
Structured Graph Decomposition Towards Proficient Exact Subgraph

Matching

Aye NweThaing

University of Computer Studeies, Yangon

Ayenwethaing@gmail.com

Abstract

 Structures that can be represented as graphs are

based on graph theory. Graph databases apply graph

theory to store information about the relationships

between entries in terms of graphs. The study of graph

decomposition has been one of the most important

topics in graph theory and also plays an important role

in the study of the combinatorics of experimental

designs. The main idea of graph decomposing is that

matching the smaller graph structure is easier and

results in low complexity than matching the original

large graph. In this paper, we propose the graph

decomposition algorithm based on edge-based

representation of the undirected connected graph to

obtain its decomposed subgraphs. Finally, we conduct

an extensive set of experiments on different type of

graphs to demonstrate the efficiency of our approach for

further efficient exact subgraph matching.

1. Introduction

 Graphs are widely used to model data in various

domains such as computer vision and the World Wide

Web. In pattern recognition and computer vision, for

example, graphs are used to represent hierarchical image

features. On the World Wide Web, social networks

naturally fit a graph data model. Graph theory is used to

study molecules in chemistry and physics. In condensed

matter physics, the three dimensional structure of

complicated simulated atomic structures can be studied

quantitatively by gathering statistics on graph-theoretic

properties related to the topology of the atoms. In

chemistry, a graph makes a natural model for a

molecule, where vertices represent atoms and edges

represent bonds. This approach is especially used in

computer processing of molecular structures, ranging

from chemical editors to database searching.

 The development of algorithms to handle graphs is

major interest in computer science. Graph

decomposition is an important paradigm for many

different areas of computer science ranging from graph

theoretical to algorithmic applications. To reduce

complex computations, it needs to consider building an

effective index structure. The aim of the study of graph

decompositions is to find tractable subgraphs for the

subgraph isomorphism query (ie; exact subgraph

matching) in databases and the constraint satisfaction

problem in AI. Both these problems are equivalent and

well known to be NP-complete. Our basic idea is to

break graphs into subgraphs (a small substructure

derived from an original graph).

 There are many notions of graph decomposition

which arise in the literature. Some decompositions

involve decomposing a graph using separators of special

types (star cutsets or clique cutsets), others involve

identification of special sets (substitution of splits),

while others involve tree decomposition (treewidth,

cliquewidth, branchwidth) or tree composition

(Cartesian product, lexicographic product).

 These decompositions are fundamental importance

for solving optimization and recognition problem on

classes of graphs. For example, substitution

decomposition is closely related to such problem as

solving problems expressible in monadic second logic

quantifying over vertices and edges and comparability

graph recognition and optimization. Treewidth and its

generalizations are of special importance due to the

results on tree decomposition and existential proof of

existence of algorithms.

 Clique cutsets and star cutsets are fundamental tools

used in the study of chordal and perfect graphs.

Particular tools for working with these decompositions

such as partition refinement and lexicographic breadth

first search have recently been improved and

generalized. The most prominent decomposition method

is the tree decomposition of originally developed for

graphs and also applicable to hypergraphs.

 In this paper, we propose a new approach for graph

decomposition for the undirected graphs based on edge-

based representation to obtain induced subgraphs. We

have to decompose the graph to strongly connected

components.

 The rest of the paper is organized as follow. Section

2 presents the related work of graph decomposition.

Section 3discusses the key concept of graph

decomposition comparing other proposed graph index

structures. Section 4 discusses about our proposed work.

Section 5 describes the algorithm of subgraph

decomposition and illustrates the decomposed subgraphs

of the given graph. In Section 6, we discuss the

experimental result of our proposed subgraph

decomposition strategy. Section 7concludes our paper.

2. Related Work

 A number of graph decomposition algorithms have

been proposed for processing subgraph queries and

graph pattern matching. In graph theory, graph

decomposition techniques are an instantiation of the

divide and conquer model to overcome redundant work

for further query processing problems[9][2][5][3].

 The directed acyclic graph (DAG) is proposed for

the purpose of graph decomposition in [2]. DAG

contains nodes and each node represents the unique,

induced subgraphs of the database graphs. This

technique is effective for processing dense graphs with

labeled edges. The indexing structure using this

decomposition allows more compact indexes when the

graphs have a high degree of similarity. However, this

proposed technique is only applicable to small graphs.

