
Local Aggregation with Modified B+ tree in Map Reduce Data Processing

Ohnmar Aung

University of Computer Studies, Yangon

ohnmaraung2008@gmail.com

Abstract

 MapReduce is well-applied in high performance

computing for large scale data processing. However, as

long as the clusters grow, handling with huge amount

of intermediate data produced in the shuffle and reduce

phases (middle step of Map Reduce) have impacts

heavily upon the performance. With local aggregation

(either combiners or in-mapper), shuffling large

amounts of data can be reduced which alleviates the

reduce straggler problem. The proposed modified B+

tree based indexing algorithm is applied to reduce

intermediate data amount for output retrieval fast as

well as scalable data storage.

1. Introduction

 More businesses are becoming aware of the

relevance of the data in which they are able to gather:

from social websites to log files, and also there is a lot

of hidden information ready to be processed and mined.

It was neither difficult to work with large amounts of

data nor hard drive capacity. Access speed is main

point. Nowadays, it is much easier for companies to

become global target a larger number of clients and

consequently deal with more data [6].

Hadoop is a distributed file system and is coupled with

parallel processing framework called, Map Reduce. It is

widely used for large scale data processing and has

benefited from its simplified two-step processes: map

and reduce phase. Both of these two stages are

separated by a barrier called shuffling, to ensure that all

relevant input data is available to the reducer function

before the latter one proceeds [1]. However, at large

data volumes (input), tens of terabytes of data

(intermediate data produced between the map and the

reduce phase) have to be transported across the cluster

machines and the associated overheads can become

significant factor in the job’s overall run-time.

Although, a simple word count job can rarely result in a

lot of intermediate data to transfer over the network,

other jobs may produce a lot of intermediate data such

as sorting a terabyte of data where the output of the

Map Reduce job is a new set of data equal to the size of

the data when started with [2]. Since the intermediate

and output data sizes are quite large, various ways like

custom combiner, reducer and even secondary sorting

are considered to shrink those because the result-

combining step adds a large overhead to the total run

time and frequently can cause the network bottleneck.

Therefore, the middle step (shuffle and sort) is the most

important part of the framework, where the magic

happens. It is said that well understanding of this work

flows allows the optimization both the framework and

the execution time of Map Reduce jobs [8].

The model allows developers to write massively

parallel applications without much effort and is

becoming an essential tool in the software stack of

many companies that need to deal with large datasets.

And even though its interface is simple, it has proved to

be powerful enough to solve a wide-range of real-world

problems: from web indexing to image analysis up to

clustering algorithms. And also careful attention to

partitioning data, scheduling, handling machine failures

and inter machine communication can heavily impact

on the system’s performance like scalability, integrity

and high throughput [3].

The proposed B+ tree-based indexing algorithm is

applied in the shuffle and sort phase in order to aid in

the reduction of the amount of intermediate data.

Section 2 is discussed about related work. The

background theory applied is described in Section 3.

The overview of the current and new approach is

explained in Section 4 and Section 5. As for Section 6,

complexity from the view of theory is intended and all

of the discussion is concluded in Section 7.

2. Related Work

 Yahoo-Sailfish introduced L-files as an

abstraction, implemented as an extension of the

distributed file system for supporting network-wide

data aggregation. Its L files made batching of data

written by multiple writers and then transported

mailto:ohnmaraung2008@gmail.com

intermediate data (specially, to transfer output of map

tasks to relevant reduce tasks). But, there was a

blocking whenever the output from one step has to be

materialized by writing to disk-based storage before it

can be consumed by a later step. This may lead to

sometimes traffic jam if one of the steps (especially

earliest stage) in the processing takes longer time than

as usual [9].

Map Reduce model used a barrier between the Map and

Reduce stages for simplifying in both of programming

and implementation. But, in many situations, this

barrier hurt performance because it was overly

restrictive. The author and his colleges developed

method to break the barrier in Map Reduce in a way

that improved efficiency [1]. However, this looks like

using zero reducer which is not suitable to every

applications based on Map Reduce applications.

One distributed network file system like Wofs[11] that

split a file into many small objects, stored these objects

in remote file servers, and used a special B+ tree to

manage the metadata of these objects. Besides, it used

the object-range locking policy to avoid data

incoherence and improve performance.

