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Abstract 

 

 MapReduce is well-applied in high performance 

computing for large scale data processing. However, as 

long as the clusters grow, handling with huge amount 

of intermediate data produced in the shuffle and reduce 

phases (middle step of Map Reduce) have impacts 

heavily upon the performance. With local aggregation 

(either combiners or in-mapper), shuffling large 

amounts of data can be reduced which alleviates the 

reduce straggler problem. The proposed modified B+ 

tree based indexing algorithm is applied to reduce 

intermediate data amount for output retrieval fast as 

well as scalable data storage.  

 

1. Introduction 

 

 More businesses are becoming aware of the 

relevance of the data in which they are able to gather: 

from social websites to log files, and also there is a lot 

of hidden information ready to be processed and mined. 

It was neither difficult to work with large amounts of 

data nor hard drive capacity. Access speed is main 

point. Nowadays, it is much easier for companies to 

become global target a larger number of clients and 

consequently deal with more data [6]. 

Hadoop is a distributed file system and is coupled with 

parallel processing framework called, Map Reduce. It is 

widely used for large scale data processing and has 

benefited from its simplified two-step processes: map 

and reduce phase. Both of these two stages are 

separated by a barrier called shuffling, to ensure that all 

relevant input data is available to the reducer function 

before the latter one proceeds [1]. However, at large 

data volumes (input), tens of terabytes of data 

(intermediate data produced between the map and the 

reduce phase) have to be transported across the cluster 

machines and the associated overheads can become 

significant factor in the job’s overall run-time.  

 

 

 

 

 

Although, a simple word count job can rarely result in a 

lot of intermediate data to transfer over the network, 

other jobs may produce a lot of intermediate data such 

as sorting a terabyte of data where the output of the 

Map Reduce job is a new set of data equal to the size of 

the data when started with [2]. Since the intermediate 

and output data sizes are quite large, various ways like 

custom combiner, reducer and even secondary sorting 

are considered to shrink those because the result-

combining step adds a large overhead to the total run 

time and frequently can cause the network bottleneck. 

Therefore, the middle step (shuffle and sort) is the most 

important part of the framework, where the magic 

happens. It is said that well understanding of this work 

flows allows the optimization both the framework and 

the execution time of Map Reduce jobs [8]. 

The model allows developers to write massively 

parallel applications without much effort and is 

becoming an essential tool in the software stack of 

many companies that need to deal with large datasets. 

And even though its interface is simple, it has proved to 

be powerful enough to solve a wide-range of real-world 

problems: from web indexing to image analysis up to 

clustering algorithms. And also careful attention to 

partitioning data, scheduling, handling machine failures 

and inter machine communication can heavily impact 

on the system’s performance like scalability, integrity 

and high throughput [3].  

The proposed B+ tree-based indexing algorithm is 

applied in the shuffle and sort phase in order to aid in 

the reduction of the amount of intermediate data. 

Section 2 is discussed about related work. The 

background theory applied is described in Section 3. 

The overview of the current and new approach is 

explained in Section 4 and Section 5. As for Section 6, 

complexity from the view of theory is intended and all 

of the discussion is concluded in Section 7.  

 

2. Related Work 

 

 Yahoo-Sailfish introduced L-files as an 

abstraction, implemented as an extension of the 

distributed file system for supporting network-wide 

data aggregation. Its L files made batching of data 

written by multiple writers and then transported 
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intermediate data (specially, to transfer output of map 

tasks to relevant reduce tasks). But, there was a 

blocking whenever the output from one step has to be 

materialized by writing to disk-based storage before it 

can be consumed by a later step. This may lead to 

sometimes traffic jam if one of the steps (especially 

earliest stage) in the processing takes longer time than 

as usual [9].  