 In [9], a hybrid approach of static and dynamic

decomposition techniques in the presence of global

constraints for solving the subgraph isomorphism

problem is proposed. The basic idea is to preprocess a

static heuristic on a subset of its constraint network to

follow this static ordering until first problem

decomposition is available and then switch to a fully

propagated dynamically decomposing search. This also

exploits the non-predictable reduction of the

constraintgraph structure via constraint propagation and

entailment but reduces the huge computational effort of

a completely propagated search. This decomposition

method beats the dedicated state-of-the-art algorithms

for sparse graphs with high solution numbers. But this

approach still needs to investigate more heuristics for

SIP as it influences the quality of decomposition.

 Efficient clique decomposition of a graph into its

atom graph is proposed in [1]. Clique separator

decomposition is useful for a divide and conquer

approach for hard problems such as minimum fill-in,

maximum clique, graph coloring and maximum

independent sets. The process consists of repeatedly

finding a clique separator S of a graph G and

decomposing G by copying S into the different

connected components of G-S, obtaining a set of

induced subgraphs having no clique separator called

atoms. This paper describes how to organize the atoms

resulting from clique minimal separator decomposition

into atom graph and give an efficient recursive

algorithm to compute this graph at no extra cost than

computing the atoms. However, deciding whether a

graph is a clique graph or not at lower cost is still an

open problem.

 A new way for decomposing DAGs into spanning

trees to compress transitive closures is proposed in [12].

Due to the very large size of many real world graphs,

the computational cost and size of labels using existing

methods are too expensive in practical. Therefore, this

approach is introduced to decompose a graph into a

series of spanning trees that share common edges to

transform a reachability query over a graph into a set of

queries over trees. Although the proposed method has

efficiency and effectiveness over different kinds of

graphs, the query time is still bounded by a constant.

3. Key Concepts of Graph Decomposition

 In recent years, many efficient indexes have been

developed to process subgraph isomorphism queries on

graph databases [8] [11] [3] [4]. A subgraph query

retrieves all the graphs in the database that are

supergraphs of a given query graph. Query processing

using these indexes has two main phases. Two phases

are

 Filtering and

 candidate verification

 First, filtering phase uses the index to eliminate false

results and to produce a candidate answer set. Second,

candidate verification tests whether each candidate is

indeed a supergraph of the query.

 As pointed out by the authors of the above-

mentioned indexes, the cost of candidate verification is

the dominating factor in the cost of processing a

subgraph query. Therefore, many researchers have

proposed the indexing structures aim at reducing the

candidate answer set as much as possible. However, due

to the high complexity of subgraph isomorphism testing,

candidate verification is still the most expensive part in

processing a subgraph query to get the exact answer set.

 In this paper, we propose the graph decomposition

scheme to construct graph index structure for subgraph

query processing that does not require candidate

verification. Eliminating of candidate verification is the

main concept of our graph decomposition proposal. Our

proposed work is designed mainly for processing

databases containing smaller graphs such as chemical

compound graphs.

4. Proposed Graph Decomposition

Technique

 Filtering candidate subgraphs for exact subgraph

matching in other works[5][10][7][6]consumes more

computational time. To avoid the difficulty of cleaning

candidate subgraphs for subgraph isomorphism query,

new graph decomposition system has been developed

that generates all possible subgraphs of the original

graph incoming into the graph database based on edge-

based processing.

 Graph decomposition is the technique of breaking

down the graph of interest into smaller parts according

to the operations of graph theory. In this paper, we study

the concept of graph algebras introduced for this

purpose. The graph operations such as union and

intersection are simple and useful operations in graph

theory. Therefore, the most basic ways of combining

graphs are by union and intersection. These operations

are associative and commutative and may be extended

to an arbitrary number of graphs. The union of two

graphs G1 and G2 is the graph (G1∪G2) with vertex set

(V(G1)∪V(G2)). The intersection of two graphs is

defined analogously. When two graphs are disjoint,

their intersection is the null graph.

 Moreover, our graph decomposition work is the

enumeration of all connected, induced subgraphs of a

graph. All edges in G are partitioned into subsets so that

each subset is the induced subgraph(g) of the given

graph G. The smallest subgraph contains two nodes and

one edge exactly.

 A graph of size n is decomposed into at most 2
n
-

2subgraphs in the case of complete graph containing

unique label vertices. If all labels are identical, a

complete graph of size n decomposes into n-1subgraphs

precisely. Figure 1 shows the proposed system

framework. The detail description of graph

decomposition architecture is described as follows:

4.1. Preprocessing

 In the preprocessing step, the vertex list of the input

graph is generated. Every vertex in the graph is assigned

with unique ID. After that the edge list of the graph is

computed. The edge in the graph is defined as

(Sid,E,Did) where Sid is the source vertex id, E is the

edge label and Did is the destination vertex id. The

source and destination ids in each edge are arranged in

the ascending order because the graphs in the database

are undirected connected graphs.

