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Abstract 
 

 Structures that can be represented as graphs are 

based on graph theory. Graph databases apply graph 

theory to store information about the relationships 

between entries in terms of graphs. The study of graph 

decomposition has been one of the most important 

topics in graph theory and also plays an important role 

in the study of the combinatorics of experimental 

designs. The main idea of graph decomposing is that 

matching the smaller graph structure is easier and 

results in low complexity than matching the original 

large graph. In this paper, we propose the graph 

decomposition algorithm based on edge-based 

representation of the undirected connected graph to 

obtain its decomposed subgraphs. Finally, we conduct 

an extensive set of experiments on different type of 

graphs to demonstrate the efficiency of our approach for 

further efficient exact subgraph matching.  

 

1. Introduction 
 

 Graphs are widely used to model data in various 

domains such as computer vision and the World Wide 

Web. In pattern recognition and computer vision, for 

example, graphs are used to represent hierarchical image 

features. On the World Wide Web, social networks 

naturally fit a graph data model. Graph theory is used to 

study molecules in chemistry and physics. In condensed 

matter physics, the three dimensional structure of 

complicated simulated atomic structures can be studied 

quantitatively by gathering statistics on graph-theoretic 

properties related to the topology of the atoms. In 

chemistry, a graph makes a natural model for a 

molecule, where vertices represent atoms and edges 

represent bonds. This approach is especially used in 

computer processing of molecular structures, ranging 

from chemical editors to database searching. 

 The development of algorithms to handle graphs is 

major interest in computer science. Graph 

decomposition is an important paradigm for many 

different areas of computer science ranging from graph 

theoretical to algorithmic applications. To reduce 

complex computations, it needs to consider building an 

effective index structure. The aim of the study of graph 

decompositions is to find tractable subgraphs for the 

subgraph isomorphism query (ie; exact subgraph 

matching) in databases and the constraint satisfaction 

problem in AI. Both these problems are equivalent and 

well known to be NP-complete. Our basic idea is to 

break graphs into subgraphs (a small substructure 

derived from an original graph).  

 There are many notions of graph decomposition 

which arise in the literature. Some decompositions 

involve decomposing a graph using separators of special 

types (star cutsets or clique cutsets), others involve 

identification of special sets (substitution of splits), 

while others involve tree decomposition (treewidth, 

cliquewidth, branchwidth) or tree composition 

(Cartesian product, lexicographic product).  

 These decompositions are fundamental importance 

for solving optimization and recognition problem on 

classes of graphs. For example, substitution 

decomposition is closely related to such problem as 

solving problems expressible in monadic second logic 

quantifying over vertices and edges and comparability 

graph recognition and optimization. Treewidth and its 

generalizations are of special importance due to the 

results on tree decomposition and existential proof of 

existence of algorithms.  

 Clique cutsets and star cutsets are fundamental tools 

used in the study of chordal and perfect graphs. 

Particular tools for working with these decompositions 

such as partition refinement and lexicographic breadth 

first search have recently been improved and 

generalized. The most prominent decomposition method 

is the tree decomposition of originally developed for 

graphs and also applicable to hypergraphs. 

 In this paper, we propose a new approach for graph 

decomposition for the undirected graphs based on edge-

based representation to obtain induced subgraphs. We 

have to decompose the graph to strongly connected 

components. 

 The rest of the paper is organized as follow. Section 

2 presents the related work of graph decomposition. 

Section 3discusses the key concept of graph 

decomposition comparing other proposed graph index 

structures. Section 4 discusses about our proposed work. 

Section 5 describes the algorithm of subgraph 

decomposition and illustrates the decomposed subgraphs 

of the given graph. In Section 6, we discuss the 

experimental result of our proposed subgraph 

decomposition strategy. Section 7concludes our paper. 

