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Abstract

This paper presents a simple and efficigmgr@ach for
predicting the dynamic behavior of the sucker rvsthg. The
dynamic behavior of the sucker rod string is an angmt
factor for predicting the performance of a pumpsygstem.
Prediction of sucker-rod system behavior involves golution
of a boundary value problem. Such a problem indude
differential equation and a set of boundary condsi For the
sucker-rod problem, the wave equation is used,thegenith
boundary conditions which describe the initial s$reand
velocity of the sucker rods, the motion of the gladid rod and
the operation of the downhole pump. Of these itetres wave
equation, the polished rod motion condition anddben-hole
pump conditions are of primary importance. Discussif the
mathematical model centers about these factonsthig study,
the model consists of two analysis that are usecatculate

the displacement and loads of the operation canditof the

conditions,  which together can be used predict the
performance of the sucker rod string: [2] For sueker rod
string, other models were developed by using differ
solution techniques for the partial differentiauatjon. These
models all ignore the effect of the fluid inertiadaassume that
the fluid surrounding the rod is incompressible.efen are
models that take into consideration the dynamieatfdf fluid.
In the later models, the dynamic effects of fluidres modeled
by a system of partial differential equations, whiwere
solved by the method of characteristics. [3]

The one dimensional wave equation with viscous dagns
used in the sucker-rod boundary value problemrwukite the
behavior of the rod string. This equation descriktbs
longitudinal vibration in a long selendar rod ahdre, is ideal
for the sucker-rod application. This paper presentao

analysis to find the displacement of the sucker sbdng

sucker-rod pump. Practical usefulness of the pregos instead of solving the analytical methods that d@ifécult to

approach is shown by simple examples and tests Sthidy

shows that the proposed approach is very efficift
predicting the performance of a sucker rod pumgiygiem

Keywords: Mathematical modelling, sucker rod pump,
kinematic analysis, polished rod load.

1. Introduction

Sucker rod pumping systems are the most |popu

artificial lift method in the oil industry. Accuratprediction of
the performance of the system can improve effigieat a
system. The most important parts to model are thswgface
elements such as the sucker rod string and downtaiep.
The sucker-rod string’s most important featuregselasticity,
which is responsible for the difficulty in calculay the
downhole conditions from surface data.Jlje mathematical
models for the sucker rod pumping system for thgitali
computer started in early 1960's. Gibbs was thst fivtho
successfully modeled a sucker rod pumping systaechpae of
his most important contribution is simulation ohet
subsurface elements. The finite difference solutafhthe

wave equation and its initial and boundary

solve these models.
2. The Components of a Sucker-rod Pumping System
The components of a sucker-rod pumping systemd4] i

shown in the figurel.
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Figure 1. The Components of a Sucker-Rod Pumping
System



2.1 Polished-Rod Loads
The components of the polished-rod loadyeneral, are

the following:

(i) The weight of the rod string,

(i) A buoyant force that decreases the rod Wweig
(iii) Mechanical and fluid friction forces aloribe
rod string,
(iv)
(v) The fluid load on the pump plunger.

Dynamic forces occurring in the stringdan

The sum of the rod string weight and thieyant force
is usually expressed by the ‘wet’ weight of thesiogthich is
quite simple to calculate. The effects of the fotforces are
not included in most calculation because they éffecadt or
impossible to predict. The dynamic forces stem frtme
inertia of the moving masses: the rod stramygl the fluid
column. They are additive to the static loads dutine up-
stroke and must be subtracted from the static midht on the
down-stroke. The inertial forces are calculatechiyltiplying
the mass being moved with the acceleration at tlished-

rod. From Mill's ‘acceleration factor’ formula,

5=+ SN?
70500
where
0 = acceleration factor,
S = polished -rod stroke length, in.,
and

N = pumping speed, SPM.
Next, fluid load on the plunger is found from:
Fo = 0.433 H A (SpGr)
where
H = depth of the dynamic fluid level, ft.,
A, = plunger area, sg-in.,
and SpGr = specific gravity of the produced fluid
Then an expression to approximate the pedished-
rod load can now be written as the sum of the floatl on the
plunger and the static plus dynamic loads.
PPRL =+ W, (1 +0Q)
where
PPRL = peak polished- rod load, Ib.,
F, = fluid load on the plunger, Ib.,
W,= total rod-string weight in air, Ib., and