Figure 1. System architecture

4.2. Finding c-organizer Between Subgraphs

 In this step, c-organizer is determined between two

subgraphs. To compute c-organizer, the vertices of two

subgraphs are the ids of corresponding vertices. The

smallest subgraphs of the original graph are all edges in

this graph. The number of subgraphs with their

respective vertices is defined as ikmwhere i is the

number of vertices and m is the number of subgraphs

withi vertices. To compute 3kmsubgraphs for the given

graph, we need to examine whether 2k2subgraphs have

c-organizer to merge these two graphs. In that case, we

have some restrictions: to merge 2k2subgraphs, c-

organizer must be ‘1’ (i.e; the two subgraphs has 1

common organizer), and to combine 3k2subgraphs, the

organizer must be ‘2’ etc. Thus, c-organizer needs (i-1)

to combine two ikmsubgraphs. The graph (GC) in figure

2 has the following edges:

{<1,s,2>,<2,s,3>,<3,d,4>,<3,s,5>, <5,d,6>,

<5,s,7>,<7,s,8>}. Therefore GC has 2k7smallest

subgraphs (12, 23, 34, 35, 56, 57, and 78). For

demonstration, we use 4k2subgraphs to get 5k1subgraph

of the graph (GC) shown in figure 2. Figure 3

demonstrates finding c-organizer of two subgraphs 2345

and 1235 and tests whether 3-organizer or not. In that

case, depending on the result, the two subgraphs can be

combined.

Figure 2. A chemical compound graph (GC)

Step.1.

2 3 4 5

 => 2

1 2 3 5 1-organizer

Step.2.

2 3 4 5

 => 2,3

1 2 3 5 2-organizer

Step.3.

2 3 4 5

 => 2,3

1 2 3 5 2-organizer

Step.4.

2 3 4 5

 => 2,3,5

1 2 3 5 3-organizer

Figure 3.Finding c-organizer between two subgraphs

Subgraphs disk storage

Subgraphs

temporary

storage

Edge list (G)

If storage does not contain new subgraph

Preprocessing

Finding c-Organizer of ikm

Unifying ikmsubgraphs

Form new subgraphh

If it has required commonvertex

Input Graph G
8

8

7

6

5

4

3

2

1 s

d

s
s

d

s s
O

H C

C

O

O

O

H

4.3. Forming a New Subgraph by Unifying Two

Subgraphs

In this step, ikmsubgraphs are merged to form new

(i+1)kmsubgraphs depending on the c-organizer in the

previous step. Figure 4 shows the unifying between

4k2subgraphs (2345 and 1235) to get a new

5k1subgraph (12345). In the proposed system, two

storages are used. The subgraph temporary storage is

used to temporarily store all possibleikmsubgraphs of

the given graph.Subsequently, ikmsubgraphs in the

temporary storage are used to generate

(i+1)kmsubgraphs. After that, ikmsubgraphs are cleaned

in the temporary storage and (i+1)kmsubgraphs are

stored in this storage again.

In the subgraph disk storage, all subgraphs are

inserted with their corresponding vertex IDs. If more

than one subgraph has the same vertex list, only one

subgraph is stored in the subgraph disk storage.

Step.1.

2 3 4 5

 => 1,2,3,5

1 2 3 5

Step.2.

2 3 4 5

 => 1,2,3,5

1 2 3 5

Step.3.

2 3 4 5

 => 1,2,3,4,5

1 2 3 5

Step.4.

2 3 4 5

 => 1,2,3,4,5

1 2 3 5

Figure4. Unifying two subgraphs to form

new subgraph

5. Subgraph Decomposition Algorithm

 In this section, we express the subgraph

decomposition algorithm (SGD) in figure 5 and

GraphMatching algorithm in figure 6 to decompose the

given graph by using step-by-step processing described

in section IV. Table 1 describes the notations used in

the algorithms for our proposed system.

 For each graph Gk in the database, SGD gets the

edge list of Gk and each edge of Gk is the smallest

subgraph of Gk. Then, these subgraphs are checked

using the GraphMatching algorithm to find duplicated

subgraph. In GraphMatching algorithm, subgraph

represents the ids of vertices contained in thissubgraph.

If the subgraph does not already exist in GS, this

subgraph is stored in GS. In SGD, to form a new

subgraph, c-organizer is computed between two

subgraphs if these two subgraphs are not identical. If

the subgraphs are duplicated, SGD stores only one

subgraph for further processing.