 

2. Related Work 
 

 A number of graph decomposition algorithms have 

been proposed for processing subgraph queries and 

graph pattern matching. In graph theory, graph 

decomposition techniques are an instantiation of the 

divide and conquer model to overcome redundant work 

for further query processing problems[9][2][5][3].  

 The directed acyclic graph (DAG) is proposed for 

the purpose of graph decomposition in [2]. DAG 



contains nodes and each node represents the unique, 

induced subgraphs of the database graphs. This 

technique is effective for processing dense graphs with 

labeled edges. The indexing structure using this 

decomposition allows more compact indexes when the 

graphs have a high degree of similarity. However, this 

proposed technique is only applicable to small graphs. 

 In [9], a hybrid approach of static and dynamic 

decomposition techniques in the presence of global 

constraints for solving the subgraph isomorphism 

problem is proposed. The basic idea is to preprocess a 

static heuristic on a subset of its constraint network to 

follow this static ordering until first problem 

decomposition is available and then switch to a fully 

propagated dynamically decomposing search. This also 

exploits the non-predictable reduction of the 

constraintgraph structure via constraint propagation and 

entailment but reduces the huge computational effort of 

a completely propagated search. This decomposition 

method beats the dedicated state-of-the-art algorithms 

for sparse graphs with high solution numbers. But this 

approach still needs to investigate more heuristics for 

SIP as it influences the quality of decomposition. 

 Efficient clique decomposition of a graph into its 

atom graph is proposed in [1]. Clique separator 

decomposition is useful for a divide and conquer 

approach for hard problems such as minimum fill-in, 

maximum clique, graph coloring and maximum 

independent sets. The process consists of repeatedly 

finding a clique separator S of a graph G and 

decomposing G by copying S into the different 

connected components of G-S, obtaining a set of 

induced subgraphs having no clique separator called 

atoms. This paper describes how to organize the atoms 

resulting from clique minimal separator decomposition 

into atom graph and give an efficient recursive 

algorithm to compute this graph at no extra cost than 

computing the atoms. However, deciding whether a 

graph is a clique graph or not at lower cost is still an 

open problem. 

 A new way for decomposing DAGs into spanning 

trees to compress transitive closures is proposed in [12]. 

Due to the very large size of many real world graphs, 

the computational cost and size of labels using existing 

methods are too expensive in practical. Therefore, this 

approach is introduced to decompose a graph into a 

series of spanning trees that share common edges to 

transform a reachability query over a graph into a set of 

queries over trees. Although the proposed method has 

efficiency and effectiveness over different kinds of 

graphs, the query time is still bounded by a constant. 

 

3. Key Concepts of Graph Decomposition 
 

 In recent years, many efficient indexes have been 

developed to process subgraph isomorphism queries on 

graph databases [8] [11] [3] [4]. A subgraph query 

retrieves all the graphs in the database that are 

supergraphs of a given query graph. Query processing 

using these indexes has two main phases. Two phases 

are 

 Filtering and 

 candidate verification 

 First, filtering phase uses the index to eliminate false 

results and to produce a candidate answer set. Second, 

candidate verification tests whether each candidate is 

indeed a supergraph of the query.  

 As pointed out by the authors of the above-

mentioned indexes, the cost of candidate verification is 

the dominating factor in the cost of processing a 

subgraph query. Therefore, many researchers have 

proposed the indexing structures aim at reducing the 

candidate answer set as much as possible. However, due 

to the high complexity of subgraph isomorphism testing, 

candidate verification is still the most expensive part in 

processing a subgraph query to get the exact answer set. 

 In this paper, we propose the graph decomposition 

scheme to construct graph index structure for subgraph 

query processing that does not require candidate 

verification. Eliminating of candidate verification is the 

main concept of our graph decomposition proposal. Our 

proposed work is designed mainly for processing 

databases containing smaller graphs such as chemical 

compound graphs. 

