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Abstract 

Everything that can be watched on a screen 

uses video coding which tends to reduce the amount 

of redundant video data in video compression. The 

idea behind video compression based on motion 

estimation is to save number of bits required for 

encoding the video. Many studies developed 

algorithms for storing, transmission and reducing 

complexity without affecting the visual quality. The 

more precise motion estimation results can obtain the 

more accurate compression technique. Actually, 

Motion Estimation not only can use in video 

compression, but also can deeply effective in different 

video processing applications as intelligent video 

surveillance, video content analysis, and video 

retrieval. In this paper, different Motion Estimation 

algorithms are described with related results which 

can lead to obtain effective ME algorithm. 

1. Introduction 

Motion information is essential for video 

compression and different video application systems 

as video content analysis, action recognition in video 

surveillance system, telemedicine and other video 

processing systems. Video coding tools are adapted 

for heterogeneous clients parallel in developing video 

communication technology.  But, existing systems 

still require to be more compress and recognized data 

are to be more accurate and appearance invariant 

when abnormal activities are occurred. It is needed to 

get the most compressed Motion Estimation in video 

coding for reducing computational complexity, faster 

coding time and higher PSNR for real time 

applications. 

Motion Estimation is the process of 

determining the motion vectors that describe the 

transformation of adjacent frames in a video 

sequences. The motion vectors may relate to the 

whole image or specific parts such as rectangular 

blocks, arbitrary shaped patches or even per pixel. 

Block matching algorithm is assumed that all the 

pixels within the blocks have same motion activity. 

Therefore, Block-based Motion Estimation technique 

can find the optimal motion vectors and it is faster 

than others. This paper can support in adaptation the 

block-based Motion Estimation technique to get 

balance trade-off in video coding without affecting 

the video quality. All are based on effective Motion 

Estimation algorithms. 

This paper is organized as follows: Session 2 

presents related work. Session 3 describes the 

background theory of motion estimation. Session 4 

provides simulation experiments of different Motion 

Estimation algorithms and session 5 will follow the 

conclusion. 

2. Related Work 

There has been considerable effort devoted to 

different video processing based on video 

compression in the last decade. Developers adapted 

on Motion Estimation in different ways.  

M. Ezhilarasan and P. Thambidurai [6] 

proposed a simplified and efficient Block Matching 

Algorithm for Fast Motion Estimation. Authors 

intended to minimize the search time on block 

matching. It had two steps such as prediction and 

refinement. The temporal correlation among 

successive frames and the direction of the previously 

processed frame for predicting the motion vector of 

the candidate block was considered during prediction 

step. Different combination of search points was 

considered in there finement step of the algorithm 

which subsequently minimize the search time. The 

experimental results were shown that the algorithm 

provided a faster search with minimum distortion 

when compared to the optimal fast block matching 

motion estimation algorithms. 

X.Liyin, S.Xiuqin and Z.Shun [12] studied the 

low complexity ME algorithms and classified them 

into three categories, namely modeling the matching 

error surface, fast full search and reduction of 

searching candidate points. The aim of the review is 

to provide the succeeding researchers with some 

constructive information in design of the fast ME 

algorithms. 
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M.K.Pushpa and Dr.S.SethuSelvi [7] used two 

patterns for initial search and refined local search. 

For initial search, the proposed algorithm used a 

square pattern adaptively by selecting the step size 

based on Maximum Absolute Value of predicted 

motion vector.   If the least error point is other than 

the middle point, then it becomes a new origin for 

subsequent refined local search with the pattern as 

small diamond. This is iteratively continued until the 

final motion vector is found.  

Authors in [1] compared the existing block 

matching algorithms and gave their drawbacks. The 

applications of each algorithm were also discussed. 

The comparison was performed between the 

Exhaustive search (ES), Three Step Search (TSS), 

New Three Step Search (NTSS), Four Step Search 

(4SS), Diamond Search (DS), Hexagon-Diamond 

Search (HDS), Modified Diamond Search (MDS), 

Fast Diamond Search (FDS) and Orthogonal-

Diamond Search (ODS).After review process it had 

been found that DS algorithm gives performance 

closer to the ES algorithm at minimum number of 

search points. Also the different variants of DS 

algorithms are also giving good results at an 

acceptable degradation in image quality. 

Ms.B.Oatel, R.V.Kshirsagar and 

Dr.V.Nitnaware [8] presented advantages and 

disadvantages of different   Block Based Motion 

Estimation Algorithms in three categories, as  fast 

algorithms, true motion or good quality oriented 

methods and low computational complexity 

techniques algorithms. This paper tends to get the 

new design that can reduce the computational cost 

than traditional fast ME algorithms for researchers. 

