

293

Comparison of Different Motion Estimation Algorithms in Video

Compression

Zar Zar Tun, Khin Htar Nwe

University of Information Technology (UIT), Myanmar

zarzarhtun@uit.edu.mm, khinhtarnwe@uit.edu.mm

Abstract

Everything that can be watched on a screen

uses video coding which tends to reduce the amount

of redundant video data in video compression. The

idea behind video compression based on motion

estimation is to save number of bits required for

encoding the video. Many studies developed

algorithms for storing, transmission and reducing

complexity without affecting the visual quality. The

more precise motion estimation results can obtain the

more accurate compression technique. Actually,

Motion Estimation not only can use in video

compression, but also can deeply effective in different

video processing applications as intelligent video

surveillance, video content analysis, and video

retrieval. In this paper, different Motion Estimation

algorithms are described with related results which

can lead to obtain effective ME algorithm.

1. Introduction

Motion information is essential for video

compression and different video application systems

as video content analysis, action recognition in video

surveillance system, telemedicine and other video

processing systems. Video coding tools are adapted

for heterogeneous clients parallel in developing video

communication technology. But, existing systems

still require to be more compress and recognized data

are to be more accurate and appearance invariant

when abnormal activities are occurred. It is needed to

get the most compressed Motion Estimation in video

coding for reducing computational complexity, faster

coding time and higher PSNR for real time

applications.

Motion Estimation is the process of

determining the motion vectors that describe the

transformation of adjacent frames in a video

sequences. The motion vectors may relate to the

whole image or specific parts such as rectangular

blocks, arbitrary shaped patches or even per pixel.

Block matching algorithm is assumed that all the

pixels within the blocks have same motion activity.

Therefore, Block-based Motion Estimation technique

can find the optimal motion vectors and it is faster

than others. This paper can support in adaptation the

block-based Motion Estimation technique to get

balance trade-off in video coding without affecting

the video quality. All are based on effective Motion

Estimation algorithms.

This paper is organized as follows: Session 2

presents related work. Session 3 describes the

background theory of motion estimation. Session 4

provides simulation experiments of different Motion

Estimation algorithms and session 5 will follow the

conclusion.

2. Related Work

There has been considerable effort devoted to

different video processing based on video

compression in the last decade. Developers adapted

on Motion Estimation in different ways.

M. Ezhilarasan and P. Thambidurai [6]

proposed a simplified and efficient Block Matching

Algorithm for Fast Motion Estimation. Authors

intended to minimize the search time on block

matching. It had two steps such as prediction and

refinement. The temporal correlation among

successive frames and the direction of the previously

processed frame for predicting the motion vector of

the candidate block was considered during prediction

step. Different combination of search points was

considered in there finement step of the algorithm

which subsequently minimize the search time. The

experimental results were shown that the algorithm

provided a faster search with minimum distortion

when compared to the optimal fast block matching

motion estimation algorithms.

X.Liyin, S.Xiuqin and Z.Shun [12] studied the

low complexity ME algorithms and classified them

into three categories, namely modeling the matching

error surface, fast full search and reduction of

searching candidate points. The aim of the review is

to provide the succeeding researchers with some

constructive information in design of the fast ME

algorithms.

294

M.K.Pushpa and Dr.S.SethuSelvi [7] used two

patterns for initial search and refined local search.

For initial search, the proposed algorithm used a

square pattern adaptively by selecting the step size

based on Maximum Absolute Value of predicted

motion vector. If the least error point is other than

the middle point, then it becomes a new origin for

subsequent refined local search with the pattern as

small diamond. This is iteratively continued until the

final motion vector is found.

Authors in [1] compared the existing block

matching algorithms and gave their drawbacks. The

applications of each algorithm were also discussed.

The comparison was performed between the

Exhaustive search (ES), Three Step Search (TSS),

New Three Step Search (NTSS), Four Step Search

(4SS), Diamond Search (DS), Hexagon-Diamond

Search (HDS), Modified Diamond Search (MDS),

Fast Diamond Search (FDS) and Orthogonal-

Diamond Search (ODS).After review process it had

been found that DS algorithm gives performance

closer to the ES algorithm at minimum number of

search points. Also the different variants of DS

algorithms are also giving good results at an

acceptable degradation in image quality.

