
Transforming RDF via RDF Schema into XML Documents for XPath Query

Language

Win Lai Hnin, Khin Nwe Ni Tun

University of Computer Studies, Yangon, Myanmar

winlaihnin.84@gmail,knntun@gmail.com

Abstract

 The Semantic Web is an extension of the current

Web that will allow to find, share and combine

information more easily. To harvest such power

requires robust and scalable data repositories that can

store RDF data. Most of the existing RDF storage

techniques rely on relation model and relational

database technologies for these tasks. The mis-match

between the graph model of the RDF data and the rigid

2D tables of relational model jeopardized the scalability

of such repositories and frequently renders a repository

inefficient for some types of data and queries. This

paper proposes the rules that can transform RDF data

into XML document. These papers discusses the idea of

collection of subject, predicate and object from RDF

graph model and this collection is used to transform

RDF data into XML documents and store in the XML

repository and extract the XML data by the XML query

language.

1. Introduction

 Most of the web sites today are designed for human

reading, not for computer understanding. Computers

essentially play a role in parsing web pages for

displaying and processing jobs. They have no reliable

way to draw the semantics from a page. The Semantic

Web will improve the meaningful content of the web

pages. It is not completely a new generation of web, but

an expansion of the current one. The meaning in the

Semantic Web is mostly represented by Resource

Description Framework (RDF). RDF encrypts these

meanings in the sets of triples that build meaningful

webs about related things. These are recognized by the

Universal Resource Identifiers

(URIs) which tie meanings to a unique definition so that

users can easily find them and their relationships on the

web.

 However, a considerable amount of resources is

available in eXtensible Markup Language (XML) rather

than in RDF. The main success of XML is its flexibility.

Users can define their own tags to describe elements in

the XML document. Nested, tagged elements are the

building blocks of XML. Each tagged element has a

sequence of zero or more attribute/value pairs, and a

sequence of zero or more subelements. XPath is a

declarative query language for XML that provides

simple syntax for addressing parts of an XML

document. XPath can specify sets of nodes and sets of

paths in an XML document tree.

 The needs to develop applications on the Semantic

Web and support search in RDF data call for RDF

repositories to be reliable and robust. As in the context

of RDB and XML, the selection of storage models is

critical to a data repository as it is the dominating factor

to determine how to evaluate queries and how the

system behaves when scales up.

 The rest of this paper is organized as follows.

Section 2 describes the background theory of the

proposed system. Section 3 discusses the design and

implementation of the proposed system. Section 4

describes XML storage to extract the XML data.

Finally, we conclude our paper.

1.1 Related Work

 Most of the existing RDF data repositories

[2, 3, 4] rely on relational models for data storage and

evaluate SPARQL queries by rewriting them into SQL

queries and then executing them in the RDB engine.

Among them there are two major directions:(1) keeping

the simple triple data model of RDF data, e.g. triple

store [4]; and (2) decomposing RDF triples into

relations, either based on predicates, e.g. vertical

partition or based on semantics, e.g. property table [3].

 The triple store does not scale well as the evaluation

of a complex SPARQL query invokes many self-joins.

Various indexing techniques [1] were proposed as

remedies, at the cost of huge increase in storage space

and decrease in the scalability and update efficiency.

The vertical partition [2] works well for SPARQL

queries when all predicates in the WHERE clause are

known. Otherwise, all tables have to be accessed and

results unioned. The property table incurs small number

of joins for some queries because a selection in one

property table can match multiple simple access

patterns. However it suffers storage redundancy and

large overhead in query evaluation [2].

 The proposal of serializing RDF graph into

XML trees to utilize existing XML technologies [7]

focused on representing all RDF features such as blank

node in XML, but pays less or no attention to the

efficiency of RDF data storage and query evaluation. It

either leads to XML data [7] with large redundancy or

flat XML data [4] that cannot take full advantage of

XML query evaluation techniques.

 Mo Zhou and Yuqing Wu [5] proposed the two

RDF-to-XML decomposition algorithms for the

decomposition in two steps: (1) the schema-level

decomposition which maps an RDF schema to a set of

XML schemas and (2) the data-level decomposition

which maps RDF data to a set of XML documents

conforming to the XML schemas which brings

inefficient in mapping RDF data to a set of XML

documents conforming to the XML schemas in some

applications.