 

4. Proposed Graph Decomposition 

Technique 
 

 Filtering candidate subgraphs for exact subgraph 

matching in other works[5][10][7][6]consumes more 

computational time. To avoid the difficulty of cleaning 

candidate subgraphs for subgraph isomorphism query, 

new graph decomposition system has been developed 

that generates all possible subgraphs of the original 

graph incoming into the graph database based on edge-

based processing. 

 Graph decomposition is the technique of breaking 

down the graph of interest into smaller parts according 

to the operations of graph theory. In this paper, we study 

the concept of graph algebras introduced for this 

purpose. The graph operations such as union and 

intersection are simple and useful operations in graph 

theory. Therefore, the most basic ways of combining 

graphs are by union and intersection. These operations 

are associative and commutative and may be extended 

to an arbitrary number of graphs. The union of two 

graphs G1 and G2 is the graph (G1∪G2) with vertex set 

(V(G1)∪V(G2)). The intersection of two graphs is 

defined analogously.  When two graphs are disjoint, 

their intersection is the null graph. 

 Moreover, our graph decomposition work is the 

enumeration of all connected, induced subgraphs of a 

graph. All edges in G are partitioned into subsets so that 

each subset is the induced subgraph(g) of the given 

graph G. The smallest subgraph contains two nodes and 

one edge exactly. 

 A graph of size n is decomposed into at most 2
n
-

2subgraphs in the case of complete graph containing 

unique label vertices. If all labels are identical, a 

complete graph of size n decomposes into n-1subgraphs 

precisely. Figure 1 shows the proposed system 



framework. The detail description of graph 

decomposition architecture is described as follows: 

 

4.1. Preprocessing 
 

 In the preprocessing step, the vertex list of the input 

graph is generated. Every vertex in the graph is assigned 

with unique ID. After that the edge list of the graph is 

computed. The edge in the graph is defined as 

(Sid,E,Did) where Sid is the source vertex id, E is the 

edge label and Did is the destination vertex id. The 

source and destination ids in each edge are arranged in 

the ascending order because the graphs in the database 

are undirected connected graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. System architecture 

 

4.2. Finding c-organizer Between Subgraphs 
 

 In this step, c-organizer is determined between two 

subgraphs. To compute c-organizer, the vertices of two 

subgraphs are the ids of corresponding vertices. The 

smallest subgraphs of the original graph are all edges in 

this graph. The number of subgraphs with their 

respective vertices is defined as ikmwhere i is the 

number of vertices and m is the number of subgraphs 

withi vertices. To compute 3kmsubgraphs for the given 

graph, we need to examine whether 2k2subgraphs have 

c-organizer to merge these two graphs. In that case, we 

have some restrictions: to merge 2k2subgraphs, c-

organizer must be ‘1’ (i.e; the two subgraphs has 1 

common organizer), and to combine 3k2subgraphs, the 

organizer must be ‘2’ etc. Thus, c-organizer needs (i-1) 

to combine two ikmsubgraphs. The graph (GC) in figure 

2 has  the following edges: 

{<1,s,2>,<2,s,3>,<3,d,4>,<3,s,5>, <5,d,6>, 

<5,s,7>,<7,s,8>}. Therefore GC has 2k7smallest 

subgraphs (12, 23, 34, 35, 56, 57, and 78).  For 

demonstration, we use 4k2subgraphs to get 5k1subgraph 

of the graph (GC) shown in figure 2. Figure 3 

demonstrates finding c-organizer of two subgraphs 2345 

and 1235 and tests whether 3-organizer or not. In that 

case, depending on the result, the two subgraphs can be 

combined. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A chemical compound graph (GC) 
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Figure 3.Finding c-organizer between two subgraphs 
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4.3. Forming a New Subgraph by Unifying Two 

Subgraphs 

 
In this step, ikmsubgraphs are merged to form new 

(i+1)kmsubgraphs depending on the c-organizer in the 

previous step. Figure 4 shows the unifying between 

4k2subgraphs (2345 and 1235) to get a new 

5k1subgraph (12345). In the proposed system, two 

storages are used. The subgraph temporary storage is 

used to temporarily store all possibleikmsubgraphs of 

the given graph.Subsequently, ikmsubgraphs in the 

temporary storage are used to generate 

(i+1)kmsubgraphs. After that, ikmsubgraphs are cleaned 

in the temporary storage and (i+1)kmsubgraphs are 

stored in this storage again.  