Ms.B.Oatel, R.V.Kshirsagar and

Dr.V.Nitnaware [8] presented advantages and

disadvantages of different Block Based Motion

Estimation Algorithms in three categories, as fast

algorithms, true motion or good quality oriented

methods and low computational complexity

techniques algorithms. This paper tends to get the

new design that can reduce the computational cost

than traditional fast ME algorithms for researchers.

According to comparison, Three Step Search (TTS)

is less complex than other algorithms.

In paper [2], authors discussed various existing

search patterns and proposed the implementation of

New Combined Three Step Search pattern using

Hexagon pattern, Linear pattern and Diamond Search.

The simulation result shows average time saving of

50.07% of ME time compared with Three Step

Search and 0.38% of ME time compared to existing

Hexagon pattern in HEVC.

R.K.Akotkar and S.B.Kasturiwala [9]

discussed about hybrid technique combination of two

technique i.e. efficient three step search algorithm

(E3SS) and cross hexagonal search algorithm (CHS).

The experiment result shows that the proposal

algorithm performs better than previous proposed

block matching algorithms and required less

computation. All reviews efficiently support to

evaluate different block matching algorithms in this

paper.

3. Background Theory

Multimedia processing needs large amounts of

data as requiring large amounts of processing, storage,

and communication resources. All requirements

basically depend on the estimation of motion

information in video coding.

3.1. Video Coding

Video coding is the technology behind moving

digital images and it tends to reduce temporal

redundancy between adjacent frames. Video coding

complexity is reduced by motion estimation

algorithm and therefore traditional motion estimation

algorithms are adapted as new motion estimation

algorithms in different ways to reduce encoding time,

computational complexity and for higher Peak Signal

to Noise Ratio (PSNR).

3.2 Inter Frame Prediction

In video coding, a group of pictures, or GOP

structure, specifies the order in which intra and inter

frames are arranged. At the partitioning stage of

video encoding, an inter coded frame is divided into

blocks known as macroblocks. Instead of directly

encoding the raw pixel values for each block, the

encoder will try to find position of the matching

block on a previously encoded reference frame.

Figure 1 shows the general arrangement of

GOPs that are group of I-Fame, P-Frame and B-

Frame. I-Frame called intra coded frame that is the

reference frame which is strictly inter coded and no

need additional information to decode.

P-Frame called Predicted Frame that is used to

define the forward predicted pictures from earlier

reference frame and requires less coding data. P-

Frame needs motion vector and transform

coefficients describing prediction correction. B-

Frame is the bi-directionally predicted pictures that

can be interpolated from and earlier or later frame. B-

Frame needs less coding time than P-Frame. B-

Figure 1. Group of Picture Structure

295

Frames are expressed as motion vectors and

transform coefficients as P-Frame.

3.3 Motion Estimation

Motion estimation is the process of estimating

the best match block in the previously reference

frame to create the new frame. This matching block

is motion vector and there is also a prediction error

that is the result of difference between motion vector

and transform coefficient. Figure 2 shows the process

of Motion Estimation.

Motion Estimation is effective in removing

temporal redundancies and it has become an integral

part of all high-compression video codec. That can

lead to effective widely used video applications.

3.4 Block Matching Technique

Block Matching Algorithm can estimate

motion vectors on each block that can lead to faster

motion estimation than pixel based. Block Matching

Algorithm is also called as full-search algorithm

because all candidate blocks in a search window are

exhaustively searched to find best matching block.

The matching of one macro block with another

is based on the output of a cost function [4]. Cost

function decides the matching criteria of motion

vector. The most popular less computationally

expensive cost function is Mean Absolute Difference

(MAD) given in equation (1):

)1(
1 1

0

1

0
2 










N

i

N

j

ijij RC
N

MAD

Another one is Mean Squared Error (MSE)

given by equation (2):

 )2(
1

21

0

1

0
2 










N

i

N

j

ijij RC
N

MSE

Where N is the size of the macro bock, ijC and

are the pixels being compared in current macro block

and reference macro block, respectively. Peak-

Signal-to-Noise-Ratio (PSNR) given by equation (3)

which characterizes quality of motion compensated

image.

()

 ()

There are many algorithms have been

developed, this paper describes some of the most

basic or commonly used have been described and

compared below. The parameters using in the

following algorithms such as step size ‘S’, search

parameter ‘p’ and location (i, j) are fixed in each

algorithms.