 Steve Battle [12] proposed Gloze approach that is

the bidirectional mapping between XML and RDF. The

Gloze approach showed how the content of this vanilla

XML may be modeled in RDF, allowing XML to be

mapped into RDF. This approach allowed to directly

interpreting on XML document as an RDF model

without passing through RDF/XML and uses XML

schema as the basis for describing how XML is mapped

into RDF and back again.

 Stefan Bischof, Stefan Decker and Thomas

Krennwallner [11] proposed mapping method between

RDF and XML with XSPARQL. The XSPARQL

language is combined XQuery and SPARQL, allow

querying XML and RDF data using the same framework

and respectively transform one format into the other.

XSPARQL provides concise and intuitive solutions for

mapping between RDF and XML in either direction,

addressing both the use cases of W3C GRDDL

(Gleaning Resource Description from Dialects of

Language) working group and SAWSDL that describe

an initial implementation of an XSPARQL engine,

available for user evaluation.

1.2 Overview of the Proposed System

 Semi-structured data model organizes data

entries in a tree structure and represents the

semantic relationships among them via containment

relationships. Tree pattern matching is at the core of the

query languages for XML, e.g. XPath and XQuery. We

observe the similarity between RDF and XML, in term

of data representation (e.g. using links to represent

relationships among data instances) and query

(e.g. tree pattern matching in XML and graph pattern

matching in RDF) and propose to leverage the

sophisticate storage management and query evaluation

techniques of XML data repositories to store and query

RDF data.

 Specifically this system collect the subject,

predicate and object from RDF graph model and

transform RDF data into XML document and store

XML repository to extract information by XPath

queries. Figure (1) shows the architecture of proposed

system.

 The contribution of the proposed system is as

follows:

 The idea of collection of subject, predicate and

object from RDF graph model and rules of

transformation from RDF data into XML

documents.

 XML-based RDF data storage that doesn’t

depend on the XML schema.

 The XML query processing to extract

information from XML repositories.

 RDF data are significantly different from XML

data in syntax and data model: RDF data and schema are

directed graphs with both nodes and edges labeled,

while XML data are trees with only nodes labeled.

Although our work, as other RDF storage approaches, is

syntax independent, the difference between the data

models brings substantial challenges to storing and

querying RDF data using XML techniques, in

transforming graphs into trees, keeping storage

efficiency.

2. Background Theory

2.1 Knowledge Representation

 There are three essential requirements for arbitrary

language used for data interchange on the web:

(1) Language should have the ability to describe any

form of data to satisfy all the potential need.

(2) The represented data should be easily accessed by

other organizations and its supported software,

such as parsers or query APIs, should be reusable

(syntactic operability).

(3) It should have definitions for mappings between

terms in the data (semantic interoperability).

2.2 RDF

 The vision of the Semantic Web is to allow

everybody to publish interlinked machine-processable

Figure 1: System Architecture

Query

Evalution

 Result

RDF statements

RDF graph and

information

Create the collection of Subject,Predicate

and Object from RDF graph

XML

Repository

rules for transformation of RDF data

into XML documents

XML doc

information with the ease of publishing a web page. The

basis for this vision is a standardized logical data model

called Resource Description Framework (RDF). RDF

data is a collection of statements, called triples of the

form (s, p, o), where s is a subject, p is a predicate, and o

is an object; each triple states the relation between the

subject and the object. A collection of triples can be

represented as a directed typed graph, with nodes

representing subjects and objects and edges representing

predicates, connecting subject nodes to object nodes.

Basic RDF data model consist of three objects:

 Resources : an element, a URI, a literal,…

 Properties :directed relations between two

 resources

 Statement :combination of a resource, a

 property and a value.

2.3 XML

 XML is a meta-language that enables designers to

create their own customized tags to provide

functionality not available with HTML. XML is a

restricted version of SGML, designed especially for

Web documents. SGML allows document to be

logically separated into two: one that defines the

structure of the document (DTD), other containing the

text itself. XML retains key SGML advantages. XML is

not intended as a replacement for SGML or HTML. It is

a data format for exchanging data on the web, between

databases and elsewhere. Elements or tags are most

common form of markup. First element must be a root

element, which can contain other (sub) elements. XML

document must have one root element. Element begins

with start-tag and end-tag. XML element is case-

sensitive. Attributes are name-value pairs that contain

descriptive information about an element. A given

attribute may only occur once within a tag, while (sub)

elements with same tag may be repeated.