 Figure 7 provides an example of our graph

decomposition strategy. For the purpose of illustration,

we use the graph GC to generate all possible induced

subgraphs.

Table 1. Notations used in the system

Notation Definition

GDB Graph database

Gk Graph in the GDB

EL(Gk) Edge list of Gk

ikm m subgraphs with i vertices

N no. of vertices in the graph

GS Graphs storage

Algorithm SubGraphDecomposition (SGD)

Input: GDB←{G1,G2,…,Gn},EL(Gk)←Gk, EDict

Output: GS

n=|Gk|, i=1, j=2

For each Gk∈ GDB

 For each e ∈EL(Gk)

 g:=e

 ikm:= ikm + g

 End for

 GS:=GraphMatching(ikm)

Return GS

While (n>3)

 For eachga∈ikm

 For eachgb∈ikm

 If (ga ≠ gb) then

 If(|ga∩gb|) = |ga|-1 then

 gab := {ga} ∪ {gb}

 jkm= jkm + {gab}

 End if

 End if

 End for

End for

 i:=j

 j:=j+1

 GS:=GraphMatching(ikm)

// End while

End for

Return GS

Figure 5.Subgraph decomposition

algorithm

Algorithm GraphMatching (ikm)

For eachgab∈ikm

Nid(gab) {v1,v2,…,vn}

 If Nid(gab) does not already exist in GSthen

 GS:= GS+ Nid(gab)

 End if

End for

Return GS

Figure 6.Graph matching algorithm

6. Experimental Results

The analysis of the computational time of SGD

algorithm is described as follows. The algorithm

takes m comparisons to generate the edge lists of

the graph. The edges of the graph are the smallest

induced subgraphs of the given graph. Therefore,

the computational time complexity to generate all

possible smallest subgraphs is m. The algorithm

takes m(m-1) comparisons to unify two

decomposed subgraphs for (n-3) processing steps.

 Figure 7.Graph Decomposition using graph (Gc)

Thus, the total time complexity of our proposed

algorithm is O(m+m(m-1)(n-3)) in worst case.

The space complexity of SGD algorithm is O(2n
-

2). Table 2 describes the total time and space

complexity of SGD using different type of graphs

such as sparse, dense and complete graphs.

Table 2. Analysis of computational time and space

complexity using SGD

No. of

Vertices

No. of

Edges

TimeComplexity
O(m+m(m-1)(n-3))

Space

Complexity
O(2n-2)

Sparse Graphs

8 9 369 254

9 11 671 510

10 12 936 1022

Dense Graphs

8 20 1920 254

9 28 4564 510

10 35 8365 1022

Complete Graphs

8 28 3808 254

9 36 7596 510

10 45 13905 1022

The study shows that our graph decomposition

(SGD) is based on the edge-based representation

and the computational time complexity varies

depending on the different type of graphs such as

sparse, dense and complete graphs. Moreover, our

method reduces the computational time

complexity more efficiently in sparse graph than

dense and complete graphs.

12

HO

23

OC

34

CO

35

CC

123

HOC

234

OCO

235

OCC

345

COC

1234

HOCO

1235

HOCC

2345

OCOC

56

CO

57

CO

78

OH

356

CCO

357

CCO

567

OCO

578

COH

2356

OCCO

2357

OCCO

3456

OCCO

3457

OCCO

3567

OCCO

3578

CCOH

5678

OCOH

12345

HOCOC

12356

HOCCO

12357

HOCCO

23456

OCOCO

23457

OCOCO

23567

OCCOO

23578

OCCOH

34567

COCOO

34578

COCOH

35678

CCOOH

123456

HOCOCO

123457

HOCOCO

123567

HOCCOO

123578

HOCCOH

234567

OCOCOO

234578

OCOCOH

235678

OCCOOH

345678

COCOOH

1234567

HOCOCOO

1234578

HOCOCOH

1235678

HOCCOOH

2345678

OCOCOOH

To evaluate the performance of our proposed work

presented in section 4 and 5, we developed a graph

decomposition engine named SGD. SGD was

implemented and run in Java. We tested our graph

decomposition engine using different type of graphs

such as sparse, dense and completed graphs. Our

proposed work is designed mainly for processing

databases consisting of large set of smaller graphs. It

can be applied effectively in applications such as

chemical informatics, protein interaction. We used

chemical compound dataset from

http://pubchem.ncbi.nlm.nih.gov/ to test SGD.

The graph decomposition time was measured for

different type of graphs in millisecond. All experiments

were made using a 3GHz Intel Core 2 Duo CPU with 1

GB memory and Microsoft Windows XP.