According to comparison, Three Step Search (TTS) 

is less complex than other algorithms.   

In paper [2], authors discussed various existing 

search patterns and proposed the implementation of 

New Combined Three Step Search pattern using 

Hexagon pattern, Linear pattern and Diamond Search. 

The simulation result shows average time saving of 

50.07% of ME time compared with Three Step 

Search and 0.38% of ME time compared to existing 

Hexagon pattern in HEVC.       

R.K.Akotkar and S.B.Kasturiwala [9] 

discussed about hybrid technique combination of two 

technique i.e. efficient three step search algorithm 

(E3SS) and cross hexagonal search algorithm (CHS). 

The experiment result shows that the proposal 

algorithm performs better than previous proposed 

block matching algorithms and required less 

computation. All reviews efficiently support to 

evaluate different block matching algorithms in this 

paper. 

3. Background Theory 

Multimedia processing needs large amounts of 

data as requiring large amounts of processing, storage, 

and communication resources. All requirements 

basically depend on the estimation of motion 

information in video coding. 

3.1. Video Coding 

Video coding is the technology behind moving 

digital images and it tends to reduce temporal 

redundancy between adjacent frames. Video coding 

complexity is reduced by motion estimation 

algorithm and therefore traditional motion estimation 

algorithms are adapted as new motion estimation 

algorithms in different ways to reduce encoding time, 

computational complexity and for higher Peak Signal 

to Noise Ratio (PSNR). 

3.2 Inter Frame Prediction 

In video coding, a group of pictures, or GOP 

structure, specifies the order in which intra and inter 

frames are arranged. At the partitioning stage of 

video encoding, an inter coded frame is divided into 

blocks known as macroblocks. Instead of directly 

encoding the raw pixel values for each block, the 

encoder will try to find position of the matching 

block on a previously encoded reference frame. 

Figure 1 shows the general arrangement of 

GOPs that are group of I-Fame, P-Frame and B-

Frame. I-Frame called intra coded frame that is the 

reference frame which is strictly inter coded and no 

need additional information to decode.  

P-Frame called Predicted Frame that is used to 

define the forward predicted pictures from earlier 

reference frame and requires less coding data. P-

Frame needs motion vector and transform 

coefficients describing prediction correction. B-

Frame is the bi-directionally predicted pictures that 

can be interpolated from and earlier or later frame. B-

Frame needs less coding time than P-Frame. B-

Figure 1. Group of Picture Structure 
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Frames are expressed as motion vectors and 

transform coefficients as P-Frame. 

  

3.3 Motion Estimation 

Motion estimation is the process of estimating 

the best match block in the previously reference 

frame to create the new frame. This matching block 

is motion vector and there is also a prediction error 

that is the result of difference between motion vector 

and transform coefficient. Figure 2 shows the process 

of Motion Estimation. 

Motion Estimation is effective in removing 

temporal redundancies and it has become an integral 

part of all high-compression video codec. That can 

lead to effective widely used video applications. 

3.4 Block Matching Technique 

Block Matching Algorithm can estimate 

motion vectors on each block that can lead to faster 

motion estimation than pixel based. Block Matching 

Algorithm is also called as full-search algorithm 

because all candidate blocks in a search window are 

exhaustively searched to find best matching block. 

The matching of one macro block with another 

is based on the output of a cost function [4]. Cost 

function decides the matching criteria of motion 

vector. The most popular less computationally 

expensive cost function is Mean Absolute Difference 

(MAD) given in equation (1): 
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Another one is Mean Squared Error (MSE) 

given by equation (2): 
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Where N is the size of the macro bock, ijC  and 

are the pixels being compared in current macro block 

and reference macro block, respectively. Peak-

Signal-to-Noise-Ratio (PSNR) given by equation (3) 

which characterizes quality of motion compensated 

image. 
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There are many algorithms have been 

developed, this paper describes some of the most 

basic or commonly used have been described and 

compared below. The parameters using in the 

following algorithms such as step size ‘S’, search 

parameter ‘p’ and location (i, j) are fixed in each 

algorithms. 

3.4.1 Exhaustive Search (ES) 

ES algorithm [1] calculates the cost function at 

each possible location in the search window. This 

leads to the best possible match of the macro-block in 

the reference frame with a block in another frame. 

The resulting motion compensated image has highest 

peak signal-to-noise ratio as compared to any other 

block matching algorithm. However this is the most 

computationally extensive block matching algorithm 

among all. A larger search window requires greater 

number of computations. 