3. Design and Implementation

 Our procedure has two main steps. The first one

presents the idea to collect subject, predicate and object

from the RDF graph model. The second uses this

collection to transform RDF data to XML documents.

3.1 Rules for RDF Transformation

 In this stage, first create the collection of subject,

predicate and object from the RDF graph model as an

input. These collections are used to extract element,

subelement and attribute. The idea of this step is as

follows:

 The object of the first statement is root
 element of document.

 For each subclass (predicate with rdfs:Class,

rdfs:subClassof,rdf:Property) we decide

whether they are element or subelement or

attribute of the document.

 For data value of every element, we can predict

the type of predicate in RDF.

RDF statement is a collection of triples of Subject,

Predicate and Object; each triple states the relation

between the subject and the object. Predicate is the main

building block of RDF statements. The rules of deriving

element, subelement and attribute are as follows:

 IF Predicate is rdfs:Resource

 THEN the object of this predicate is root

 element of the XML document

 ELSEIF Predicate is rdfs:Class

 THEN the object of this predicate is the

 element of the document

 ELSEIF Predicate is rdfs:subClassof

 THEN the subject of this predicate is

 subelement of its objects in the

 document

 ELSEIF Predicate is rdf:Property

 THEN the object of this predicate is

 attribute of its subjects in the

 document

 ELSEIF Predicate is rdf:type

 THEN the subject of this predicate is

 the attribute value of its object

 In the document

 ELSEIF Predicate is rdfs:domain

 THEN the object of this predicate is

 the attribute of its subject in

 the document

 ELSEIF Predicate is rdf:value

 THEN the object of this predicate

 is the value of the document

3.2 Example of the proposed system

 In order to illustrate for our procedure, we use

sample files at http://www.vervet.com/. This website

supports free download of the XML editor, XMLPro.

We choose files describing product, because these kinds

of files are so popular on the web as well as in the

electronic business. The graph description of the RDF

triples is presented in the Figure 2.

Rules for RDF Transformation

http://www.vervet.com/

1. rdfs:Resource

2. rdfs:Class

3. rdfs:subClassof

4. rdf:Property

5. rdfs:domain

6. rdf:value

Table 1 is the RDF statements for Figure 2

that represent the meaning of the data as well as the

relationship between data. For example, Name is a

property of Product and its value is Drill Pro.

Subject Predicate Object

http://www.vervet.com rdfs:Resource Catalog

Catalog rdfs:Class Product

Product rdf:Property Name

Name rdf:value “Drill Pro”

Product rdf:Property Partnum

Partnum rdf:value “123XYZ”

Product rdfs:Class Specifications

Specifications rdf:Property Weight

Weight rdf:value “8lbs”

Specifications rdf:Property Power

Power rdf:value “120v”

 Using rules in section 3.1, we derive element,

subelement and their corresponding attribute as below:

 Root element: Catalog, Element: Product

(Attribute: Name, Partnum). Subelement: Specification

(Attribute: Weight, Power). After having the set of

elements, subelements and attributes from the previous

step, we can produce XML documents by using

algorithm in section 3.2. Following is XML document:

<Catalog>

<Product Name= “Drill Pro” Partnum= “123XYZ”>

 <Specification Weight= “8lbs”
 Power= “120v”/>

</Product>

</Catalog>

 The above XML document is interpreted by RDF

triples in the table 1.

4. XML Storage

 The first approach to storing XML documents is to

employ traditional databases such as relational database

or object-oriented database as the underlying storage.

The second is to develop a specialized system, which is

known as native storage. The underlying storage

representation has a significant impact on the efficiency

of query processing. Basically, a storage strategy can be

defined as efficient if the system manages to retrieve

data accurately; use storage resources competently and

update data and schema correctly. This system uses

native XML database because it has many advantages to

support time-consuming.

 A native storage basically means building a

specialized data manager that contains XML as its

fundamental unit of its logical model. These data are

stored and retrieved in their original structure, with no

mapping process required. Nevertheless, the NXD

requires a particular underlying physical storage model,

which can be a custom database or any typical database

model. Using this approach may work best, especially

on scalability, data retrieval and handling of huge

amounts of data. Nevertheless, it is not suitable when

integration between various heterogeneous XML

documents is needed. TIMBER, XBase and Natix are

some examples of native storage.