Gongye Zhou and his companions [12] proposed a B+

Tree Management Method of Object Attributes for

Object-based Storage. That controled storage attributes

with two-level B+ tree structure: one for attributes

index and another for object index.

None of the latter two systems (based on B+ tree)

considered limiting the order and height of B+ Tree.

This becomes critical issue for system performance.

The proposed system deeply takes into account “the

order and height” of the tree for collecting intermediate

data using in-mapper combining function before

moving to reducer. This can reduce the amount of

transferred data that need to be shuffled across the

network. Besides, the system can compromise the

complexity due to frequent insertion and deletion not

being higher than original B+ tree.

3. Background Theory

3.1 Map Reduce Data Flow

 In Map Reduce, the map function emits each word

plus an associated count of occurrences whereas the

reduce function sums together all counts emitted for a

particular word [4]. The model also makes the

guarantee that the input to the every reducer is sorted

by key. The process by which the system performs the

sort-and transfers the map outputs to the reducers as

inputs- is known as the shuffle where a large amount of

intermediate data can be produced, which is the heart of

Map Reduce [10].

 The underlying mechanism used for handling

intermediate data in a Map-Reduce computation is via a

parallel merge-sort. The cost of handling intermediate

data depends on (1) inter-node connectivity within the

cluster and (2) the rate at which data can be read from

(as well as written to) the disk subsystems on individual

nodes. The effective disk transfer rate is highly

dependent on the number of seeks as well as the

amount of data read per disk seek. Unless careful

attention is paid to the seek overheads involved in

handling the intermediate data, cluster throughput will

degrade [9].

3.2 B +Tree

 Many tree-based algorithms are used to store data;

however, they cannot handle the entire tree status of

balancing after some operations like insertion and

deletion. Those might store for fast efficient insertion

well, but bad ending in deletion. Consequently,

maintaining system’s balance after deletion becomes a

major problem in today’s tree-based storage area [13].

Other balanced trees such as AVL trees and Red-Black

Trees use the height of the sub-trees for balancing

whereas WBT (Weighted Balanced Trees) is based on

the size of the sub-trees below each node. Weighted

balanced trees are well suited for organizing data

orderly associated with their size. But, frequent

insertion and deletion makes the tree order difficult and

waste time [14].

A simple B+ tree consists of one or more blocks of

data, called nodes, linked together by pointers. Like

many tree-based approach, it has three types of basic

nodes: root, internal nodes and leaf. Internal nodes

which are used as an index nodes that point to other

nodes (child nodes) in the tree. Leaf nodes, is also

called data nodes which maintains data page as well as

pointer to neighboring nodes via doubly linked list.

Data searching in the tree always starts at the root node

and moves downwards until it reaches a leaf node. Both

internal and leaf nodes contain key values that are used

to guide the search for entries in the index. It is also a

balanced tree due to the fact that every path from the

root node to a leaf node is the same length. Major

emphasis on B+ tree is to consider the order of the tree

that make how large it can be [12].

4. Handling Intermediate Data

 In Map Reduce data processing, local aggregation

of intermediate result is one of the keys to be

algorithms efficient. With local aggregation (either

combiners or in-mapper combining), it reduces the

number of values associated with frequently-occurring

terms, which alleviates the reduce straggler problem

[5]. In this section, analysis of using combiners vs in-

mapper, stripe vs pair, merge sort is discussed and

proposed B+ tree based algorithm is proved as a more

efficient one over the existing approaches.

4.1 Using Combiners or In-Mapper

Combiner does local aggregation of key/values

produced by mapper before or during shuffle and sort

state of Map Reduce processing in order to

significantly reduce the amount of data that needs to be

copied over the network, resulting in much faster

algorithms but it cannot be known in advance how

many times combiners are called; it could be zero, one

or multiple times to run.

 In contrast with in-mapper combining, the mappers

will generate only those key-value pairs that need to be

shuffled across the network to the reducers [5].

Therefore, in-mapper combining is more efficient than

normal combiner and the proposed B+ tree based is

embedded in this one for collection intermediate data

which can mostly struggle in the network for further

processes.

