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Abstract 

       This paper presents a simple and efficient approach for 

predicting the dynamic behavior of the sucker rod string. The 

dynamic behavior of the sucker rod string is an important 

factor for predicting the performance of a pumping system. 

Prediction of sucker-rod system behavior involves the solution 

of a boundary value problem. Such a problem includes a 

differential equation and a set of boundary conditions. For the 

sucker-rod problem, the wave equation is used, together with 

boundary conditions which describe the initial stress and 

velocity of the sucker rods, the motion of the polished rod and 

the operation of the downhole pump. Of these items, the wave 

equation, the polished rod motion condition and the down-hole 

pump conditions are of primary importance. Discussion of the 

mathematical model centers about these factors.   In this study, 

the model consists of two analysis  that are used to calculate 

the displacement and loads of the operation conditions of the 

sucker-rod pump. Practical usefulness of the proposed 

approach is shown by simple examples and tests. This study 

shows that the proposed approach is very efficient for  

predicting the performance of a sucker rod pumping system.  

Keywords: Mathematical modelling, sucker rod pump,                    

kinematic analysis, polished rod load. 

1. Introduction 

       Sucker rod pumping systems are the most popular 

artificial lift method in the oil industry. Accurate prediction of 

the performance of the system can improve efficiency of a 

system. The most important parts to model are the subsurface 

elements such as the sucker rod string and downhole pump. 

The sucker-rod string’s most important feature is its elasticity, 

which is responsible for the difficulty in calculating the 

downhole conditions from surface data.[1] The mathematical 

models for the sucker rod pumping system for the digital 

computer started in early 1960's. Gibbs was the first who 

successfully modeled a sucker rod pumping system, and one of 

his most important contribution  is simulation of the 

subsurface elements. The finite difference solution of the   

wave  equation  and  its  initial  and    boundary  

 

conditions,     which   together   can  be   used   to   predict the 

performance of the sucker rod string: [2]  For the sucker rod 

string, other models were developed by using different 

solution techniques for the partial differential equation. These 

models all ignore the effect of the fluid inertia and assume that 

the fluid surrounding the rod is incompressible. There are 

models that take into consideration the dynamic effect of fluid. 

In the later models, the dynamic effects of fluid were modeled 

by a system of partial differential equations, which were 

solved by the method of characteristics. [3] 

The one dimensional wave equation with viscous damping is 

used in the sucker-rod boundary value problem to simulate the 

behavior of the rod string. This equation describes the 

longitudinal vibration in a long selendar rod and, here, is ideal 

for the sucker-rod application. This paper presents  two 

analysis to find the displacement of the sucker rod string 

instead of solving the analytical methods that are difficult to 

solve these models. 

 2. The Components of a Sucker-rod Pumping System              

       The components of a sucker-rod pumping system [4] is 

shown in the figure1. 

  

 

 

 

 

 

 

 

 

                     

 

 

 

 

 

          
Figure 1. The Components of a Sucker-Rod Pumping  
                System 
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2.1 Polished-Rod Loads 

         The components of the polished-rod load, in general, are 

the following: 

 (i)    The weight of the rod string, 

 (ii)   A buoyant force that decreases the rod weight, 

(iii)   Mechanical and fluid friction forces along the  

         rod string, 

(iv)   Dynamic forces occurring   in the string, and 

 (v)   The fluid load on the pump plunger. 

         The sum of the rod string weight and the buoyant force 

is usually expressed by the ‘wet’ weight of the rods, which is  

quite simple to calculate. The effects of the friction forces are 

not included in most calculation because they are difficult or 

impossible to predict. The dynamic forces stem from the 

inertia  of  the  moving  masses:  the  rod  string  and  the  fluid  

column. They are additive to the static loads during the up-

stroke and must be subtracted from the static rod weight on the 

down-stroke. The inertial forces are calculated by multiplying 

the mass being moved with the acceleration at the polished- 

rod. From Mill’s ‘acceleration factor’ formula, 

500,70

SN2

±=δ  

where 

             δ  =  acceleration factor, 

S = polished -rod stroke length, in., 

 and 

N = pumping speed, SPM. 