Decomposition times were measured while maintaining

index in memory.

 Figure 8 shows a comparison of graph

decomposition time for three types of graphs: sparse,

dense and complete graphs. The results are obtained on

chemical graph data sets by varying the graph size from

5 to 25. Each graph encodes the structure of a molecule

where the vertices are used to represent atoms with

edge labels representing bonds. From the empirical

analysis, it is found that the time of execution varies for

sparse, dense, and complete graphs. This is because our

graph decomposition work is based on edge based

representation. It takes considerable time for

decomposition complete graphs comparable to sparse

and dense graphs.

Figure 9 shows the decomposition times for various

database sizes. We tested our proposed algorithm using

100 database graphs with an average of 7 vertices for

each graph. Most of the graphs in the database are

dense graphs. Chemical graphs were obtained randomly

from the set of all molecular structures that are

represented in the dataset. From our experimental

result, it shows that the execution time varies for

different number of database graphs. Moreover, our

proposed work is edge-based. Hence, the execution

time is more effective and efficient for sparse and non-

sparse graphs than complete graphs with irrespective of

vertices in the graphs.

Figure 8.Graph decomposition time for

different type of graphs

Figure 9.Graph decomposition time for

various database sizes

7. Conclusion

 Our goal is to find substructures of the given graph

for further processing of exact graph matching. In order

to restrict the search space, our proposed algorithm

SGD considers only connected substructures, i.e.,

graphs having only one connected component. We have

shown how the proposed method decomposes the graph

into its subgraphs using chemical structure from the

chemical compound database. Our proposed work

breaks down the graph based on edge-based

representation. For that reason, our proposed effort is

more proficient for sparse and dense graphs rather than

complete graphs. Consequently, it saves a good amount

of search space when it is used in chemical graphs data

set. This is because almost all chemical graphs are non-

sparse but not complete. Future work will focus on

making the presented approach more meaningful for the

exact graph matching for subgraph isomorphism query.

References

[1] A. B. R. Pogorelcnik, G. Simonet. “Efficient Clique

Decomposition of a graph into its atom graph”, Research

Report LIMOS/PR-10-07, 10 March 2010.

[2] D. W. Williams, J. Huan, W. Wang. “Graph Database

Indexing Using Structured Graph Decomposition”, 2007.

[3] H.He and A. K. Singh. “Closure-tree: An Index Structure

for Graph Queries”. In ICDE. 38, 2006.

[4] H. Jiang, H. Wang, S. Zhou. “Gstring: A Novel

Approach for Efficient Search in Graph Databases”. In

ICDE. 566-575, 2007.

[5] J. Cheng, Y. Ke, W. NG. “Efficient Query Processing on

Graph Databases”. ACM Trans. On Database Systems,

Vol. V, No. N, 1-44, Sept 2008.

[6] J. Cheng, Y. Ke, W. NG, A. Lu. “FG-index: Towards

Verification-free Query Processing on Graph

Databases”. In SIGMOD Conf, 857-872, 2007.

[7] P. Zhao, J. X. Yu, P. S. Yu. “Graph Indexing:

Tree+delta>= Graph”. In VLDB, 938-949, 2007.

[8] H. Jiang, H. Wang, S. Zhou. “Gstring: A Novel

Approach for Efficient Search in Graph Databases”. In

ICDE. 566-575, 2007.

0.1

1

10

100

1000

10000

5 10 15 20 25

D
ec

o
m

p
o

si
ti

o
n

 t
im

e
in

 m
s(

'0
0

0
)

Graph Size(Vertices)

Sparse Graph Dense Graph

Complete Graph

0.1

1

10

100

1000

20 40 60 80 100

D
e

co
m

p
o

si
ti

o
n

 t
im

e
 in

 m
s(

'0
0

0
)

Database Size(Graphs)

decomposition time for various no. of graphs

http://pubchem.ncbi.nlm.nih.gov/

[9] S. Zampelli, M. Mann, Y. Deville, R. Backofen.

“Decomposition Techniques for Subgraph Matching”,

2008.

[10] S. Zhang, M. Hu, J. Yang. “Treepi: A Novel Graph

Indexing Method”. In ICDE, 966-975, 2007.

[11] Yan, J. Han. “Graph Indexing based on Discriminative

Frequent Structure Analysis”. ACM Trans. Database

Syst. 30,4, 960-993, 2005.

[12] Y. Chen, Y. Chen2. “Decomposing DAGs into Spanning

Trees: A New Way to Compress Transitive Closures”, in

Proc. of Int. Conf. on Data Engineering (IDCE 2011),

IEEE, 2011.