 Either combiner or in-mapper combines

keys/values pairs with the same key together. They may

also some additional preprocessing of combined values.

[7]. Although, using in-mapper could introduce the

memory limitation, a counter variable can be set to

solve it whenever it is time to spill the partial results of

each map task. The process flow of combiner and in-

mapper is illustrated in Figure 1.

4.2 Using Pair or Stripe

 With the problem of building word co-occurrence

matrices from large corpora, a common task in corpus

linguistics and statistical natural language processing,

more complex strategies are applied to speed up map

reduce processing. Two popular techniques: pair and

stripes are used alternatively. Using pair approach, the

Map Reduce execution framework guarantees that all

values associated with the same key are brought

together in the reducer. As for stripe way, all

associative arrays with the same key will be brought

together in the reduce phase of processing [5].

The pair approach is easy to complex but generates an

immense number of key-value pairs compared to the

stripe approach which comes with more serialization

and deserialization overhead with the former one. But,

both algorithms can benefit from the use of combiners

or in-mapper.

4.3 Local Aggregation with Merge Sort

 As for Hadoop, the underlying mechanism used for

handling intermediate data in a Map Reduce

computation is essentially via a parallel merge-sort [9].

The partial output produced by each mapper is

periodically sort and spills the data to a file on disk.

Then, after all finish, those intermediate data are

transferred to the reducer which merges the data (using

a disk-based merge if necessary) to produce the final

output. But, whenever the map task emits data, the

amount of partial results grows larger and sometimes,

that exceed RAM limit which is skew in the output size

of the map task and can become scalability bottleneck.

5. B+ tree based Local Aggregation

 Actually, as input data size increases, intermediate

and output data sizes are also quite large and, finally,

the result-combining step adds a large overhead to the

total run time. Parallel data flow frameworks are very

sensitive to system parameters that users are expected

to tune. With Hadoop, a user has to choose the number

of reduce tasks for a Map-Reduce job and tune the

parameters related to sorting the output of a map task.

To lower the disk overheads, it is crucial to minimize.

Figure 1: Map Reduce with (a) Combiner, (b) In-

Mapper

the number of disk seeks. Fewer disk seeks translates to

increasing the amount of data read per seek.

 In the proposed system, Hadoop is a base

framework and replaced the algorithm usage of shuffle

and sort state of map reduce phase with modified B+

tree. After each mapper produces key/value pair, the

intermediate data is collected with modified B+ tree

initially and then associated key pairs are grouped

together according to their weights. When all the

mappers finished, the collections are transferred to the

reducer. The illustration of the proposed process flow is

shown in Figure 2.

5.1 Weight-based Allocation

 Frequent data insertion and deletion can make the

system different from the current state and it also

requires the system to be load balance. Since B+ tree is

self-balanced structure, which is suitable to weight-

based object allocation for the proposed system.

Accessing the object (key) is only to use the object id

which is calculated based on particular weights and

locates where to place in the tree. All objects IDs (keys)

in the proposed system are organized by a B+ tree. The

object index is derived from the calculation of its

weight. Therefore, a single attribute < object id> is

supported as an index which points to the actual

location of the object in the cluster. Since B+ tree

consists of two types of nodes: internal nodes and leaf

nodes. Internal points to other nodes in the tree whereas

the leaf node points to actual data using data pointers.

In addition, the leaf node also contains an additional

pointer, called the sibling pointer, which is used to

improve the efficiency of certain types of search [13].

The leaf node stores the actual address of the object and

internal nodes points to the index of the child nodes

which are allocated by their weight.

Figure 2: Map Reduce with Proposed B+ Tree based

Local Aggreagtion

5.2 Proposed B+ Tree

 As for data insertion in the existing media, the

traditional B+ tree can take at least two steps (levels)

for initial and then, the tree gets longer and longer as

the number of stored item increased. No one can tell

how large the tree depth and can result in delaying

access time.

