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Abstract

Language acquisition for robot is a challenging topic
in the artificial intelligence research area and essential
for natural communication between robot and human.
In this paper, we proposed language acquisition directly
from motion video and user’s utterance with multimodal
machine learnings without prior knowledge of linguistic
or language specific information. Translation between
acquired conceptual structure and syllable sequences of
a human language (e.g. Japanese language) was car-
ried out by applying machine translation methodologies
including sequence-to-sequence learning. Experiments
on language acquisition with 500 videos show Encoder-
Decoder, Encoder-Decoder with Attention models are
able to achieve equal translation performance of base-
lines that was prepared manually.

1. Introduction
Our research motivation is to develop intelligent

robots with the ability to learn natural languages. We
believe language acquisition based on multimodal infor-
mation is the natural and practical approach for robot
and human communications. However, there are many
challenges such as building language model, classifica-
tion of objects from image or videos, motion recog-
nition and speech recognition. Nakamura et. al pro-
posed a stochastic model of language and concepts, and
knowledge is learnt by estimating the model parame-
ters [26]. In their experiments, generation of object
concept formation was done based on visual, haptic,
audio and word information. Generally, our robot lan-
guage acquisition approach of this paper also based
on multimodal information similar to [26], except we
don’t use haptic and word information. Especially,
we are focusing on language acquisition without using
word information or word class-IDs. Moreover, we ap-
plied sequence-to-sequence learning for conversion be-
tween conceptual structure to syllable sequences and
vice versa. An analysis of the experimental results indi-
cated that conceptual structure learning directly from
videos without language specific information is appli-
cable for robot and human communication.

2. Related Work
Language acquisition by robots has been attracting

interest in various research fields [33], [2], [43], and sev-
eral pioneering studies developed algorithms based on
inductive learning using sets of pairs, where each pair
consists of a word sequence and non-linguistic infor-
mation about its meaning. In several studies, visual,
rather than symbolic, information was given as non-
linguistic information [9], [39]. Spoken-word acquisi-
tion algorithms based on unsupervised clustering of
speech tokens have also been described [11], [15], [34],
[27]. Steels examined the socially interactive process of
evolving grounded linguistic knowledge shared by com-
munication agents from the viewpoint of game theory
and a complex system [37]. In contrast, the method
proposed by Iwahashi [16], [17], which is called LCore,
focuses on online learning of personally and physically
situated language use through verbal and nonverbal in-
teraction with a user in the real physical world. LCore
applies information from raw speech and visual obser-
vations and tactile reinforcement in an integrated way,
and enables a robot to learn incrementally and online
beliefs regarding speech units, words, concepts of ob-
jects, motions, grammar, and pragmatic and commu-
nicative capabilities.

3. Robot Language Acquisition
An overview of our experimental language acquisi-

tion system is shown in Figure 3. We used L-Core (re-
fer 3.1) to detect image objects with IDs, trace moving
objects, and recognize objects from object manipula-
tion videos. Videos were taken with Microsoft Kinet
v1. Feature extraction process is carried out with
convolutional neural network (CNN) [8] approach, us-
ing CAFFE deep learning framework [19] with IMA-
GENET (an open trained image network model) [6]
from the segmented object images. The extracted fea-
tures are used for object classification or recognition
(refer 3.2). Motion recognition is learned by motion
recognition module of L-Core and the method is based
on reference-point-dependent Hidden Markov Models
(RDP-HMM) [12]. Section 3.3 describes the motion
recognition in details. After the motion recognition
and object recognition, the conceptual structures of
each video are heuristically defined (detail explanation



in Section 3.4). Syllable sequences of Japanese (or)
speech information relating to each action is acquired
by using the Japanese speech recognition engine Julius
[24]. The last step of building robot language acquisi-
tion models based on parallel data of conceptual struc-
ture (CS) and syllable sequences (SS) of Japanese is
carried out by machine translation methodologies.