3.4.1 Exhaustive Search (ES)

ES algorithm [1] calculates the cost function at

each possible location in the search window. This

leads to the best possible match of the macro-block in

the reference frame with a block in another frame.

The resulting motion compensated image has highest

peak signal-to-noise ratio as compared to any other

block matching algorithm. However this is the most

computationally extensive block matching algorithm

among all. A larger search window requires greater

number of computations.

3.4.2 Three Step Search (TSS)

TSS [14] is one of the earliest fast block

matching algorithms. It runs as follows:

1. Start with search location at center

2. Set step size ‘S’ = 4 and search parameter p’ =

7

3. Search 8 locations +/- S pixels around location

(0,0) and the location (0,0)

4. Pick among the 9 locations searched, the one

with minimum cost function

5. Set the new search origin to the above picked

location

6. Set the new step size as S = S/2

7. Repeat the search procedure until S = 1

The resulting location for S=1 is the one with

minimum cost function and the macro block at this

location is the best match. There is a reduction in

computation by a factor of 9 in this algorithm. For

p=7, while ES evaluates cost for 225 macro-blocks,

TSS evaluates only for 25 macro blocks.

3.4.3 Two Dimensional Logarithmic Search

(TDLS)

TDLS [14] is closely related to TSS however

it is more accurate for estimating motion vectors for a

large search window size. The algorithm can be

described as follows,

Figure 2. Motion Estimation Process

ijR

296

3.4.4 New Three Step Search (NTSS)

TSS uses a uniformly allocated checking

pattern and is prone to miss small motions. NTSS [10]

is an improvement over TSS as it provides a center

biased search scheme and has provisions to stop half

way to reduce the computational cost. It was one of

the first widely accepted fast algorithms and

frequently used for implementing earlier standards

like MPEG 1 and H.261.

The algorithm runs as follows:

Thus this algorithm checks 17 points for each

macro-block and the worst-case scenario involves

checking 33 locations, which is still much faster than

TSS.

3.4.5 Four Step Search (4SS)

Four Step Search [5] is an improvement over

TSS in terms of lower computational cost and better

peak signal-to-noise ratio. Similar to NTSS, FSS also

employs center biased searching and has a halfway

stop provision.

The algorithm runs as follows:

1. Start with search location at the center

2. Select an initial step size say, S = 8

3. Search for 4 locations at a distance of S

from center on the X and Y axes

4. Find the location of point with least cost

function

5. If a point other than center is the best

matching point,

5.1 Select this point as the new

center

5.2 Repeat steps 2 to 3

6 If the best matching point is at the

center, set S = S/2

7 If S = 1, all 8 locations around the center

at a distance S are searched

8 Set the motion vector as the point with

least cost function

1. Start with search location at center

2. Set step size ‘S’ = 2

3. Search 8 locations +/- S pixels around

location (0,0) as shown in figure

4. Pick among the 9 locations searched,

the one with minimum cost function

5. If the minimum weight is found at

center for search window:

5.1 Set the new search origin

5.2 Set the new step size as S = S/2

= 1

5.3 Repeat the search procedure

from steps 3 to 4

5.4 Select location with the least

weight as motion vector

6. If the minimum weight is found at one

of the 8 locations other than the

center:

6.1 Set the new origin to this location

6.2 Fix the step size as S = 2

6.3 Repeat the search procedure from

steps 3 to 4. Depending on

location of new origin, search

through 5 locations or 3 locations

6.4 Select the location with the least

weight

6.5 If the least weight location is at the

center of new window go to step 5,

else go to step 6

1. Start with search location at center

2. Search 8 locations +/- S pixels with S

= 4 and 8 locations +/- S pixels with S

= 1 around location (0,0)

3. Pick among the 16 locations searched,

the one with minimum cost function

4. If the minimum cost function occurs

at origin, stop the search and set

motion vector to (0,0)

5. If the minimum cost function occurs

at one of the 8 locations at S = 1, set

the new search origin to this location
5.1 Check adjacent weights for this

location, depending on location it may

check either 3 or 5 points

6. The one that gives lowest weight is

the closest match, set the motion

vector to that location

7. If the lowest weight after the first step

was one of the 8 locations at S = 4, the

normal TSS procedure follows

7.1 Pick among the 9 locations

searched, the one with minimum

cost function

7.2 Set the new search origin to the

above picked location

7.3 Set the new step size as S = S/2

7.4 Repeat the search procedure until

S = 1

297

3.4.6 Diamond Search (DS)

Diamond Search (DS) [11] algorithm uses a

diamond search point pattern and the algorithm runs

exactly the same as 4SS. However, there is no limit

on the number of steps that the algorithm can take.