3.4.2 Three Step Search (TSS) 

TSS [14] is one of the earliest fast block 

matching algorithms. It runs as follows: 

1. Start with search location at center 

2. Set step size ‘S’ = 4 and search parameter p’ = 

7 

3. Search 8 locations +/- S pixels around location 

(0,0) and the location (0,0) 

4. Pick among the 9 locations searched, the one 

with minimum cost function 

5. Set the new search origin to the above picked 

location 

6. Set the new step size as S = S/2 

7. Repeat the search procedure until S = 1 

The resulting location for S=1 is the one with 

minimum cost function and the macro block at this 

location is the best match. There is a reduction in 

computation by a factor of 9 in this algorithm. For 

p=7, while ES evaluates cost for 225 macro-blocks, 

TSS evaluates only for 25 macro blocks. 

3.4.3 Two Dimensional Logarithmic Search 

(TDLS) 

TDLS [14] is closely related to TSS however 

it is more accurate for estimating motion vectors for a 

large search window size. The algorithm can be 

described as follows, 

Figure 2. Motion Estimation Process 
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3.4.4 New Three Step Search (NTSS) 

TSS uses a uniformly allocated checking 

pattern and is prone to miss small motions. NTSS [10] 

is an improvement over TSS as it provides a center 

biased search scheme and has provisions to stop half 

way to reduce the computational cost. It was one of 

the first widely accepted fast algorithms and 

frequently used for implementing earlier standards 

like MPEG 1 and H.261. 

The algorithm runs as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus this algorithm checks 17 points for each 

macro-block and the worst-case scenario involves 

checking 33 locations, which is still much faster than 

TSS. 

3.4.5 Four Step Search (4SS) 

Four Step Search [5] is an improvement over 

TSS in terms of lower computational cost and better 

peak signal-to-noise ratio. Similar to NTSS, FSS also 

employs center biased searching and has a halfway 

stop provision. 

The algorithm runs as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Start with search location at the center 

2. Select an initial step size say, S = 8 

3. Search for 4 locations at a distance of S 

from center on the X and Y axes 

4. Find the location of point with least cost 

function 

5. If a point other than center is the best 

matching point,  

5.1 Select this point as the new 

center 

5.2 Repeat steps 2 to 3 

6 If the best matching point is at the 

center, set S = S/2 

7 If S = 1, all 8 locations around the center 

at a distance S are searched 

8 Set the motion vector as the point with 

least cost function 

 

1. Start with search location at center 

2. Set step size ‘S’ = 2 

3. Search 8 locations +/- S pixels around 

location (0,0) as shown in figure 

4. Pick among the 9 locations searched, 

the one with minimum cost function 

5. If the minimum weight is found at 

center for search window:  

5.1 Set the new search origin  

5.2 Set the new step size as S = S/2 

= 1 

5.3 Repeat the search procedure 

from steps 3 to 4 

5.4 Select location with the least 

weight as motion vector 

6. If the minimum weight is found at one 

of the 8 locations other than the 

center:  

6.1 Set the new origin to this location 

6.2 Fix the step size as S = 2 

6.3 Repeat the search procedure from 

steps 3 to 4. Depending on 

location of new origin, search 

through 5 locations or 3 locations 

6.4 Select the location with the least 

weight 

6.5 If the least weight location is at the 

center of new window go to step 5, 

else go to step 6 

 

1. Start with search location at center 

2. Search 8 locations +/- S pixels with S 

= 4 and 8 locations +/- S pixels with S 

= 1 around location (0,0) 

3. Pick among the 16 locations searched, 

the one with minimum cost function 

4. If the minimum cost function occurs 

at origin, stop the search and set 

motion vector to (0,0) 

5. If the minimum cost function occurs 

at one of the 8 locations at S = 1, set 

the new search origin to this location 
5.1 Check adjacent weights for this 

location, depending on location it may 

check either 3 or 5 points 

6. The one that gives lowest weight is 

the closest match, set the motion 

vector to that location 

7. If the lowest weight after the first step 

was one of the 8 locations at S = 4, the 

normal TSS procedure follows 

7.1 Pick among the 9 locations 

searched, the one with minimum 

cost function 

7.2 Set the new search origin to the 

above picked location 

7.3 Set the new step size as S = S/2 

7.4 Repeat the search procedure until 

S = 1 
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3.4.6 Diamond Search (DS) 

Diamond Search (DS) [11] algorithm uses a 

diamond search point pattern and the algorithm runs 

exactly the same as 4SS. However, there is no limit 

on the number of steps that the algorithm can take. 