3.1. L­Core
Although service robots directly interact with peo-

ple by conversation, most of the systems are trained
only with automatic speech recognition engine for
specific domain. Our in-house L-Core was de-
signed for language learning from multimodal inputs
such as voice, images and motions [17], [28]. The
system architecture of L-Core is based on client-
server communications and various servers such as
vision-server, speech-server, sound-quality-conversion-
server, phonetic-typewriter-server, robot-server, Q&A-
program are connected with central control program
named “ptmove”. Recently, it was updated by our lab-
oratory to work with Baxter Research Robot through
ROS (Robot Operating System). In this paper, we
used L-Core mainly for image segmentation and mo-
tion recognition from recorded videos with Microsoft
Kinet v1.

3.2. Object Recognition
CAFFE deep learning framework [19] with open

trained network model of IMAGENET [6] is used for
image features extraction from segmented object im-
ages. The extracted features are used for training ob-
ject recognition. Although we trained several unsuper-
vised classifier such as Complex Tree, KNN, we selected
to use highest accuracy classifier Gaussian-kernel SVM
[38], [35] for object classification. A SVM is a function
that estimates fx by computing:

f(x) = sgn(
∑
i

yiαiK(xi, x) + b) (1)

where the kernel function K(xi, x) measures the sim-
ilarity between the input pattern x and the training
sample xi. The samples xi for which α1, · · · , αi ≥ 0 are
the support vectors. We used one of the most widely-
used kernels, Gaussian and it can be written as follow:

K(x, xi) = eγ∥x−xi∥2

(2)

for a given parameter γ > 0. Here, ∥x− xi∥2 is the
Euclidean distance with assumption that similar points
are close one to each other. For example, Gaussian
kernel will evaluate to 1 if the x and xi are identical.
This assumption is very reasonable in many cases.

The equation 1 express binary classification of SVM
approach and we used error-correcting output code
multiclass (ECOC) model for classification of ten image

object classes [7], [18]. ECOC classification requires
a coding design and a decoding scheme. The coding
design is for determining the classes that the binary
learners train on and the decoding scheme is for deter-
mining how the predicted results of the binary classi-
fiers are aggregated. Applying ECOC model possible
to improve classification accuracy than other multiclass
models [10].

We did 10-fold cross validation with SVM, One-vs-
One multiclass classification method and it gives ac-
curacy 98.7% for our ten object classification experi-
ments. The confusion matrix of object classification
with Gaussian Kernel SVM on training data can be
seen in Figure 2.

3.3. Motion Recognition
While words that refer to objects are nominal, words

that refer to motions are relational. The concept of the
motion of a moving object can be represented by a time
varying spatial relation between a trajector and land-
marks, where the trajector is an entity characterized as
the figure within a relational profile, and the landmarks
are entities characterized as the ground that provide
points of reference for locating the trajector [23]. Thus,
the concept of the trajectory of an object depends on
the landmarks. However, generally, information about
what is a landmark is not observed in learning data.
The learning method must infer the landmark selected
by a user in each scene. Moreover, the type of coor-
dinate system in the space should also be inferred to
appropriately represent the graphical model for each
concept of a motion [16]. The lexicon containing words
referring to objects and motions can be expressed as a
probabilistic graphical model (see Figure 3).

Motion recognition of L-Core applied RDP-HMM
approach [41]. Let V denote the observed information.
Similar to the above section, V consists of the trajec-
tory of the moving object, Y, and the set of positions of
static objects, O. Motion recognition is formulated as
a problem of obtaining the maximum likelihood prob-
abilistic model to output Y.