Map Reduce model used a barrier between the Map and 

Reduce stages for simplifying in both of programming 

and implementation. But, in many situations, this 

barrier hurt performance because it was overly 

restrictive. The author and his colleges developed 

method to break the barrier in Map Reduce in a way 

that improved efficiency [1]. However, this looks like 

using zero reducer which is not suitable to every 

applications based on Map Reduce applications.  

One distributed network file system like Wofs[11] that 

split a file into many small objects, stored these objects 

in remote file servers, and used a special B+ tree to 

manage the metadata of these objects. Besides, it used 

the object-range locking policy to avoid data 

incoherence and improve performance. 

Gongye Zhou and his companions [12] proposed a B+ 

Tree Management Method of Object Attributes for 

Object-based Storage. That controled storage attributes 

with two-level B+ tree structure: one for attributes 

index and another for object index.  

None of the latter two systems (based on B+ tree) 

considered limiting the order and height of B+ Tree. 

This becomes critical issue for system performance.  

The proposed system deeply takes into account “the 

order and height” of the tree for collecting intermediate 

data using in-mapper combining function before 

moving to reducer. This can reduce the amount of 

transferred data that need to be shuffled across the 

network. Besides, the system can compromise the 

complexity due to frequent insertion and deletion not 

being higher than original B+ tree. 

 

 

3. Background Theory 

 

3.1    Map Reduce Data Flow 

 

 In Map Reduce, the map function emits each word 

plus an associated count of occurrences whereas the 

reduce function sums together all counts emitted for a 

particular word [4]. The model also makes the 

guarantee that the input to the every reducer is sorted 

by key. The process by which the system performs the 

sort-and transfers the map outputs to the reducers as 

inputs- is known as the shuffle where a large amount of 

intermediate data can be produced, which is the heart of 

Map Reduce [10].  

 The underlying mechanism used for handling 

intermediate data in a Map-Reduce computation is via a 

parallel merge-sort. The cost of handling intermediate 

data depends on (1) inter-node connectivity within the 

cluster and (2) the rate at which data can be read from 

(as well as written to) the disk subsystems on individual 

nodes. The effective disk transfer rate is highly 

dependent on the number of seeks as well as the 

amount of data read per disk seek. Unless careful 

attention is paid to the seek overheads involved in 

handling the intermediate data, cluster throughput will 

degrade [9].  

 

3.2 B +Tree  

 

 Many tree-based algorithms are used to store data; 

however, they cannot handle the entire tree status of 

balancing after some operations like insertion and 

deletion. Those might store for fast efficient insertion 

well, but bad ending in deletion. Consequently, 

maintaining system’s balance after deletion becomes a 

major problem in today’s tree-based storage area [13].  

Other balanced trees such as AVL trees and Red-Black 

Trees use the height of the sub-trees for balancing 

whereas WBT (Weighted Balanced Trees) is based on 

the size of the sub-trees below each node. Weighted 

balanced trees are well suited for organizing data 

orderly associated with their size. But, frequent 

insertion and deletion makes the tree order difficult and 

waste time [14]. 

A simple B+ tree consists of one or more blocks of 

data, called nodes, linked together by pointers. Like 

many tree-based approach, it has three types of basic 

nodes: root, internal nodes and leaf. Internal nodes 

which are used as an index nodes that point to other 

nodes (child nodes) in the tree. Leaf nodes, is also 

called data nodes which maintains data page as well as 

pointer to neighboring nodes via doubly linked list. 

Data searching in the tree always starts at the root node 

and moves downwards until it reaches a leaf node. Both 

internal and leaf nodes contain key values that are used 

to guide the search for entries in the index. It is also a 

balanced tree due to the fact that every path from the 

root node to a leaf node is the same length. Major 

emphasis on B+ tree is to consider the order of the tree 

that make how large it can be [12].  