 In afford to reduce the load traffic resulting from

large data traversing; the proposed system makes little

changes to the original tree to be getting better

performance. Since keys are arranged by their weight,

it must be needed to know which key (object) in the

present system has the nearest value to the new key to

place. Step 1 is taken new object into account for

searching nearest neighborhood. The second step of the

algorithm is not different from the original view. The

bucket found in the previous step is checked whether it

is full or not. If the condition is “ok” (not full), data is

only placed. Otherwise, bucket separation is performed

and new leaf’s smallest key is addressed into the parent

node. After passing two steps, the next one is only

considered for increasing order of the parent node

Mappers

Reducers

M1 M1 M1 Mn

R1 R2 R3

1

Rn

Combiner

Shuffle and Sort

(a)

Mappers

Reducers

M1 with

In-mapper

M2 with

In-mapper

Mn with

In-mapper

Shuffle and Sort

R1 R2 R3 Rn

(b)

Reducers

Mappers

Shuffle and Sort

R1 R2 R3 Rn

 (In-Mapper

with B+)

Order

(Counter)

 (In-Mapper

with B+)

Order

(Counter)

 (In-Mapper

with B+)

Order

(Counter)

which is a major contribution of the proposed system

for achieving high data available and removing

unnecessary network traffic for frequent data insertion

and searching time in the shuffling of intermediate data.

In those cases experienced in the former B+ Tree,

parent nodes is also split again and creates new keys

and cause the tree level high. This can be searching

time further and further in parallel with the node

number increased. The proposed B+ Tree as illustrated

in Table 1 simplifies it by only raising the tree order

according to power of 2-based form. Having increased

the order by 2 power, much more parent nodes as well

as child nodes can be handled and also the time

complexity remains stable.

5.3 Resource Expansion with Proposed B+ Tree

 Beginning from the base 2 of the order (b), there

must be at most one search key value (b-1) and two

child pointer (b<=n<=b) for each internal node as well

as the root node. When new objects are requested to be

stored, the tree requires expanding. However, node

allocation starting from 21 is too short to be explained

and thus, it will be more clear in the example with 22 of

the order value. Therefore, it raised the order by power

of 2-based form and now, the order value becomes 22

(b=4) and the number of children grows up to 4

whereas 3 for search key value in each internal node.

Table 2: Complexity comparison of mrge sort and

proposed B+ tree algorithm

Input Data

(Key/Value)

Merge Sort Modified B+ Tree

Sort

Input=2 1.0 1.0

Input=4 2.0 1.7924812503605783

Input=8 3.0 1.9357849740192017

Input=16 4.0 1.9767226489021297

Input=32 5.0 1.990839262077375

Input=64 6.0 1.9962133205833195

Input=128 7.0 1.9983835266817382

Input=256 8.0 1.9992941796073573

Input=512 9.0 1.9996866089930692

Input=1024 10.0 1.9998590429745329

Figure 3 Complexity comparison of merge Sort and

proposed B+ tree based data sorting

 In ordinary B+ tree model, if b is threshold for

each node to have, then adding new record which

exceeds the specified threshold makes node splitting in

two conditions, either of parents or child node. Instead

of splitting parent node, increasing the order size can be

the level of complexity constant and no high is raised.

5.4 Limiting Memory Usage

 When using in-mapper combining approach,

immense numbers of intermediate data are produced

each map task and the associative array holding the

partial term counts will no longer fit in memory [5].

One solution is to block input key-value pairs and flush

in memory data structures periodically. Instead of

emitting intermediate data after processing each key

value pair, there should be set a counter variable (n)

that keeps track certain number of key value pairs that

have been processed and invoke to spill. Since the

proposed B+ tree expands whenever the order size

0

2

4

6

8

10

12

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

Merge Sort
Modified B+ Tree

Input

Key

C
o

m
p

le
x

it
y

Insertion

Step 1: Perform a search to determine what bucket the new

record should go into.

Step 2: If the bucket is not full, add the record.

Otherwise, split the bucket.

Allocate new leaf and move half the bucket’s

elements to the new bucket.

Insert the new leaf’s smallest key and address into the

parent.

Step 3: If the parent is full, check whether high is within

range.

If high is ok, split it too.

Add the middle key to the parent node

Repeat until a parent is found that need not split.

If the root splits, create a new root which has one key

and two pointers.

If high is not ok, promote the value of order. Go to

Step 2.