Two different types of fixed patterns are used

for search,

 Large Diamond Search Pattern (LDSP)

 Small Diamond Search Pattern (SDSP)

The algorithm runs as follows:

 LDSP:

 SDSP:

Diamond Search algorithm has a peak signal-

to-noise ratio close to that of Exhaustive Search with

significantly less computational expense.

3.4.7 Adaptive Rood Pattern Search (ARPS)

ARPS [13] consists of two sequential search

stages: 1)initial search and 2) refined local search.

For each macroblock (MB), the initial search is

performed only once at the beginning inorder to find

a good starting point for the follow-up refined

localsearch. By doing so, unnecessary intermediate

search and the riskof being trapped into local

minimum matching error points couldbe greatly

reduced in long search case. For the initial search

stage,an adaptive rood pattern (ARP) is proposed,

and the ARP’s sizeis dynamically determined for

each MB, based on the available motion vectors

(MVs) of the neighboring MBs. In the refined

localsearch stage, a unit-size rood pattern (URP) is

exploited repeatedly,and unrestrictedly, until the final

MV is found.

3.4.8 Simple and Efficient Search on TSS

(SES_TSS)

SES_TSS [3] extension to TSS and exploits

the assumption of unimodal error surface. The main

idea behind the algorithm is that for a unimodal

surface there cannot be two minimums in opposite

directions and hence the 8 point fixed pattern search

of TSS can be changed to incorporate this and save

on computations.

The search area is divided into four quadrants

and the algorithm checks three locations as A, B and

C. A is at the origin and B and C are S = 4 locations

away from A in orthogonal directions. Depending on

certain weight distribution amongst the three,the

second phase selects few additional points.

Once the points have been selected to check

for in second phase, find the location with the lowest

weight and set it as the origin. Then change the step

size similar to TSS and repeat the above SES

procedure again until reach S = 1. The location with

the lowest weight is then noted down in terms of

motion vectors and transmitted.

4. Simulation Experiment

This paper compares the experimental results

on ES, DS, 4SS, TSS, NTSS, ARPS and SESTSS.

For experiment, macroblock size of 16*16 is used in

a search range of 7 for each algorithm. The search

range is assumed half of the macroblock size. Figure

3 shows the reference search range and current block

in experiments.

Figure 4 shows the sample sequences used in

experiments. Figure 5 shows the comparison of

resulted motion vectors for each algorithm between

two adjacent current frame and reference frame. X

Figure 3. Search Range and Current

Block

Current

Block

Search Block

7

7

16*16

1. Start with search location at center

2. Set step size ‘S’ = 2

3. Search 8 locations pixels (X,Y)

such that (|X|+|Y|=S) around

location (0,0) using a diamond

search point pattern

4. Pick among the 9 locations

searched, the one with minimum

cost function

5. If the minimum weight is found at

center for search window, go to

SDSP step

6. If the minimum weight is found at

one of the 8locations other than the

center, set the new origin to this

location

7. Repeat LDSP

1. Set the new search origin

2. Set the new step size as S = S/2 = 1

3. Repeat the search procedure to find

location with least weight

4. Select location with the least

weight as motion vector

298

axis represents 2 frames as 1 and 2. Y axis represents

motion vector values.

Table 1 shows the average number of searched

points and processing time in seconds between the

reference and current macroblock in decreasing order.

According to experiment, Exhaustive Search

algorithm can get maximum average number of

searched points but it takes maximum processing

time. Simple and efficient three step search (SES-

TSS) can get the least number of searched points but

with minium processing time.

5. Conclusion

There is complex combination of translation

and rotational motion in real video scenes. Large

amount of processing is required to estimate vigorous

motions for video coding that can lead to the growing

market for video compression products and video

processing applications. Motion Estimation is

effective in removing temporal redundancy to get

robust video compression technique. This study

analyses and describes the nature of Motion

Estimation algorithms and their respective suitable

applications. It is hope that this study will become an

applicable point for the researchers. As further

research, this paper tends to find the most relevant

block matching algorithm for different purpose video

processing applications.