 

4. Handling Intermediate Data 
 

 In Map Reduce data processing, local aggregation 

of intermediate result is one of the keys to be 

algorithms efficient. With local aggregation (either 

combiners or in-mapper combining), it reduces the 

number of values associated with frequently-occurring 

terms, which alleviates the reduce straggler problem 

[5]. In this section, analysis of using combiners vs in-

mapper, stripe vs pair, merge sort is discussed and 



proposed B+ tree based algorithm is proved as a more 

efficient one over the existing approaches.  

 

4.1 Using Combiners or In-Mapper 

 

Combiner does local aggregation of key/values 

produced by mapper before or during shuffle and sort 

state of Map Reduce processing in order to 

significantly reduce the amount of data that needs to be 

copied over the network, resulting in much faster 

algorithms but it cannot be known in advance how 

many times combiners are called; it could be zero, one 

or multiple times to run.  

 In contrast with in-mapper combining, the mappers 

will generate only those key-value pairs that need to be 

shuffled across the network to the reducers [5]. 

Therefore, in-mapper combining is more efficient than 

normal combiner and the proposed B+ tree based is 

embedded in this one for collection intermediate data 

which can mostly struggle in the network for further 

processes.  

 Either combiner or in-mapper combines 

keys/values pairs with the same key together. They may 

also some additional preprocessing of combined values. 

[7]. Although, using in-mapper could introduce the 

memory limitation, a counter variable can be set to 

solve it whenever it is time to spill the partial results of 

each map task. The process flow of combiner and in-

mapper is illustrated in Figure 1. 

 

4.2 Using Pair or Stripe 

 
 With the problem of building word co-occurrence 

matrices from large corpora, a common task in corpus 

linguistics and statistical natural language processing, 

more complex strategies are applied to speed up map 

reduce processing. Two popular techniques: pair and 

stripes are used alternatively. Using pair approach, the 

Map Reduce execution framework guarantees that all 

values associated with the same key are brought 

together in the reducer. As for stripe way, all 

associative arrays with the same key will be brought 

together in the reduce phase of processing [5].  

The pair approach is easy to complex but generates an 

immense number of key-value pairs compared to the 

stripe approach which comes with more serialization 

and deserialization overhead with the former one. But, 

both algorithms can benefit from the use of combiners 

or in-mapper.   

 

4.3 Local Aggregation with Merge Sort 

 

 As for Hadoop, the underlying mechanism used for 

handling intermediate data in a Map Reduce 

computation is essentially via a parallel merge-sort [9]. 

The partial output produced by each mapper is 

periodically sort and spills the data to a file on disk. 

Then, after all finish, those intermediate data are 

transferred to the reducer which merges the data (using 

a disk-based merge if necessary) to produce the final 

output. But, whenever the map task emits data, the 

amount of partial results grows larger and sometimes, 

that exceed RAM limit which is skew in the output size 

of the map task and can become scalability bottleneck. 

 

5. B+ tree based Local Aggregation 

 
 Actually, as input data size increases, intermediate 

and output data sizes are also quite large and, finally, 

the result-combining step adds a large overhead to the 

total run time. Parallel data flow frameworks are very 

sensitive to system parameters that users are expected 

to tune. With Hadoop, a user has to choose the number 

of reduce tasks for a Map-Reduce job and tune the 

parameters related to sorting the output of a map task. 

To lower the disk overheads, it is crucial to minimize.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Figure 1: Map Reduce with (a) Combiner, (b) In-

Mapper 

the number of disk seeks. Fewer disk seeks translates to 

increasing the amount of data read per seek.  

 In the proposed system, Hadoop is a base 

framework and replaced the algorithm usage of shuffle 

and sort state of map reduce phase with modified B+ 

tree. After each mapper produces key/value pair, the 

intermediate data is collected with modified B+ tree 

initially and then associated key pairs are grouped 

together according to their weights. When all the 

mappers finished, the collections are transferred to the 

reducer. The illustration of the proposed process flow is 

shown in Figure 2.  