Two different types of fixed patterns are used 

for search, 

 Large Diamond Search Pattern (LDSP) 

 Small Diamond Search Pattern (SDSP) 

The algorithm runs as follows: 

 LDSP: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SDSP: 

 

 

 

 

 

 

 

 

Diamond Search algorithm has a peak signal-

to-noise ratio close to that of Exhaustive Search with 

significantly less computational expense. 

3.4.7 Adaptive Rood Pattern Search (ARPS) 

ARPS [13] consists of two sequential search 

stages: 1)initial search and 2) refined local search. 

For each macroblock (MB), the initial search is 

performed only once at the beginning inorder to find 

a good starting point for the follow-up refined 

localsearch. By doing so, unnecessary intermediate 

search and the riskof being trapped into local 

minimum matching error points couldbe greatly 

reduced in long search case. For the initial search 

stage,an adaptive rood pattern (ARP) is proposed, 

and the ARP’s sizeis dynamically determined for 

each MB, based on the available motion vectors 

(MVs) of the neighboring MBs. In the refined 

localsearch stage, a unit-size rood pattern (URP) is 

exploited repeatedly,and unrestrictedly, until the final 

MV is found. 

3.4.8 Simple and Efficient Search on TSS 

(SES_TSS) 

SES_TSS [3] extension to TSS and exploits 

the assumption of unimodal error surface. The main 

idea behind the algorithm is that for a unimodal 

surface there cannot be two minimums in opposite 

directions and hence the 8 point fixed pattern search 

of TSS can be changed to incorporate this and save 

on computations. 

The search area is divided into four quadrants 

and the algorithm checks three locations as A, B and 

C. A is at the origin and B and C are S = 4 locations 

away from A in orthogonal directions. Depending on 

certain weight distribution amongst the three,the 

second phase selects few additional points. 

Once the points have been selected to check 

for in second phase, find the location with the lowest 

weight and set it as the origin. Then change the step 

size similar to TSS and repeat the above SES 

procedure again until reach S = 1. The location with 

the lowest weight is then noted down in terms of 

motion vectors and transmitted. 

4. Simulation Experiment 

This paper compares the experimental results 

on ES, DS, 4SS, TSS, NTSS, ARPS and SESTSS. 

For experiment, macroblock size of 16*16 is used in 

a search range of 7 for each algorithm. The search 

range is assumed half of the macroblock size. Figure 

3 shows the reference search range and current block 

in experiments. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 shows the sample sequences used in 

experiments. Figure 5 shows the comparison of 

resulted motion vectors for each algorithm between 

two adjacent current frame and reference frame.  X 

Figure 3. Search Range and Current 

Block 

Current 

Block 

Search Block 

7 

7 

16*16 

1. Start with search location at center 

2. Set step size ‘S’ = 2 

3. Search 8 locations pixels (X,Y) 

such that (|X|+|Y|=S) around 

location (0,0) using a diamond 

search point pattern 

4. Pick among the 9 locations 

searched, the one with minimum 

cost function 

5. If the minimum weight is found at 

center for search window, go to 

SDSP step 

6. If the minimum weight is found at 

one of the 8locations other than the 

center, set the new origin to this 

location 

7. Repeat LDSP 

 
1. Set the new search origin 

2. Set the new step size as S = S/2 = 1 

3. Repeat the search procedure to find 

location with least weight 

4. Select location with the least 

weight as motion vector 
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axis represents 2 frames as 1 and 2. Y axis represents 

motion vector values. 

Table 1 shows the average number of searched 

points and processing time in seconds between the 

reference and current macroblock in decreasing order. 

According to experiment, Exhaustive Search 

algorithm can get maximum average number of 

searched points but it takes maximum processing 

time. Simple and efficient three step search (SES-

TSS) can get the least number of searched points but 

with minium processing time.  

 
 

 

 

 

 

5. Conclusion 

There is complex combination of translation 

and rotational motion in real video scenes. Large 

amount of processing is required to estimate vigorous 

motions for video coding that can lead to the growing 

market for video compression products and video 

processing applications.  Motion Estimation is 

effective in removing temporal redundancy to get 

robust video compression technique. This study 

analyses and describes the nature of Motion 

Estimation algorithms and their respective suitable 

applications. It is hope that this study will become an 

applicable point for the researchers. As further 

research, this paper tends to find the most relevant 

block matching algorithm for different purpose video 

processing applications. 
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