References

[1]. C.Pandey and D.Pandey , “Literature

Review on Block Matching Motion Estimation

Algorithms for Video Compression”, International

Journal of Advanced Research in Computer

Engineering & Technology (IJARCET), Volume 4,

Issue 5, May 2015.

[2]. Davis P and S.Marikkannan ,

“Implementation of Motion Estimation Algorithm for

H.265/HEVC”, International Journal of Advanced

Research in Electrical Electronics and

Instrumentation Engineering, Volume 3, Issue 3,

April 2014.

[3]. Jianhua Lu, and Ming L. Liou, “A Simple

and Efficent Search Algorithm for Block-Matching

Motion Estimation”, IEEE Trans. Circuits And

Systems For Video Technology, vol 7, no. 2, pp. 429-

433, April 1997

Block Matching

Algorithms

ES DS 4SS TSS NTSS ARPS SES-

TSS

Searched Points 216.9273 31.9669 26.2868 24.5356 23.2761 15.0620 12.0718

CPU Processing Time

(in seconds)
1.2231e+03 179.4480 147.7641 138.5913 120.4952 84.0065 67.6264

Figure 4. Sample Frame Sequences

Table 1. Comparison of Different Motion Estimation Algorithms

Results

Figure5. Experimental Results of

Motion Values: (a) ES (b) DS (c) 4SS

(d) TSS (e) NTSS (f) ARPS (g)

SESTSS

299

[4]. L. Tao, Y.-ying, S, Gaopeng,”An improved

three-step search algorithm with zero Detection and

vector filter for motion estimation”,IEEE

International Conference on Science and Software

Engineering, 2008.

[5]. Lai-Man Po, and Wing-Chung Ma, “A

Novel Four-Step Search Algorithm for Fast Block

Motion Estimation”, IEEE Trans. Circuits And

Systems For Video Technology, vol 6, no. 3, pp. 313-

317, June 1996.

[6]. M. Ezhilarasan and P. Thambidurai,

“Simplified block Matching Algorithm for Fast

Motion Estimationin Video Compression”, Journal

of Computer Science 4 (4), 282-289, 2008.

[7]. M.K.Pushpa and Dr.S.SethuSelvi, “Adaptive

Square-Diamond Search(ASDS) Algorithm for Fast

Block Matching Motion Estimation”, International

Journal of Computer Science And Information

Technologies, Vol. 3 (5), 2012, 5247-5253, 2012.

[8]. Ms.B.Oatel, Dr.R.V.Kshirsagar and

Dr.V.Nitnaware, “Review and Comparative Studey

of Motion Esitmation Techniques to Reduce

Complexity In Video Compression”, International

Journal of Advanced Research in Electrical

Electronics and Instrumentation Engineering,

Volume 2, Issue 8, Aug2013.

[9]. R.K.Akotkar and S.B.Kasturiwala, “Hybrid

Approach for Video Compression Using

BlockMatching Motion Estimation”, IEEE Sponsored

World Conference on Futuristic Trends in Research

and Innovation for Social Welfare (WCFTR’16),

March 2016.

[10]. R.Li, B.Zeng, and M.L.Liou, “A New

Three-Step Search Algorithm for Block Motion

Estimation”, IEEE Trans. Circuits And Systems For

Video Technology, Volume 4., no. 4, pp. 438-442,

August 1994.

[11]. Shan Zhu, and Kai-Kuang Ma, “ A New

Diamond Search Algorithm forFast Block-Matching

MotionEstimation”, IEEE Trans. ImageProcessing,

vol 9, no. 2, pp. 287-290, February 2000.

[12]. X.Liyin, S.Xiuqin, Z.Shun, “A Review of

Motion Estimation Algorithms for Video

Compression”, 2010 International Conference on

Computer Application and System Modeling

(ICCASM 2010), Oct 2010.

[13]. Yao Nie, and Kai-Kuang Ma, “Adaptive

Rood Pattern Search for FastBlock-Matching Motion

Estimation”, IEEE Trans. Image Processing,vol 11,

no. 12, pp. 1442-1448, December 2002.

[14]. https://en.wikipedia.org/wiki/Block-

matching_algorithm.

https://en.wikipedia.org/wiki/Block-matching_algorithm
https://en.wikipedia.org/wiki/Block-matching_algorithm