 

5.1 Weight-based Allocation 

 
 

 Frequent data insertion and deletion can make the 

system different from the current state and it also 

requires the system to be load balance. Since B+ tree is 

self-balanced structure, which is suitable to weight-

based object allocation for the proposed system. 

Accessing the object (key) is only to use the object id 

which is calculated based on particular weights and 

locates where to place in the tree. All objects IDs (keys) 

in the proposed system are organized by a B+ tree. The 

object index is derived from the calculation of its 

weight.  Therefore, a single attribute < object id> is 

supported as an index which points to the actual 

location of the object in the cluster. Since B+ tree 

consists of two types of nodes: internal nodes and leaf 

nodes. Internal points to other nodes in the tree whereas 

the leaf node points to actual data using data pointers. 

In addition, the leaf node also contains an additional 

pointer, called the sibling pointer, which is used to 

improve the efficiency of certain types of search [13]. 

The leaf node stores the actual address of the object and 

internal nodes points to the index of the child nodes 

which are allocated by their weight.  

  

 

 

 

 

 

 

 

 

Figure 2: Map Reduce with Proposed B+ Tree based 

Local Aggreagtion 

5.2 Proposed B+ Tree 
 

 As for data insertion in the existing media, the 

traditional B+ tree can take at least two steps (levels) 

for initial and then, the tree gets longer and longer as 

the number of stored item increased. No one can tell 

how large the tree depth and can result in delaying 

access time. 

 In afford to reduce the load traffic resulting from 

large data traversing; the proposed system makes little 

changes to the original tree to be getting better 

performance. Since keys are arranged by their weight, 

it must be needed to know which key (object) in the 

present system has the nearest value to the new key to 

place. Step 1 is taken new object into account for 

searching nearest neighborhood. The second step of the 

algorithm is not different from the original view. The 

bucket found in the previous step is checked whether it 

is full or not. If the condition is “ok” (not full), data is 

only placed. Otherwise, bucket separation is performed 

and new leaf’s smallest key is addressed into the parent 

node. After passing two steps, the next one is only 

considered for increasing order of the parent node  
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which is a major contribution of the proposed system 

for achieving high data available and removing 

unnecessary network traffic for frequent data insertion 

and searching time in the shuffling of intermediate data. 

In those cases experienced in the former B+ Tree, 

parent nodes is also split again and creates new keys 

and cause the tree level high. This can be searching 

time further and further in parallel with the node 

number increased. The proposed B+ Tree as illustrated 

in Table 1 simplifies it by only raising the tree order 

according to power of 2-based form. Having increased 

the order by 2 power, much more parent nodes as well 

as child nodes can be handled and also the time 

complexity remains stable. 

 

5.3 Resource Expansion with Proposed B+ Tree 

 
 Beginning from the base 2 of the order (b), there 

must be at most one search key value (b-1) and two 

child pointer (b<=n<=b) for each internal node as well 

as the root node. When new objects are requested to be 

stored, the tree requires expanding. However, node 

allocation starting from 21 is too short to be explained 

and thus, it will be more clear in the example with 22 of 

the order value.  Therefore, it raised the order by power 

of 2-based form and now, the order value becomes 22 

(b=4) and the number of children grows up to 4 

whereas 3 for search key value in each internal node. 

 

Table 2: Complexity comparison of mrge sort and 

proposed B+ tree algorithm 

Input Data 

(Key/Value) 

Merge Sort Modified B+ Tree 

Sort 

Input=2 1.0 1.0 

Input=4 2.0 1.7924812503605783 

Input=8 3.0 1.9357849740192017 

Input=16 4.0 1.9767226489021297 

Input=32 5.0 1.990839262077375 

Input=64 6.0 1.9962133205833195 

Input=128 7.0 1.9983835266817382 

Input=256 8.0 1.9992941796073573 

Input=512 9.0 1.9996866089930692 

Input=1024 10.0 1.9998590429745329 

 

 

 

Figure 3 Complexity comparison of merge Sort and 

proposed B+ tree based data sorting 

 In ordinary B+ tree model, if b is threshold for 

each node to have, then adding new record which 

exceeds the specified threshold makes node splitting in 

two conditions, either of parents or child node. Instead 

of splitting parent node, increasing the order size can be 

the level of complexity constant and no high is raised.  