Next, fluid load on the plunger is found from: 

F0  = 0.433 H Ap (SpGr) 

where 

  H = depth of the dynamic fluid level, ft., 

 Ap = plunger area, sq-in.,  

and   SpGr = specific gravity of the produced fluid. 

         Then an expression to approximate the peak polished-

rod load can now be written as the sum of the fluid load on the 

plunger and the static plus dynamic loads. 

         PPRL = Fo + Wr (1 + δ ) 

where 

PPRL = peak polished- rod load, lb., 

Fo = fluid load on the plunger, lb., 

Wr= total rod-string weight in air, lb., and 

δ = acceleration factor. 

 During the down stroke, the buoyant weight of the 

rod-string must be decreased by the dynamic force to find the  

 

minimum polished-rod load because they act in opposite 

direction. 

               MPRL = Wrf – Wr δ  

The buoyant rod weight (Wrf) can be expressed as 

                 Wrf     = Wr [1- (0.128) (SpGr)] 

Then MPRL = Wr [1 – (0.128) (SpGr)- δ ] 

where    

  MPRL = minimum polished -rod load, lb., 

 Wr  = total rod-string weight in air, lb,   

SpGr  =specific gravity of the produced fluid 

3. Down -hole Pump Simulation 

         The most important boundary condition in the sucker-

rod problem is the one which describes the operation of the 

down-hole pump .Undoubtedly, the mathematical description 

of the down-hole pump has been the greatest difficulty in 

analytical treatment of the sucker-rod system .In order to get 

around this impasse, it is convenient to write the pump 

condition as 

  ( ) ( )
(t) p    

x

tL,u  
   tL,u =

∂
∂β+α                         (1) 

where the parameters )t(pand, βα  depend upon the type 

of pump operation to be simulated . With the pump condition 

written in this manner, the flexibility needed to simulate 

widely varying pumping conditions can be achieved.  

For example, the choice  0)t(p,1,0 ==β=α   gives (1) the 

form 

,0
x

)t,L(u =
∂
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which implies that the down-hole pump is free and unloaded. 

This situation occurs or is approached in a real sucker-rod 

installation when the pump is descending with the traveling 

valve open.  

As a further example, take   cu)t(P,0,1 ==β=α . 

In this case, the pump condition becomes 

,cu)t,L(u =  

which implies that the pump is stationary at some position 

cu . This situation is approached in a high-pump-efficiency 

installation while the fluid load is being  transferred  from the 

rods to the tubing or from the tubing to the rods. 



As a final example, take 
EA

W
)t(P,1,0 1==β=α . The pump 

boundary condition then reduces to  

,1W
x

)t,L(u
EA =

∂
∂

 

where 

            1W = steady load of the rod string, lb., 

             E = Young’s modulus of elasticity for the rod’s  

        material, psi, and 

             A =  cross-sectional area of the rod, sq- in.  

which means that a steady load  1W  is being applied at the 

pump .This condition exists while fluid is being lifted to the 

surface. 

4.Determination  of  the  Damping Coefficient 

         The damping term in the wave equation stands for the 

irreversible energy losses that occur along the rod string 

during its movement. The available model for damping 

coefficient determination is discussed as follows: 

         The method involves an energy balance written for the 

two ends of the rod string and can be solved for the damping 

coefficient and the following formula is obtained: 

                  

              
( ) ( ) ( )

2

2
hydrc
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T P-PRHP g 144 550

π
=c            (2) 

where  

          c  = damping coefficient, 
s

1
, 

         cg  = 32.2, gravitational constant, 

  PRHP= polished-rod power, HP, 

      hydrP = hydraulic power used for fluid lifting, HP, 

         T  = period of the pumping cycle , s , 

         W = total weight of the rod string, lb., 

          S = polished-rod stroke length, in. 

and the above equation (2) is valid for any rod material. 