Let V = {vi|i = 1, 2, ..., |V |} denote a set of learned
motion labels, λi denote the HMM parameter set which
corresponds to motion label vi, and ki denote the in-
dex of the intrinsic coordinate system of vi.(λi, ki) is
obtained by using the aforementioned learning method.
The maximum likelihood pair of the motion label and
reference point indices, (̂i, r̂), are searched for as fol-
lows:

(̂i, r̂) = argmax
i,r

P (Y|r, vi,R) (3)

= argmax
i,r

P (Y|r, ki, λi,R) (4)

Motion recognition with L-Core achieved 96.8%ac-
curacy on 500 motions. We manually analyzed all 16
error images and found that there are only two error
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Figure 1. Overview of robot language acquisition (an example with conceptual structure “PENGIN TRJ MOCHIAGERU”
and Japanese syllable sequences “ぺんぎんおもちあげて” (Move up penguin))
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Figure 2. Confusion matrix of object recognition by Gaus-
sian Kernel SVM classification

types. One is error between TRJ and LND recognition
(2 images) and another error is between “HANASU”
(move-away) and “CHIKAZUKERU” (move-close-to)
(15 images).

3.4. Conceptual Structure Generation
Heuristic conceptual structure generation was done

by combining Objects IDs (output of the object recog-
nition step) and motion IDs together with TRJ/LND
information (output of the motion recognition step).
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Figure 3. Graphical model of a lexicon containing words
referring to objects and motions

This process was handled well by heuristic algorithm
because of simple grammar patterns of the conceptual
structure and Japanese syllable sequences information
from the voice recognition step. In this experiment,
there are only seven grammar patterns in total as fol-
lows:

1. OBJECT LND OBJECT TRJ HANASU
2. OBJECT TRJ MAWASU
3. OBJECT TRJ MOCHIAGERU
4. OBJECT TRJ OBJECT LND CHIKAZUKERU
5. OBJECT TRJ OBJECT LND HANASU
6. OBJECT TRJ OBJECT LND NOSERU
7. OBJECT TRJ OBJECT LND TOBIKOE-

SASERU



Here, HANASU (move-away), MAWASU (move-
circle), MOCHIAGERU (move-up), CHIKAZUKERU
(move-close-to), NOSERU (move-onto) and TO-
BIKOESASERU (move-over) are verbs and always at
the end part of the conceptual structures. Two gram-
mar patterns without LND are pattern number 2 and
3 as shown in above list.

3.5. Syllable Sequence Recognition
In this experiment, we used Julius Japanese lan-

guage ASR engine [24] for speech recognition with one
native user for 500 sentences reading. Recording was
done inside noiseless environment. The accuracy of
syllable sequences recognition with Julius was 88.6%
and sentence accuracy was 15.4%. We present syllable
recognition errors of five sentences in Table 1. High-
lighted and underlined syllables of reference and hy-
pothesis sides are pointing positions of speech recogni-
tion errors. We directly used syllable sequences output
by Julius ASR engine for experimenting sequence-to-
sequence learning with ASR outputs.

4. Methodologies
This section describes four conceptual structure to

syllable sequence conversion methodologies used in the
experiments.

4.1. Phrase­based statistical machine translation
(PBSMT)

A PBSMT translation model is based on phrasal
units [22], [30]. Here, a phrase is simply a contiguous
sequence of words and generally, not a linguistically
motivated phrase. A phrase-based translation model
typically gives better translation performance than
word-based models. We can describe a simple phrase-
based translation model consisting of phrase-pair prob-
abilities extracted from corpus and a basic reorder-
ing model, and an algorithm to extract the phrases to
build a phrase-table [36]. Figure 4 shows phrase trans-
lation entries for conceptual structure phrases “BEN-
TOO LND” (i.e. lunchbox landmark) and “BENTOO
TRJ” (i.e. lunchbox trajector) inside a phrase table of
PBSMT. In this example, source language is concep-
tual structure and target language is Japanese syllable
sequences.