O = acceleration factor.

minimum polished-rod load because they act in oppos
direction.
MPRL=W-W, 0
The buoyant rod weight (MY can be expressed as
W =W, [1- (0.128) (SpGr)]
Then MPRL =W][1 - (0.128) (SpGnJ]
where
MPRL = minimum polished -rod load, Ib.,
W,
SpGr =specific gravity of the produced fluid

= total rod-string weight in air, Ib,

3. Down -hole Pump Simulation

The most important boundary condition le tsucker-
rod problem is the one which describes the operatiothe
down-hole pump .Undoubtedlyhe mathematical description
of the down-hole pump has been the greatest diffficin
analytical treatment of the sucker-rod system rteoto get
around this impasse, it is convenient to write {hemp

condition as

ou(Lt) _

au(L, t)+BT = p() ()

where the parameter®, [3 and p(t) depend upon the type
of pump operation to be simulated . With the purapdition
written in this manner, the flexibility needed tamslate
widely varying pumping conditions can be achieved.

For example, the choicet =0, =1, p(t)=0 gives (1) the
form

ou(L,t) -0
0X

which implies that the down-hole pump is free antbaded.
This situation occurs or is approached in a reakesurod
installation when the pump is descending with ttaveling

valve open.
As a further example, takedt =1,=0,P(t)=u. .
In this case, the pump condition becomes
u(L,t)=u,
which implies that the pump is stationary at sonesiton
U.. This situation is approached in a high-pump-g&fficy

installation while the fluid load is being transtd from the

rods to the tubing or from the tubing to the rods.

During the down stroke, the buoyant weight of the

rod-string must be decreased by the dynamic farémd the



As a final example, taker =0,3= 1,P(t)=%. The pump

boundary condition then reduces to
du(L,t) _
ox

EA W,

where

W, = steady load of the rod string, Ib.,

E = Young's modulus of elasticity for the rod’s

material, psi, and

A= cross-sectional area of the rod, sg- in.

which means that a steady loallV; is being applied at the

pump .This condition exists while fluid is beindtdd to the

surface.

4 Determination of the Damping Coefficient

5. Rod-String Simulation with the Wave Equation

MY
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Figure 2. lllustration of the Forces Acting on aeremental

The damping term in the wave equation dgafor the Element of the Rod String
irreversible energy losses that occur along the stihg Figure 2 shows a rod string section witiméorm cross-

during its movement. The available model for dargpin Sectional area, A, and length, L .The coordinatesaxand u

coefficient determination is discussed as follows:

are directed downwards and represent axial distaanue

The method involves an energy balancetewifor the displacement of the rod along the string, respebtivAs

two ends of the rod string and can be solved ferdamping shown in the figure, the following forces act ore thod

coefficient and the following formula is obtained:

(550 (144) g, (PRHP-P, )T
V2w s?

where
¢ = damping coefficient;,
S

0. = 32.2, gravitational constant,

PRHF = polished-rod power, HP,
Byar = hydraulic power used for fluid lifting, HP,
T = period of the pumping cycle , s,
W = total weight of the rod string, Ib.,
S = polished-rod stroke length, in.

and the above equation (2) is valid for any rodemak

element:

W = the buoyant weight of the rod element,

@) F

- = atension force that represents the puthfedove

on the rod element,

E

-+ ax — another tension force representing the
downward pull on the rod elementd an
Fy = adamping force opposing the movement ofdke
element, which is the result of fluid and medbah
friction on the rod elements surface.

Using Newton’s Second Law of motion, thensof the
forces acting on the element should equal the méghe
element times its acceleration:

a’u
ot?