 

5.4 Limiting Memory Usage 

 
 When using in-mapper combining approach, 

immense numbers of intermediate data are produced 

each map task and the associative array holding the 

partial term counts will no longer fit in memory [5]. 

One solution is to block input key-value pairs and flush 

in memory data structures periodically. Instead of 

emitting intermediate data after processing each key 

value pair, there should be set a counter variable (n) 

that keeps track certain number of key value pairs that 

have been processed and invoke to spill. Since the 

proposed B+ tree expands whenever the order size 

0

2

4

6

8

10

12

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

Merge Sort
Modified B+ Tree

Input 

Key 

C
o

m
p

le
x

it
y
 

Insertion 

Step 1: Perform a search to determine what bucket the new 

record should go into. 

 

Step 2: If the bucket is not full, add the record. 

Otherwise, split the bucket. 

Allocate new leaf and move half the bucket’s 

elements to the new bucket. 

Insert the new leaf’s smallest key and address into the 

parent. 

 

Step 3: If the parent is full, check whether high is within 

range. 

If high is ok, split it too. 

Add the middle key to the parent node 

Repeat until a parent is found that need not split. 

If the root splits, create a new root which has one key 

and two pointers.    

If high is not ok, promote the value of order. Go to 

Step 2. 

 

Table1: Proposed B+ Tree-based local 

aggregation algorithm 



increases, the order variable can use as a threshold that 

determine what time intermediate data has to be spilled 

to disk. No one step is blocked due to not having run 

out of memory space. 

 

6. Complexity Analysis 
 

6.1 Merge-sort 
 

 In sorting n objects, merge sort has an average and 

worst-case performance of O (n log n). With terabytes, 

the time complexity for sorting those amounts of data 

can result in processing slow. As long as the amount of 

key value increase to sort, number of times to process 

(merge and sort) will be frequently and that may takes 

longer time and finally result in access speed slow 

within the network as shown in Table 2.  

 

6.2 B+ Tree 
 

 B+ tree performance is logarithmic with respect to 

the number of height. The total time complexity of the 

tree takes O(logb n) in general for b order of the tree 

with h level index. When increasing height, the depth 

becomes longer and it is taken time complexity more 

complicated. Contrary from traditional B+ tree, the 

proposed approach is emphasized on the depth of the 

tree which becomes skew in the original one. By 

controlling the order and height, the proposed approach 

can perform better than the existing one. 

 

6.3 B+ Tree Vs Merge Sort 
 

 However, Map Reduce can be beneficial for large 

scale data processing; the algorithm applied plays a 

major role to make the model efficient. As shown in 

Table 2 and Figure 3, it is tested with variable input 

size and analyzed using two approaches: B+ tree and 

merge sort complexity theoretically. According to the 

statistical data analysis, whenever the input key value 

produced of each map task becomes larger, total time 

(local aggregation of intermediate data) complexity of 

conventional merge-sort of Map Reduce takes longer 

time gradually after one another than the proposed 

approach. Therefore, it is proved that simple merge sort 

cannot parallel to the modified B+ tree for efficient data 

sorting especially terabytes to petabytes of data. 

 

7. Conclusion 

 
Although Hadoop has benefited from the use of map 

reduce data processing, careful handling of 

intermediate data is needed in order to reduce network 

traffic which can impact access time heavily. Variety of 

local aggregation techniques: combiner, in-mapper etc. 

are introduced to overcome this issue. Coupling the 

modified B+ tree with existing in-mapper combining 

approach can prove to perform better than regular 

usage of merge sort. 
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