support thresholds are 5%, 10%, 
15%, 20%. This result between the minimum support 
threshold and runtime (seconds). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Support and Run time (sec) by using 
Orange minimarket dataset 

 Figure 8. represents number of transaction is 
5000, Minimum support thresholds are 5%, 10%, 

15%, 20%. This result between the minimum support 
threshold and runtime ( seconds). 

8. Conclusion 

Data mining in large database is one of today’s 
real challenges to database research area. Since, the  
amount  of  sale  data is huge, it is important  to 
implement efficient algorithm to conduct mining on 
these data. A fundamental component in data mining 
tasks is finding frequent itemsets in a given dataset. 
In this system, the performance of the Hybrid 
Approach of Support-Order Tree and PHP algorithm 
show that it is efficient for mining both long and 
short frequent patterns and is faster than the DHP and 
PHP Algorithm. 

9. References 
 
[1].Jiawei Han and Micheline Kamber. Data  Mining 
:Concepts and Techniques. Morgan  Kaufmann,2000.                                

 
[2].J. S. Park, M. S. Chen and P. S. Yu, “An 
Effective Hash-Based Algorithm for Mining 
Association Rules. IBM Thomas J Watson Research 
Center. 

 
 [3]. S.Ayse Ozel and H. Altay Giivenire, “An 
Algorithm for Mining Association Rules Using 
Perfect Hashing and   Database Pruning”, Bilkent 
University, Department of Computer Engineering, 
Ankara,Turkey.{selma,guvenir}@cs.bilkent.edu.tr 
 
[4].Yew-Kwong Woon,Wee-Keong Ng,Member, “A 
Support-Ordered Trie for Fast Frequent ItemSet 
Discovery” , IEEE Computer Society, and Ee-Peng 
Lim, Senior Member , IEEE,Vol.16,No.7,July 2004. 

 

0

5

10

5% 10% 15% 20%

R
u
n
 t
im
e
(s
e
co
n
d
)

minimum support

DHP

PHP

Hybrid

0

20

40

5% 10% 15% 20%

R
u
n
T
im
e
(s
e
c
o
n
d
)

minimum support

DHP

PHP

Hybrid