Figure 4. Some phrase translation entries of PBSMT phrase
table

4.2. Hierarchical phrase­based statistical machine
translation (HPBSMT)

The hierarchical phrase-based SMT approach is a
model [4] based on synchronous context-free gram-
mar. The model is able to be learned from a cor-
pus of un-annotated parallel text. The advantage
this technique offers over the phrase-based approach
is that the hierarchical structure is able to represent
the word re-ordering process. The re-ordering is repre-
sented explicitly rather than encoded into a lexicalized
re-ordering model (commonly used in purely phrase-
based approaches). This makes the approach partic-
ularly applicable to language pairs that require long-
distance re-ordering during the translation process [1].
Some example of hierarchical phrase-based grammars
between conceptual structure and Japanese syllable se-
quences inside phrase table of HPBSMT are shown in
Figure 5. Here, each line in the phrase table repre-
sents one translation rule follows by multiple calculated
scores for translation process.

Figure 5. Some phrase translation entries of HPBSMT
phrase table

4.3. Sequence to Sequence Learning Approaches
4.3.1 Encoder-Decoder Translation Model

Encoder-Decoder translation model is a neural network
model that links blocks of LSTMs (Long and Short
Term Memory) [13] of source language RNN and target
language RNN [5], [42] (see Figure 6(a)). For example,
in translation of a source sentence x1, x2, · · · , xi, xi+1

into target sentence y1, y2, · · · yi, yi+1, here, x1 is a
word and xi+1 is end of sentence mark “<eos>”. Sim-
ilar to Recurrent Neural Network (RNN) architecture,
inside intermediate layer, current context vector et of
Long Short-Term Memory (LSTM) block pass to next
LSTM layer. Although general RNN pass context
vector directly from one LSTM block to output layer,
source side of RNN does not directly pass to output
layer. At the end part of source side RNN, the symbol
of end-of-sentence “<eos>” is read.

Inside intermediate layer of target language RNN,
it is same as general RNN networks, ei+1 is passing
directly to next intermediate layer and output y1 as
target word. These output word y1 will be input word
to next LSTM.



Table 1. Some examples of speech recognition errors (Highlighted and underlined characters are pointing position of errors)
Reference Hypothesis

cho ki n ba ko o ko ˜t pu ni chi ka dzu ke te
(ちょ き ん ば こ お こ っ ぷ に ち か づ け て )

cho ki n ba ko o ko pu ni chi ka zu ke te
(ちょ き ん ば こ お こ ぷ に ち か ず け て )

e ru mo o ko mo no i re ni no se te
(え る も お こ も の い れ に の せ て )

e ru no ko mo no i re ni no se te
(え る の こ も の い れ に の せ て )

pi ka chi˜yu u o cho ki n ba ko ka- ra ha na shi te
( ぴ か ちゅ う お ちょ き ん ば こ か ら は な し て )

ki ka chi˜yu o cho ki n ba ko ka- ra ha na shi te
( き か ちゅ お ちょ き ん ば こ か ら は な し て )

be n to o o pi ka chi˜yu u no u e o to bi ko e sa se te
(べ ん と お お ぴ か ちゅ う の う え お と び こ え さ せ て )

be n to o o o pi ka chi˜yu no u yo o to bi ko e sa se te
(べ ん と お お お ぴ か ちゅ の う よ お と び こ え さ せ て )

ko mo no i re o ma wa shi te
(こ も の い れ お ま わ し て )

ko mo no i re o ma wa su te
(こ も の い れ お ま わ す て )

Other steps are same as general RNN, at each time-
step, receives an input, updates its hidden state, and
makes a prediction. Finally, the target word sequences
(i.e. translated target sentence) y1, y2, · · · yi, yi+1 will
be generated.

4.3.2 Encoder-Decoder with Attention

As we presented in Section 4.3.1, An Encoder RNN
read the entire source sting and generate a fixed
length encoded vector to represent the entire source
string. The Decoder RNN generate the target string
based on the encoded string. Here, compressing
input series into one vector is the weak point of
Encoder-Decoder model especially for long sentences
translation. Encoder-Decoder with Attention model
was proposed to overcome this problem [25].