The weight of the rod element, W, is distiorce that is

-F, +F

X+AX

+W-F, =m (3)

constant during the pumping cycle. Therefore it dam
dropped from the equation .The tension fordesand F_, »,

can be expressed with the mechanical stressesnpriasthe

rod sections at the axial distance x ane AX :

F =SA.and F.,,=S.,A

X X



where
S, and S, ,, = rod stresses at sections x and

X +AX, psi, and A = cross-sectional area of the rod,
sg- in. Then equation (3) becomes,

0%u

(S _SX)A_Fd:mF

X+AX

(4)

Since sucker rods in normal operation nga@n elastic
deformation, Hooke’s Law can be applied[8], whithtss that
the stress at any cross section is proportional the

deformation of the actual rod element.

S:E%

5
I ®)

where

E = Young’s modulus of elasticity for the rod mad&rpsi,

ou
and 6_ = rod strain, i.e. the change of rod displacenoeer
X

rod lengtf). Using equation (5) and define for rod stress, and

substituting the appropriate terms in equation\{#) get

2
EA @ —a_u _Fd = a_u
ox ox|, ot?

The multiplier of the term EA on the léfénd side can

(6)

X+AX

be expressed with second derivative of displacemgniith

respect to distance, xIntroducing this and expressing the

mass, m, with volume and density of the rod elemer

arrive at the following equation:

eanx U g - AxAp du ™
0X 1449, ot?
where
P = density of rod material, Ibfft,
and g =32.2, gravitational constant.

In order to develop the final form of tve equation,

AXpA ou
Fy —
144y, ot
or F, = CAXpA ou (8)
144y, ot
where
: 1
¢ = damping coefficient.
S
From (7) and (8),
2 2
ealU_ AP U PA O
0x*> 1449 ot 144y, ot

Equation (9) is the final form of the odimensional
wave equation describing the propagation of foreves in
the sucker rod string. In this form, it is validr feariable rod
diameters, i.e. for tapered rod strings. From lig tmore
familiar equation for a uniform rod section is fauby a
simple mathematical operation:

»0°u_ 0u_0d°u

V _=
*ox? ot ot?

(10)

where

vV, = /% = sound velocity in the rod material, ft/s.
P

This is the most widely used form of thawe equation
and is a linear, second-order hyperbolic partidgfedéntial
equation.

6. Solution of the Wave Equation

The damped wave equation allows the calculation of
the displacement of the rods, u, at any axial distax, and
time, t. Thus the movement of any rod elementfisation of
both the vertical distance and the time. Dependingthe
boundary conditions used, there are basically tagsio find

displacements and forces along the rod stringeeatarting at

pumping cycle, energy is continuously lost along ttod
string because the well fluids impart a viscouscdoat the
outer surface of the rods. This viscous dampingefois

proportional to the relative velocity, i.e. the ahevelocity,
ou _ .
E' between the fluid and the rods. Then the damfinge

to be proportional to rod mass and gave the folgwéemi

empirical formula:[2]

main uses of the wave equation can be classifiedrding to

this criterion and are:

1. The diagnostic analysis, which involves calculatihg
down hole displacements and forces based on surface
measurements, i.e. the surface dynamometer card.

2. The predictive analysis, which predicts the surface
conditions  based on the description of the suckd

pump’s operation.



6.1. The Analytical Solution

The analytical solution of the wave eqomatwith the

polished-rod load and polished-rod displacement tirae

functions are described by Fourier series approkéms. The

relevant harmonic functions are as follows:

D(t)=FKt)-W, = 0—20%‘[0n cospwt) + 1, sin(nwt)]

n=1
(11)
M
u(t) = V—2° +>"[v, coshwt) + 8, sin(wt)]
n=1
(12)

where
D(t) = dynamic load at the polished rod vs. time,
F(t) = polished-rod load vs. time,

W, = buoyant weight of the rod string,

0,,, T, = Fourier coefficients of the dynamic load function

V,, 0, =Fourier coefficient of the displacement function,

W = angular frequency of pumping,
N = number of dynamic load coefficients, and

M = number of displacement coefficient

The number of the coefficients in (11) afi®) are

evaluated with the classical integration formula:

) 2n
0,=— jD(t) cosfiwt)dt
me

t=0

where n =0,1,...,N.