 

 

 

 

 

 

 

 

5. Rod-String Simulation with the Wave Equation 

 

 

 

 

 

 

 

 

 

 

 

                      

Figure 2. Illustration of the Forces Acting on an Incremental  

Element of the Rod String  

         Figure 2 shows a rod string section with a uniform cross- 

sectional area, A, and length, L .The coordinate axes x and u 

are directed downwards and represent axial distance and 

displacement of the rod along the string, respectively. As 

shown in the figure, the following forces act on the rod 

element: 

 

     W    = the buoyant weight of the rod element, 

xF      = a tension force that represents the pull from above  

  on the rod element, 

xxF ∆+ = another tension force representing the  

              downward pull on the rod element,  and 

     Fd    = a damping force opposing the movement of the rod  

  element, which is the  result of fluid and mechanical 

friction on the rod elements surface. 

         Using Newton’s Second Law of motion, the sum of the 

forces acting on the element should equal the mass of the 

element times its acceleration: 

        
2

2

dxxx
t

u
mFWFF

∂
∂=−++− ∆+              (3) 

         The weight of the rod element, W, is a static force that is 

constant during the pumping cycle. Therefore it can be 

dropped from the equation .The tension forces  xF  and  xxF ∆+   

can be expressed with the mechanical stresses present in the 

rod sections at the axial distance x and xx ∆+ :      

      AS   F xx =  , and          ASF xxxx ∆+∆+ =  

L 
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where  

        xS and xxS ∆+ = rod stresses at sections x and 

xx ∆+ , psi, and A  = cross-sectional area of the rod, 

sq- in. Then equation (3) becomes, 

         ( )
2

2

dxxx t

u
mFASS

∂
∂=−−∆+                      (4)               

         Since sucker rods in normal operation undergo an elastic 

deformation, Hooke’s Law can be applied[8], which states that 

the stress at any cross section is proportional to the 

deformation of the actual rod element.                   

       
x

u
ES

∂
∂=                                        (5) 

where 

      E = Young’s modulus of elasticity for the rod material, psi, 

and 
x

u

∂
∂

 = rod strain, i.e. the change of rod displacement over 

rod length[9]. Using equation (5) and define for rod stress, and 

substituting the appropriate terms in equation (4), we get 
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         The multiplier of the term EA on the left-hand side can 

be expressed with second derivative of displacement, u, with 

respect to distance, x . Introducing this and expressing the 

mass, m, with volume and density of the rod element, we 

arrive at the following equation: 

   =−
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                  (7) 

where 

ρ  = density of rod material, lb/ft3. , 

and      gc  = 32.2, gravitational constant. 

         In order to develop the final form of the wave equation, 

the damping force, Fd, remains to be determined. During the 

pumping cycle, energy is continuously lost along the rod 

string because the well fluids impart a viscous force at the 

outer surface of the rods. This viscous damping force is 

proportional to the relative velocity, i.e. the shear velocity, 

t

u

∂
∂

, between the fluid and the rods. Then the damping force 

to be proportional to rod mass and gave the following semi 

empirical formula:[2] 
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where 

            c = damping coefficient, .
1

s
 

From (7) and (8), 

 EA
2

2

cc
2

2

t

u

g144

A

t

u

g144

A
c

x

u

∂
∂ρ=

∂
∂ρ−

∂
∂

.              (9) 

         Equation (9) is the final form of the one-dimensional 

wave equation describing the propagation of force waves in 

the sucker rod string. In this form, it is valid for variable rod 

diameters, i.e. for tapered rod strings. From it, the more 

familiar equation for a uniform rod section is found by a 

simple mathematical operation: 
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                       (10)  

where 

ρ
= Eg144

v c
s =  sound velocity in the rod material, ft/s. 

         This is the most widely used form of the wave equation 

and is a linear, second-order hyperbolic partial differential 

equation. 

6. Solution of  the Wave Equation 

The damped wave equation allows the calculation of 

the displacement of the rods, u, at any axial distance, x, and 

time, t. Thus the movement of any rod element is a function of 

both the vertical distance and the time. Depending on the 

boundary conditions used, there are basically two ways to find 

displacements and forces along the rod string: either starting at 

the surface and proceeding downwards or vice versa. The two 

main uses of the wave equation can be classified according to 

this criterion and are: 

1. The diagnostic analysis, which involves calculating the 

down hole displacements and forces based on surface 

measurements, i.e. the surface    dynamometer card. 