The attention model exists between the encoder and
the decoder and helps by computing a fixed-size vector
that encodes the entire input sequence based on the
sequence of all the outputs (not only on the last state)
generated by the encoder (see Figure 6). In details,
the input sequences of encoder x1, x2, · · · , xi is same
with Encoder-Decoder model. However, the output of
intermediate layer h̄i for each xi is holding globally
in Attention model. Basically, decoder of Attention
model also same with that of Encoder-Decoder model.
ȳt will be output from input yt and that ȳt will become
next input as yt+1. However, generation method of ȳt
is different with Encoder-Decoder model.

Let’s assume, output of intermediate layer of yt is
ht. The αt(i) of following equation will be calculated
by using h̄i that was holding in Encoder side:

αt(i) =
exp((h̄i, ht))∑
m
j=1 exp((h̄j , ht))

(5)

Here, (h̄i, ht) express inner product of h̄i and ht. A
variable-length alignment vector αt(i) is normalization

of similarity between yt and xi. The context vector ct
was calculated with αt(i) and h̄i as follow:

ct =
m∑
i=1

αt(i)h̄i (6)

Next, combined vector [ct;ht] (concatenation vector
of source-side context vector ct and target hidden state
ht) is weighted with linear operator Wc and pass to
activation function tanh for getting intermediate layer
output h̃t. An attentional hidden state can be written
as follow:

h̃t = tanh(Wc[ct;ht]) (7)

The computation of each weight is using a softmax
same as Encoder-Decoder. The softmax, as it
name mentions, behaves almost like a argmax, but
it is differentiable. Let’s assume that we have an
argmax function such that argmax(x1, · · · , xn) =
(0, ..., 0, 1, 0, ..., 0) where the only 1 in the out-
put is telling which input is the max . Then,
the softmax is defined by softmax(x1, · · · , xn) =

( exi∑
j exj )i . If one of the xi is bigger than the

other, then softmax(x1, · · · , xn) will be very close to
argmax(x1, · · · , xn). For our case, ȳt will calculated
by using softmax function.

5. Experiment
In this section, the setup of the experiments con-

ducted to obtain conceptual structure and syllable se-
quences from 500 motion videos and user’s utterance
and language acquisition experiments with machine
translation is described.

5.1. Data sets
We prepared five hundred parallel conceptual struc-

ture (2,422 words) and syllable sequence of Japanese
sentences (7,390 syllables) for baseline. Motion videos
for machine learning were taken with Microsoft Kinet
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Figure 6. Sequence-to-Sequence learning models

v1 with the setting of six motions (move-close-to,
move-away, move-up, move-onto, move-over and move-
circle) (see Figure 7) and ten objects (lunch-box, piggy-
bank, emo, box, goldfish, accessory box, cup, penguin,
Pikachyuu and Totoro) (see Figure 8). Motion videos
were taken with a maximum of two objects and speech
recognition was done with Japanese ASR engine Julius
[24]. Training with four hundred sentences and open
testing with one hundred sentences for all experiments
(PBSMT, HPBSMT, Encoder-Decoder and Encoder-
Decoder-Attention). We trained 1,000 epochs for both
Encoder-Decoder and Encoder-Decoder with attention
models for all experiments. Data set for experiment-
ing with speech recognition will be contained speech
recognition errors and similarly, object recognition er-
rors will be contained in the data set for learning with
object recognition outputs.

5.2. Moses SMT system

We used the PBSMT and HPBSMT system pro-
vided by the Moses toolkit [20] for training the PB-
SMT and HPBSMT statistical machine translation
systems. The word segmented source language was
aligned with the word segmented target languages us-
ing GIZA++ [31]. Here, syllable level segmentation
was used for both source and target of SS or Japanese
language. The alignment was symmetrized by grow-
diag-final-and heuristic [21]. The lexicalized reorder-
ing model was trained with the msd-bidirectional-fe
option [44]. We use SRILM for training the 5-gram
language model with interpolated modified Kneser-
Ney discounting [40, 3]. Minimum error rate training
(MERT) [29] was used to tune the decoder parameters
and the decoding was done using the Moses decoder
(version 2.1.1) [20]. We used default settings of Moses
for all experiments.