 XPath query language is designed for XML

documents. It provides a single syntax that we can use

for queries, addressing and patterns. Fundamentally, an

XPath is an expressing. Specifically, identity

constraints require the resultant node set to contain only

elements or attributes. Fragment identifiers restrict the

resultant node set to contain only elements.

Location paths nominally provide the grammar for

typical XPath expressions for XML schemas. In an

XML schema, all location paths are either relative to an

enclosing component (for identity constraints) or

relative to an entire XML document (for locating

schema components). One of the general features of a

location path is the ability to navigate along a number of

axes. An axis specifies a direction of movement in the

node tree. For example, you might specify a child node,

an attribute node, an ancestor node, or a descendant

node. The XPath Recommendation defines 13 axes. An

identity constraint is limited to containing only the axes

child, attribute, and descendant-or-self. Furthermore, an

 Figure 2: RDF graph

 http://www.vervet.com

Catalog

 Product

Name Partnum

Drill Pro 123XYZ

Specification

Weight Power

 8lbs 120v

1

2

 4 4 3

5 5

6 6

Table 1: RDF statements from RDF graph

identity constraint can only use the shortcut notation for

these axes. Predicates are very powerful, but slightly

confusing when first encountered. A predicate is strictly

a filter. A predicate filters out desired nodes from a node

set. Examples of XPath queries for the resultant of XML

document are the following:

(1) /Catalog/* (selects all child elements of the root

element Catalog)

(2) /// Specification (selects Specification element

in the document)

(3) /Product [@Name] (selects Name attribute of the

Product element)

5. Conclusion

 To answer the increasing demands on RDF

repository, carefully studied the existing RDF data

management systems, identified the preferred properties

of an RDF repository and proposed to take advantage of

the latest XML data storage and efficient query

processing techniques. In this paper, we have proposed

rules to transform RDF data into XML documents by

using RDF schema vocabularies. Our proposed method

enables languages used in procedure do their jobs as

their original functions. XML is used for describing

data, RDF for providing triple statements about data and

RDF schema for supporting vocabularies to describe the

relationship among data. In addition, our approach is

efficient for time consuming in translation from RDF

data to XML documents for supporting Semantic Web

applications in various domains.

References

[1] C. Weiss, et al. Hexastore: sextuple indexing for

semantic web data management. PVLDB, 1(1):1008–1019,

2008.

[2] D. J. Abadi, et al. Scalable Semantic Web Data

Management Using Vertical Partitioning. In VLDB, 2007.

[3] J. J. Carroll, et al. Jena: implementing the semantic web

recommendations. In WWW, 2004.

[4] L. Sidirourgos, et al. Column-store support for RDF data

management: not all swans are white. PVLDB, 1(2):1553–

1563, 2008.

[5] Mo Zhou and Yuqing Wu. XML-Based RDF Data

Management for Efficient Query Processing, 2010.

[6] Michel Klein, “Interpreting XML via an RDF Schema”,

Database and Expert Systems Applications, 2002.

[7] Norman Walsh. Rdf twig: accessing rdf graphs in xslt. In

Proc. Extreme Markup Languages, 2003.

[8] Pham Thi Thu Thuy, Young-Koo Lee, Sung young Lee

and Byeong-Soo Jeong, “Transforming Valid XML

Documents into RDF via RDF Schema”, 2006.

[9] Peter Patel-Schneider, and Jérôme Siméon, “The

Yin/Yang Web: XML syntax and RDF Semantics”, 11th

International WWW conference, Hawaii, 2002.

[10] S. Alexaki, et al. The ICS-FORTH RDFSuite: Managing

Voluminous RDF Description Bases. In SemWeb, 2001.

[11] S. Bischof, S. Decker, K. Thomas, N. Lopes, A.

Polleres. “Mapping Between RDF and XML with

XSPARQL”, April 2011.

[12] S Battle. “Gloze: XML to RDF and back again”,

http://www.hpl.hp.com/personal/steve-battle.

[13] Sergey Melnik, “Bridging the gap between RDF and

XML”, Dec 1999.

[14] T. Neumann, et al. The RDF-3X engine for scalable

management of RDF data. VLDB J., 19(1):91–113, 2010.

[15] Tim Berners_Lee, “Why RDF model is different from

the XML model”, Sep 1998, available at:

http://www.w3.org/DesignIssues/RDF-XML.html.

http://www.w3.org/DesignIssues/RDF-XML.html