In the subgraph disk storage, all subgraphs are 

inserted with their corresponding vertex IDs. If more 

than one subgraph has the same vertex list, only one 

subgraph is stored in the subgraph disk storage.  
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Figure4. Unifying two subgraphs to form 

new subgraph 

 

 

 

5. Subgraph Decomposition Algorithm 
 

 In this section, we express the subgraph 

decomposition algorithm (SGD) in figure 5 and 

GraphMatching algorithm in figure 6 to decompose the 

given graph by using step-by-step processing described 

in section IV. Table 1 describes the notations used in 

the algorithms for our proposed system. 

 For each graph Gk in the database, SGD gets the 

edge list of Gk and each edge of Gk is the smallest 

subgraph of Gk. Then, these subgraphs are checked 

using the GraphMatching algorithm to find duplicated 

subgraph. In GraphMatching algorithm, subgraph 

represents the ids of vertices contained in thissubgraph. 

If the subgraph does not already exist in GS, this 

subgraph is stored in GS. In SGD, to form a new 

subgraph, c-organizer is computed between two 

subgraphs if these two subgraphs are not identical. If 

the subgraphs are duplicated, SGD stores only one 

subgraph for further processing.   

 Figure 7 provides an example of our graph 

decomposition strategy. For the purpose of illustration, 

we use the graph GC to generate all possible induced 

subgraphs.  

Table 1. Notations used in the system 

Notation Definition 

GDB Graph database 

Gk Graph in the GDB 

EL(Gk) Edge list of Gk 

ikm m subgraphs with i vertices 

N no. of vertices in the graph 

GS Graphs  storage 

 

Algorithm SubGraphDecomposition (SGD) 

 

Input: GDB←{G1,G2,…,Gn},EL(Gk)←Gk, EDict 

Output:   GS 

n=|Gk|, i=1, j=2 

For each Gk∈ GDB 

 For each e ∈EL(Gk) 

  g:=e 

  ikm:= ikm + g 

 End for 

 GS:=GraphMatching(ikm) 

Return GS 

  

While (n>3) 

 For eachga∈ikm 

  For eachgb∈ikm 

  If (ga ≠  gb) then 

  If( |ga∩gb| ) = |ga|-1 then 

   gab := {ga} ∪ {gb}  

   jkm= jkm + {gab} 

   End if  

          End if 

  End for 

  

 

 



End for 

 i:=j 

 j:=j+1 

 GS:=GraphMatching(ikm) 

// End while 

End for 

Return GS 

Figure 5.Subgraph decomposition 

algorithm 

 
Algorithm GraphMatching (ikm) 

For eachgab∈ikm 

Nid(gab)       {v1,v2,…,vn} 

 If Nid(gab) does not already exist in GSthen 

  GS:= GS+ Nid(gab) 

 End if 

End for 

Return GS 

Figure 6.Graph matching algorithm 

 
6. Experimental Results 

 
The analysis of the computational time of SGD 

algorithm is described as follows. The algorithm 

takes m comparisons to generate the edge lists of 

the graph. The edges of the graph are the smallest 

induced subgraphs of the given graph. Therefore, 

the computational time complexity to generate all 

possible smallest subgraphs is m. The algorithm 

takes m(m-1) comparisons to unify two 

decomposed subgraphs for (n-3) processing steps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
    Figure 7.Graph Decomposition using graph (Gc) 

 

 

Thus, the total time complexity of our proposed 

algorithm is O(m+m(m-1)(n-3)) in worst case.  