5.3. Framework for RNN
Chainer is a framework for neural network develop-

ment that provides an easy and straightforward way
to implement complex deep learning architectures. A
deep learning framework developed by Preferred Infras-
tructure, Inc. (PFI) (https://preferred.jp/en/)
and Preferred Networks, Inc. (PFN) (https://www.
preferred-networks.jp/en/). It was released as
open source software in June, 2015 (https://github.
com/pfnet/chainer). Some key features of Chainer
are that it is supported as a Python library (PyPI:
Chainer) and is able to run on both CUDA with multi-
GPU computers. We used the Chainer Python module
(version 1.15.0.1) for the motion to syllable sequence
conversion experiments based on RNN trained for 500
epochs.

5.4. Evaluation Metrics
We used two automatic criteria for the evaluation

of the machine translation output. One was the de
facto standard automatic evaluation metric Bilingual
Evaluation Understudy (BLEU) [32] and the other
was the Rank-based Intuitive Bilingual Evaluation
Measure (RIBES) [14].

We used SCLITE (score speech recognition sys-
tem output) program from the NIST scoring toolkit
SCTK version 2.4.10 (http://www1.icsi.berkeley.
edu/Speech/docs/sctk-1.2/sclite.htm) for calcu-
lation of Word Error Rate (WER). In our case, WER
will be equal to syllable error rate for using syllable
segmented Japanese sequences. The SCLITE scoring
method for calculating the erroneous words in WER,
is as follows: first make an alignment of the G2P hy-
pothesis (the output from the trained model) and the
reference (human transcribed) word strings and then
perform a global minimization of the Levenshtein dis-
tance function which weights the cost of correct words,
insertions (I), selections (D) and substitutions (S). The

https://preferred.jp/en/
https://www.preferred-networks.jp/en/
https://www.preferred-networks.jp/en/
https://github.com/pfnet/chainer
https://github.com/pfnet/chainer
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
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Figure 8. Ten objects

formula for WER is as follows:

WER = (I +D + S)100/N (8)

6. Result
Table 2 and Table 3 show the BLEU and RIBES

scores for machine translation between conceptual
structure and syllable sequences. The underlined
scores indicate the highest scores of the four differ-
ent approaches. Here, baselines are the results with
manually prepared parallel data of conceptual struc-
ture and syllable sequences and thus these scores are
the best among all. Our target was to reach baseline
scores with proposed experiments. Table 2 and Ta-
ble 3 results indicate Encoder-Decoder achieves best
scores for all experiments in terms of both BLEU
and RIBES scores. Moreover, Encoder-Decoder and
Encoder-Decoder with Attention results for all SS to
CS conversion of with object recognition are reached
to their baselines. We conduct extensive analysis to
better understand our sequence-to-sequence models in
terms of learning and the ability to translate together
with Object and ASR errors. It is clear to observe in
Figure 9, Encoder-Decoder models give better learning

curves comparing with Encoder-Decoder with Atten-
tion models for current experiments. As we mentioned
in Section 3.5, ASR error rate is 88.6% and it is affect
the translation performance for both CS to SS and SS
to CS (see Table 2 and Table 3).

7. Discussion
Although grammar patterns of CS and SS are only

seven patterns, we considered the differences of aver-
age words per sentence between CS and SS. Average
words per sentence for CS is 4.83 and for SS is 14.54
and thus we used both BLEU and RIBES score evalu-
ations to measure translation performance [32], [14]. It
is pleasant to observe in both Table 2 and Table 3 of SS
to CS with object recognition, not only BLEU scores
but also RIBES scores are achieved to reach baselines.
Moreover, the results of CS to SS with object recog-
nition are also comparable with their baselines. On
the other hand, though translation with ASR recogni-
tion results also achieved comparable results with their
baselines, we are considering the practical issue in lan-
guage acquisition because of 88.6% of ASR accuracy.
As we shown in Figure 11, sequence to sequence learn-
ing is possible to learn ASR recognition error sentences
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(c) Japanese syllable sequence to Conceptual
structure conversion with object recognition results
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(d) Japanese syllable sequence to Conceptual
structure conversion with ASR results