2. The predictive analysis, which predicts the surface 

conditions    based on the description of the sucker rod 

pump’s operation. 

 



6.1. The Analytical Solution 

         The analytical solution of the wave equation with the 

polished-rod load and polished-rod displacement vs. time 

functions are described by Fourier series approximations. The 

relevant harmonic functions are as follows: 
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(12) 

where 

D(t) = dynamic load at the polished rod vs. time, 

F(t)  = polished-rod load vs. time, 

Wrf     = buoyant weight of the rod string, 

     nn,τσ = Fourier coefficients of the dynamic load function, 

      nn ,v δ =Fourier coefficient of the displacement function, 

   ω  = angular frequency of pumping, 

             N = number of dynamic load coefficients, and 

            M  = number of displacement coefficients. 

         The number of the coefficients in (11) and (12) are 

evaluated with the classical integration formula: 

     ∫
π

=

ω
π
ω=σ

2

0t

n dt)tncos()t(D  

where        n  = 0,1,…,N. 

         In practice, however, these integrals cannot be evaluated 

analytically because the load and displacement functions are 

known at some discrete points only. Therefore, a numerical 

integration procedure, such as trapezoidal rule, can be used. 

The final formulae for the rod displacement and the dynamic 

force in the functions of the time, t, and the distance from the 

surface, x is 
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         With the knowledge of these coefficients, the 

displacements and forces for different assumed times are 

determined easily at the bottom of a uniform rod section, 

enabling a down hole dynamometer card (dynagraph) to be 

potted. 

 

 

6.2  Numerical Solution 

         As in the case with every differential equation, the 

damped wave equation also can be recast in a difference 

form[1]. The resultant finite difference equation for damp 

wave equation is 
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and it can be solved numerically. 

         There are two possibilities: such equations can be solved 

for )tt,x(u ∆+  (i.e. for the rod displacement at the same 

place but ahead in time), or they can be solved for 

)t,xx(u ∆+ , (i.e. for the displacement at the same time but 

at the next distance). These two approaches conform to the 

diagnostic and the predictive analysis methods of simulating 

the behavior of the sucker-rod string. 

         Likewise, the boundary conditions are recast into partial 

difference form. In particular, the down-hole pump condition 

becomes 

β+∆α

∆−β−∆−β+∆
=

2
3

x

)t,x2x(u
2
1

)t,xx(u2)t(xp
)t,x(u  

(13 ) 

in which )t,x(u denotes the displacement of the pump. 

Equation (13) is obtained directly from equation (1) by 

replacing the derivative by a difference quotient. A timely 

choice of )t(pand, βα  is needed, and these choices 

depend on valve operation. The times of valve opening and 

closing are “ sensed” by the computer with the following test: 

 

 



Test for 1t - while  

0)t,x2x(u
2

1
)t,xx(u2)t,x(u

2

3 =∆−+∆−−  

  (no load on pump), the computer senses when 

)tt,x(u)t,x(u ∆−−  changes from positive to negative. 

This indicates that the pump has reached its lowest position, at 

which time the traveling valve closes. This is the computer’s 

signal to make the appropriate choices )t(pand,βα  to 

simulate the desired pump condition. 

Test for 2t - while  

0)t,x2x(u
2

1
)t,xx(u2)t,x(u

2

3
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(tension at the pump), the computer makes tests to determine 

when   

1W)t,x2x(u
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         At this time the fluid load is completely borne by the 

rods and the standing valve opens. 

 

Test for 3t - while 
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(fluid load imposed on the pump), the computer senses 

when )tt,x(u)t,x(u ∆−− changes from negative to 

positive. At this time the pump has reached its highest 

position, and the standing valve closes. 

 Test for 4t - while  

0)t,x2x(u
2

1
)t,xx(u2)t,x(u

2

3
〉∆−+∆−−  

(tension at the pump) , the computer determines when 

0)t,x2x(u
2

1
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2
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         At this time the fluid load is completely borne by the 

tubing , and the traveling valve opens. 