The space complexity of SGD algorithm is O(2n
-

2). Table 2 describes the total time and space 

complexity of SGD using different type of graphs 

such as sparse, dense and complete graphs. 

Table 2. Analysis of computational time and space 

complexity using SGD 

No. of 

Vertices 

No. of 

Edges 

TimeComplexity 
O(m+m(m-1)(n-3)) 

Space 

Complexity 
O(2n-2) 

Sparse Graphs 

8 9 369 254 

9 11 671 510 

10 12 936 1022 

Dense Graphs 

8 20 1920 254 

9 28 4564 510 

10 35 8365 1022 

Complete Graphs 

8 28 3808 254 

9 36 7596 510 

10 45 13905 1022 

The study shows that our graph decomposition 

(SGD) is based on the edge-based representation 

and the computational time complexity varies 

depending on the different type of graphs such as 

sparse, dense and complete graphs.  Moreover, our 

method reduces the computational time 

complexity more efficiently in sparse graph than 

dense and complete graphs. 
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To evaluate the performance of our proposed work 

presented in section 4 and 5, we developed a graph 

decomposition engine named SGD. SGD was 

implemented and run in Java. We tested our graph 

decomposition engine using different type of graphs 

such as sparse, dense and completed graphs. Our 

proposed work is designed mainly for processing 

databases consisting of large set of smaller graphs. It 

can be applied effectively in applications such as 

chemical informatics, protein interaction. We used 

chemical compound dataset from 

http://pubchem.ncbi.nlm.nih.gov/ to test SGD.  

The graph decomposition time was measured for 

different type of graphs in millisecond. All experiments 

were made using a 3GHz Intel Core 2 Duo CPU with 1 

GB memory and Microsoft Windows XP. 

Decomposition times were measured while maintaining 

index in memory. 

 Figure 8 shows a comparison of graph 

decomposition time for three types of graphs: sparse, 

dense and complete graphs. The results are obtained on 

chemical graph data sets by varying the graph size from 

5 to 25. Each graph encodes the structure of a molecule 

where the vertices are used to represent atoms with 

edge labels representing bonds.  From the empirical 

analysis, it is found that the time of execution varies for 

sparse, dense, and complete graphs. This is because our 

graph decomposition work is based on edge based 

representation. It takes considerable time for 

decomposition complete graphs comparable to sparse 

and dense graphs.  

Figure 9 shows the decomposition times for various 

database sizes. We tested our proposed algorithm using 

100 database graphs with an average of 7 vertices for 

each graph. Most of the graphs in the database are 

dense graphs. Chemical graphs were obtained randomly 

from the set of all molecular structures that are 

represented in the dataset. From our experimental 

result, it shows that the execution time varies for 

different number of database graphs. Moreover, our 

proposed work is edge-based. Hence, the execution 

time is more effective and efficient for sparse and non-

sparse graphs than complete graphs with irrespective of 

vertices in the graphs. 

 

        
Figure 8.Graph decomposition time for 

different type of graphs 

 

          
Figure 9.Graph decomposition time for 

various database sizes 

 

7. Conclusion 

 
 Our goal is to find substructures of the given graph 

for further processing of exact graph matching. In order 

to restrict the search space, our proposed algorithm 

SGD considers only connected substructures, i.e., 

graphs having only one connected component. We have 

shown how the proposed method decomposes the graph 

into its subgraphs using chemical structure from the 

chemical compound database. Our proposed work 

breaks down the graph based on edge-based 

representation. For that reason, our proposed effort is 

more proficient for sparse and dense graphs rather than 

complete graphs. Consequently, it saves a good amount 

of search space when it is used in chemical graphs data 

set. This is because almost all chemical graphs are non-

sparse but not complete. Future work will focus on 

making the presented approach more meaningful for the 

exact graph matching for subgraph isomorphism query.  
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