Table1: Proposed B+ Tree-based local

aggregation algorithm

increases, the order variable can use as a threshold that

determine what time intermediate data has to be spilled

to disk. No one step is blocked due to not having run

out of memory space.

6. Complexity Analysis

6.1 Merge-sort

 In sorting n objects, merge sort has an average and

worst-case performance of O (n log n). With terabytes,

the time complexity for sorting those amounts of data

can result in processing slow. As long as the amount of

key value increase to sort, number of times to process

(merge and sort) will be frequently and that may takes

longer time and finally result in access speed slow

within the network as shown in Table 2.

6.2 B+ Tree

 B+ tree performance is logarithmic with respect to

the number of height. The total time complexity of the

tree takes O(logb n) in general for b order of the tree

with h level index. When increasing height, the depth

becomes longer and it is taken time complexity more

complicated. Contrary from traditional B+ tree, the

proposed approach is emphasized on the depth of the

tree which becomes skew in the original one. By

controlling the order and height, the proposed approach

can perform better than the existing one.

6.3 B+ Tree Vs Merge Sort

 However, Map Reduce can be beneficial for large

scale data processing; the algorithm applied plays a

major role to make the model efficient. As shown in

Table 2 and Figure 3, it is tested with variable input

size and analyzed using two approaches: B+ tree and

merge sort complexity theoretically. According to the

statistical data analysis, whenever the input key value

produced of each map task becomes larger, total time

(local aggregation of intermediate data) complexity of

conventional merge-sort of Map Reduce takes longer

time gradually after one another than the proposed

approach. Therefore, it is proved that simple merge sort

cannot parallel to the modified B+ tree for efficient data

sorting especially terabytes to petabytes of data.

7. Conclusion

Although Hadoop has benefited from the use of map

reduce data processing, careful handling of

intermediate data is needed in order to reduce network

traffic which can impact access time heavily. Variety of

local aggregation techniques: combiner, in-mapper etc.

are introduced to overcome this issue. Coupling the

modified B+ tree with existing in-mapper combining

approach can prove to perform better than regular

usage of merge sort.

References

[1]. Abhishek Verma, Nicolas Zea, Brian Cho, Indranil

Gupta, Roy H. Campbell, Breaking the MapReduce Stage

Barrier, 2010 [3] MapReduce in Practice

[2]. Brad Hedlund, Understanding Hadoop Clusters and the

Network. http://bradhedlund.com

[3]. David Silberberg, MapReduce and The Cloud.

[4] Jeffrey Dean and Sanjay Ghemawat, A Map Reduce

Flexible Data Processing Tool, January, 2010.

[5] Jimmy Lin and Chris Dyer, Data Intensive Text

Processing with MapReduce, April 11, 2010.

[6]. Jorda` Polo, David Carrera, Yolanda Becerra, Jordi

Torres and Eduard Ayguade, Performance Management of

MapReduce Applications, September 2009.

 [7]. Maria Jurcovicova, MapReduce Questions and Answers

Part I. http://javacodegeeks.com/2012/05/mapreduce-

questions-and-answers-part-1.html.

[8] Pietro Michiardi, Hadoop MapReduce in Practice, 2011.

[9] Sriram Rao, Raghu Ramakrishman, Mike Ovsiannikov,

Damian Reeves. SALFISH: A FRAMEWORK FOR LARGE

SCALE DATA PROCESSING, 2012.

[10] Tom White, Hadoop: The Definitive Guide, 2009.

[11]. Wang, C.C and Hsu, Y. Wofs: A Distributed Network

File System Supporting Fast Data Insertion and Truncation,

2010.

[12]. Zhou, G., Yuan, L. and Chen, J. B+ Tree Management

Method of Object Attributes for Object-Based Storage, 2007.

[13].http://www.mec.ac.in/resources/notes/notes/ds/bplus.htm

[14]. http://www.wikipedia.bplus.html

http://bradhedlund.com/
http://javacodegeeks.com/2012/05/mapreduce-questions-and-answers-part-1.html
http://javacodegeeks.com/2012/05/mapreduce-questions-and-answers-part-1.html
http://www.mec.ac.in/resources/notes/notes/ds/bplus.htm
http://www.wikipedia.bplus.html/