Figure 9. Encoder-Decoder and Encoder-Decoder with Attention Results for 1,000 epochs
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Figure 10. Confusion pairs of automatic speech recognition



Table 2. BLEU scores for machine translation between conceptual structure (CS) and syllable sequences (SS) (+ ASR
Recog denotes the result with automatic speech recognition, + Object Recog denotes the result with Object recognition)

MT Methods CS-to-SS SS-to-CS

Baseline +ASR Recog +Object Recog Baseline +ASR Recog +Object Recog

PBSMT 79.68% 71.36% 77.61% 46.69% 46.91% 44.88%
HPBSMT 79.68% 70.71% 77.83% 46.69% 43.50% 45.10%
Encoder-Decoder 100.00% 81.93% 99.22% 100.00% 99.28% 100.00%
Attention 92.53% 77.41% 88.14% 100.00% 95.98% 100.00%

Table 3. RIBES scores for machine translation between conceptual structure (CS) and syllable sequences (SS) (+ ASR
Recog denotes the result with automatic speech recognition, + Object Recog denotes the result with Object recognition)

MT Methods CS-to-SS SS-to-CS

Baseline +ASR Recog +Object Recog Baseline +ASR Recog +Object Recog

PBSMT 0.9636% 0.9526% 0.9621% 0.9169% 0.9182% 0.9130%
HPBSMT 0.9636% 0.9477% 0.9618% 0.9169% 0.9176% 0.9137%
Encoder-Decoder 1.0000% 0.9710% 0.9986% 1.0000% 0.9995% 1.0000%
Attention 0.9843% 0.9577% 0.9778% 1.0000% 0.9938% 1.0000%

ASR Engine

to to ro o mo tsu a ge te

=
TOTORO TRJ MOCHIAGERU

Figure 11. An example of automatic speech recognition
(ASR) error on “Move-up Totoro” (Totoro o mochiagete)
sentence together with related image

such as “to to ro o mo tsu a ge te” (Move-up Totoro
in English) together with correct CS sentences such as
“TOTORO TRJ MOCHIAGERU”. However, this kind
of learning approach also important in a real world
because there is no 100% accurate ASR engine for gen-
eral domain. We examine on confusion pairs of speech
recognition for Japanese SS and found the top ten high-
est confusion pairs are Du=>Zu, Pi=>Ki, E=>Yo,
E=>O, E=>Re, Shi=>Su, O=>No, A=>Cha, U=Gu
and O=>Go (see Figure 6). Among them, some of the
ASR errors are related to a language nature and one
good example from our experiments is the highest con-
fusion pair Du=>Zu. In contrast, we have to consider
this kind of language specific ASR recognition errors
when we extend experiment for other languages such
as English, Chinese, Myanmar.

In this paper, we focused on CS to SS and SS to CS
conversion with only object and speech recognition er-

rors and not contained motion recognition errors. This
is because motion recognition engine of our in-house L-
Core was developed for several years and handle well
on motion recognition. As we mentioned in Section 3.3,
we conducted motion recognition on 500 videos that is
the same data with above experiments and achieved
96.8% accuracy. We plan to combine object, motion
and speech recognition errors all together to simulate
online language acquisition directly from videos to syl-
lable sequences for next experiments.

8. Conclusion
This paper explore the idea of robot language acqui-

sition research without using language-specific infor-
mation. Some experimental sequence-to-sequence con-
version results between conceptual structure and syl-
lable sequences achieved equal results with manually
prepared baseline. We also presented our detail anal-
ysis on object and speech recognition errors based on
our 500 motion videos and user’s utterance. In future
work, we would like to extend our experiments with
combination of object, motion and speech recognition
results for online language acquisition.
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