In practice, however, these integrals caie evaluated

analytically because the load and displacementtifume are

known at some discrete points only. Therefore, eeamical

integration procedure, such as trapezoidal rule, lma used.
The final formulae for the rod displacement and digaamic

force in the functions of the time, t, and the @liste from the

surface, x is
u(x,t) = %, Yo +i[0n cosfiwt) + P, sin( m)tj and
2EA 2 =

D(x,t) = EA{ 20‘;\ + ZN:[0; cosfwt) + P, sin(nat)]

i=1

With the knowledge of these coefficientshe

displacements and forces for different assumed stirage

determined easily at the bottom of a uniform rodtise,

enabling a down hole dynamometer card (dynagraph)et

potted.

6.2 Numerical Solution

As in the case with every differential atjon, the
damped wave equation also can be recast in a dliier
form[1]. The resultant finite difference equatioar fdamp

wave equation is

y 2| BOHX 0= 2u(x, ) +u(x - A, t)} _C{u(x,t +At)-u(x, t)}
s (ax)? At
_u(x, t+Aty 2u(x, t)+u(x, t - At)
) (ay?

va(At)?
(Ax)?

[u(x +A X, t)-2u(x, t)+u(x —AXx, t)]— (At[u(x, t+At)—u(x, t)]

=u(x,t+At)- 2u(x, t)+u(x,t—At)

u(x,t +At)+cAt [u(x,t + At) —u(x,t)]
_Vve(an)® _ -
= (%) [u(x+ Ax,t) —2u(x,t) +u(x — &, )]
+2u(x,t) —u(x,t —At)

w[u(x +AX,t)-2u(x,t)+u(x — Ax,t )] +2u(x,t)—u(x,t — At)+cAtu(x,t)
u(x,t +At) = (&9

1+cAt

and it can be solved numerically.

There are two possibilities: such equatioan be solved
for u(x,t+At) (i.e. for the rod displacement at the same
place but ahead in time), or they can be solved for
u(x +Ax,t), (i.e. for the displacement at the same time but
at the next distance). These two approaches conforthe
diagnostic and the predictive analysis methodsimfisting
the behavior of the sucker-rod string.

Likewise, the boundary conditions are stdato partial
difference form. In particular, the down-hole puegndition

becomes

Axp(t) +2Bu(x — Ax,t) —EBu(x —2Ax,t)
u(x,t)= 2

3
aAX+—
2B

(13)
in which u(X,t)denotes the displacement of the pump.
Equation (13) is obtained directly from equation) (iy
replacing the derivative by a difference quotiefit.timely
choice of o, B and p(t) is needed, and these choices

depend on valve operation. The times of valve opgrind

closing are “ sensed” by the computer with thedfelhg test:



Test for t; - while
3 1
Eu(x,t) —2u(X —Ax,t)+§ u(x—-2Ax,t)=0

(no load on the computer senses

pump),
u(x,t) —u(x,t—At) changes from positive to negative.
This indicates that the pump has reached its lopestion, at
which time the traveling valve closes. This is twmmputer’s
signal to make the appropriate choices,[3 andp(t) to
simulate the desired pump condition.

Test fort, - while
3 1
Eu(x,t) —2u(Xx —Ax,t)+§ u(x—2Ax,t))0

(tension at the pump), the computer makes teststermine

when

EA| 3 1
— | —=u(Xx,t) = 2u(x —Ax,t)+—u (x —2Ax,t) |[=W,
AX[Z( ) = 2u( ) 5 ( )} h

At this time the fluid load is completddgrne by the

rods and the standing valve opens.

Test for t, - while

EA|3 1
AX[Zu(x,t)—ZU(x—Ax,t)+2u(x—ZAx,t)}:Wl

(fluid load imposed on the pump), the computer esns
whenu(X,t) —u(x,t—At)changes from negative to
positive. At this time the pump has reached itshag

position, and the standing valve closes.

Test fort, - while
3 1
Eu(x,t) —2u(x —Ax,t)+§ u(x —2Ax,t))0
(tension at the pump) , the computer determinesiwhe
gu(x,t) —2u(x —Ax,t)+% u(x—2Ax,t)=0.