         In this manner the computer continually senses the 

forces and movements which affect valve action and make the 

proper choices in the pump boundary condition to simulate the 

desired down-hole dynagraph card.  

6.2.1 Diagnostic  Analysis 

         The diagnostic analysis involves the calculation of 

displacements, u, along the length of the rod string, x, for the 

same values of the time, t. The boundary conditions that must 

be used are provided by the surface dynamometer card, which 

gives the time history of the dynamic force and polished-rod 

movement at place x = 0, i.e. the functions D ( 0 , t) and            

u ( 0 , t ). 

         Application of the finite difference method involves 

dividing the rod string into a number of x∆  segments to 

facilitate a stepwise solution. A time increment, t∆  , has also 

been assumed, which is usually defined by the number of 

points read from the surface dynamometer diagram. The 

values of the two increments are interrelated and the following 

stability criterion applies: 

svtx ∆≤∆  

where sv  = sound velocity in the rod material. 

         The main calculation steps of the diagnostic model using 

finite differences can be summarized as follows: 

(i) The polished-rod load and displacement vs. time functions 

are determined, and their values are found at given 

t∆ time intervals. The rod string length increment, x∆ ,is 

established based on the stability criterion, and the rod 

string is divided into the appropriate number of segments. 

(ii) The initial displacements of the rod string at the surface, u 

( 0, t ), are set to the polished–rod positions at every time 

step. 

(iii) The displacement at the next lower segment, 

),t,xx(u ∆+  is calculated with the finite difference 

formula. This is repeated for all time steps involved to 

cover the whole pumping cycle. 

(iv)  Step 3 is repeated for the next consecutive rod string 

elements until a junction of the different taper sections is 

reached. At such points, rod displacements are corrected 

for the static rod stretch and dynamic forces are calculated 

with Hooke’s Law. 

(v)  At the bottom of the string, after correction for buoyant 

rod weight, the calculated displacements and loads define 

the operating conditions of the sucker-rod pump. 

6.2.2 Predictive Analysis 

         In contrast to the diagnostic model, the predictive 

analysis model also considers time and uses a calculation 

formula that gives the rod displacements ahead in time, 

).tt,x(u ∆+ Just as in the diagnostic case, the rod string is 

divided into a number of      segments, and the segment length 

is determined in a similar fashion as in the diagnostic case. 



The stability of the solution requires that the time 

increment, t∆ , satisfy the condition 

                   
sv

x
t

∆≤∆ . 

         The greatest difficulty in the predictive analysis is the 

simulation of the down -hole pump’s performance. The use of 

this technique allows the simulation of different down -hole 

conditions encountered in practice. 

         In summary, the predictive analysis consists of the 

following main calculation steps: 

(i) The rod length increment,x∆ ,is defined and the time 

increment, t∆  , that satisfies the stability criterion is 

found. 

(ii) The initial conditions, i.e. the values of the polished-rod 

displacement vs. time function, u (0,t),  are determined 

from the pumping unit’s kinematic evaluation. 

(iii) The displacement at the next lower rod segment is 

determined using the finite difference formula. This 

procedure is repeated, taking into account the changes in 

rod size, until the bottom of the string is reached. 

(iv) The action of the sucker-rod pump is taken into account as 

detailed above. 

(v)  Step 3 and 4 are repeated for all time steps. 

(vi) The whole procedure is repeated for several pumping 

cycles to reach a steady-state solution without any 

transient effects. 

(vii)The final rod displacements and loads valid at the end of 

the calculations represent the conditions at the polished-

rod and at the subsurface pump. Then the surface and 

down-hole dynamometer diagrams (dynagraphs) can be 

plotted to analyze the operation of the pumping system. 

 
7.  Conclusion 
         Our concentration is centered on the displacement of the 

sucker-rod   string  and      the    important     role   of  damping  

coefficient, and finite difference equations are used to find the 

displacement of the sucker-rod string. Most of the problems in 

Engineering subjects may come across to solve the 

corresponding partial differential equation models. In practice, 

analytical methods are difficult to solve these models. So the 

finite difference methods are appropriable to use instead of 

analytical methods. 
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