At this time the fluid load is completeborne by the
tubing , and the traveling valve opens.

In this manner the computer continuallynsss the
forces and movements which affect valve action mad#te the
proper choices in the pump boundary condition touate the
desired down-hole dynagraph card.

6.2.1 Diagnostic Analysis
The diagnostic analysis involves the dalton of

displacements, u, along the length of the rod gtri for the

same values of the time, t. The boundary condittbas must
be used are provided by the surface dynamometdr wduich
gives the time history of the dynamic force andighad-rod

movement at place x = 0, i.e. the functions D ( § and

when

u(o,t).
Application of the finite difference methanvolves
dividing the rod string into a number ahXx segments to

facilitate a stepwise solution. A time incremeftf , has also

been assumed, which is usually defined by the nunolbe
points read from the surface dynamometer diagrafme T
values of the two increments are interrelated aesddllowing

stability criterion applies:

AX<Atvg

where V = sound velocity in the rod material.

The main calculation steps of the diagnasbdel using
finite differences can be summarized as follows:
(i) The polished-rod load and displacement vs. tiorections
are determined, and their values are found at given

Attime intervals. The rod string length incremefi ,is

established based on the stability criterion, anel tod
string is divided into the appropriate number ajraents.
(i) The initial displacements of the rod stringthé surface, u
(0, 1t), are set to the polished-rod positions\ary time
step.
at the next lower

(i) The displacement segment,

u(x +Ax,t), is calculated with the finite difference

formula. This is repeated for all time steps inedlvto
cover the whole pumping cycle.

(iv) Step 3 is repeated for the next consecutiveé string
elements until a junction of the different tapectsms is
reached. At such points, rod displacements areectau
for the static rod stretch and dynamic forces ateutated
with Hooke’s Law.

(v) At the bottom of the string, after correctifor buoyant
rod weight, the calculated displacements and |akdme
the operating conditions of the sucker-rod pump.

6.2.2 Predictive Analysis

In contrast to the diagnostic model, theedpctive
analysis model also considers time and uses a latitimu
formula that gives the rod displacements ahead irime,t

u(x,t+At).Just as in the diagnostic case, the rod string is

divided into a number of  segments, and thenseq length

is determined in a similar fashion as in the diagicocase.



The stability of the solution requires

incrementA t, satisfy the condition

At
Vv

s
The greatest difficulty in the predictiamalysis is the
simulation of the down -hole pump’s performancee Tise of
this technique allows the simulation of differerdwah -hole
conditions encountered in practice.
In summary, the predictive analysis camsief the

following main calculation steps:

(i) The rod length incrememfX ,is defined and the time
s [4] Ga'bor Taka'cs. 1993. Modern Sucker-Rod Pumping

increment, At , that satisfies the stability criterion i
found.
(i) The initial conditions, i.e. the values of tipelished-rod
are dueteed
from the pumping unit’s kinematic evaluation.

displacement vs. time function, u (0,t),

(i) The displacement at the next lower rod segmen

determined using the finite difference formula. §hi

procedure is repeated, taking into account the gémim
rod size, until the bottom of the string is reached

(iv) The action of the sucker-rod pump is take iatcount as
detailed above.

(v) Step 3 and 4 are repeated for all time steps.

(vi) The whole procedure is repeated for severahpng

cycles to reach a steady-state solution without any
[10] Craft, B.C., Holder, W.R. and Graves, E.D,,1862.

transient effects.
(vii)The final rod displacements and loads validta end of

the calculations represent the conditions at theshped-

that the dim

[8] Ames,W.F.
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rod and at the subsurface pump. Then the surfade an

down-hole dynamometer diagrams (dynagraphs) can be

plotted to analyze the operation of the pumpindesys

7. Conclusion
Our concentration is centered on the disghent of the

sucker-rod string and the importantole of damping
coefficient, and finite difference equations aredito find the
displacement of the sucker-rod string. Most of gheblems in
Engineering subjects may come across to solve

corresponding partial differential equation modétspractice,
analytical methods are difficult to solve these eledSo the
finite difference methods are appropriable to usseiad of

analytical methods.

the



