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Abstract 

 
A central problem in machine learning is 

identifying a representative set of features from 
which to construct a classification model for a 
particular task. A good feature set that contains 
highly correlated features with the class not only 
improves the efficiency of the classification 
algorithms but also improve the classification 
accuracy. Modified-Multiple Correspondence 
Analysis (M-MCA or MCA with Geometrical 
Representation) explores the correlation between 
different features and classes to score the 
features for feature selection. The dependence 
between a feature and a class is measured by a 
derived value from χ2 distance called the p-value. 
It is a standard measure of the reliability of a 
relation and is examined by p-value. The smaller 
the p-value, the higher the possibility of the 
correlation between a feature and a class is true. 
In this paper, the conventional confidence 
interval of Multiple Correspondence Analysis 
(MCA) is modified to get smaller p-value and be 
more reliable. To evaluate the performance of 
proposed Modified-MCA, experiments are 
carried out on benchmark datasets identified and 
provided by WEKA and UCI repository. In the 
experiments, Naïve Bayes, Decision Table and 
JRip are used as the classifiers. The proposed 
Modified-MCA demonstrates promising results 
and performs better than well-known feature 
selection, MCA. The results show that the 
proposed method outperforms in terms of 
classification accuracy and reduces the size of 
feature subspace significantly. 
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1. Introduction 
 

Feature subset selection is the process of 
identifying and removing as much irrelevant and 
redundant information as possible. This reduces 
the dimensionality of the data and may allow 
learning algorithms to operate faster and more 
effectively. In some cases, accuracy on future 
classification can be improved; in others, the 
result is a more compact, easily interpreted 
representation of the target concept. 

Instead of altering the original representation 
of features like those based on projection (e.g., 
principal component analysis) and compression 
(e.g., information theory) [1], feature selection 
eliminates those features with little predictive 
information, keeps those with better 
representation of the underlying data structure. 

In recent years, different areas have adopted 
the feature selection technique to pre-process the 
data in order to improve model performance. In 
general data mining and pattern recognition 
domains, [2] introduced a criterion function of 
mutual information and proposed a mutual 
information based feature selection method 
which could generate a subset of features without 
taking class labels into account.  

In this paper, the proposed approach, 
Modified-Multiple Correspondence Analysis (M-
MCA), continues to explore the geometrical 
representation of Multiple Correspondence 
Analysis (MCA) and aims to find an effective 
way to indicate the relation between features and 
classes. However, the study tries the p-value as 
smaller as possible by adjusting with the 
significance level. Therefore, Modified-MCA 
could be considered as a potentially better 
approach. This paper is organized as follows: 
Related work is introduced in Section 2; the 



proposed M-MCA is presented in Section 3; 
followed by an analysis of the experimental 
results in Section 4. Finally, conclusions are 
given in Section 5. 

 
2. Related Work 

 
If, however, the data is suitable for machine 

learning, then the task of discovering regularities 
can be made easier and less time consuming by 
removing features of the data that are irrelevant 
or redundant with respect to the task to be 
learned. This process is called feature selection. 
The benefits of feature selection for learning can 
include a reduction in the amount of data needed 
to achieve learning, improved predictive 
accuracy, learned knowledge that is more 
compact and easily understood, and reduced 
execution time [8].  

Depending on how it is combined with the 
construction of the classification model, feature 
selection can be further divided into three 
categories: wrapper methods, embedded 
methods, and filter methods. Wrappers choose 
feature subsets with high prediction performance 
estimated by a specified learning algorithm 
which acts as a black box, and thus wrappers are 
often criticized for their massive amounts of 
computation which are not necessary. Similar to 
wrappers, embedded methods incorporate feature 
selection into the process of training for a given 
learning algorithm, and thus they have the 
advantage of interacting with the classification 
model, meanwhile being less computationally 
intensive than wrappers. In contrast, filter 
methods are independent of the classifiers and 
can be scaled for high-dimensional datasets 
while remaining computationally efficient. In 
addition, filtering can be used as a pre-processing 
step to reduce space dimensionality and 
overcome the overfitting problem. Therefore, 
filter methods only need to be executed once, and 
then different classifiers can be evaluated based 
on the generated feature subsets [3]. 

Filter methods can be further divided into two 
main sub-categories: univeriate and multivariate. 
The first one is univariate methods which 
consider each feature with the class separately 
and ignore the inter-dependence between the 

features, such as information gain and chi-square 
measure [9][3]. The second sub-category is the 
multivariate methods which take features’ 
interdependence into account, for example, 
Correlation-based feature selection (CFS) and 
Relief [10][11]. They are slower and less-
scalable compared to the univariate methods. 

According to the form of the outputs, the 
feature selection methods can also be categorized 
into ranker and non-ranker. A non-ranker method 
provides a subset of features automatically 
without giving an order of the selected features. 
On the other hand, a ranker method provides a 
ranked list by scoring the features based on a 
certain metric, to which information gain, chi-
square measure, and relief belong [3].  

The different stopping criteria can be applied 
in order to get a subset from it. Most commonly 
used criteria include forward selection, backward 
elimination, bi-directional search, setting a 
threshold, genetic search, etc. 

 
3. Modified Multiple Correspondence 
Analysis 
 
 In this section, Geometrical Representation of  
MCA and Modified –MCA Based Feature 
Selection Model are discussed. 
 
3.1. Geometrical Representation of MCA  

 
MCA constructs an indicator matrix with 

instances as rows and categories of valuables as 
columns. Here in order to apply MCA, each 
feature needs to be first discretized into several 
intervals or nominal values (called feature-value 
pairs in the study), and then each feature is 
combined with the class to form an indicator 
matrix. Assuming the kth feature has jk feature-
value pairs and the number of classes is m, then 
the indicator matrix is denoted by Z with size (n 
× (jk + m)), where n is the number of instances. 
Instead of performing on the indicator matrix 
which is often vary large, MCA analyzes the 
inner product of this indicator matrix, i.e., ZTZ, 
called the Burt Table which is symmetric with 
size ((jk + m) × (jk + m)). The grand total of the 
Burt Table is the number of instances which is n, 



then P = ZTZ /n is called the correspondence 
matrix with each element denoted as pij  .Let ri 
and cj be the row and column masses of P, that 
is, ri = ∑ j pij and cj = ∑i pij. The center involves 
calculating the differences (pij  − ricj) between the 
observed and expected relative frequencies, and 
normalization involves dividing these differences 
by √ ricj, leading to a matrix of standardized 
residuals sij = (pij − ricj) / √ ricj. The matrix 
notation of this equation is presented in Equation 
(1). 

 
S = Dr

−1/2 (P – rcT) Dc
−1/2                                   (1) 

 
where r and c are vectors of row and column 

masses, and Dr and Dc are diagonal matrices with 
these masses on the respective diagonals. 
Through Singular Value Decomposition (SVD), 
S = UΣVT where Σ is the diagonal matrix with 
singular values, the columns of U are called left 
singular vectors, and those of V are called right 
singular vectors. The connection of the 
eigenvalue decomposition and SVD can be seen 
through the transformation in Equation (2). 

 
SST = UΣVT VΣUT = UΣ2UT = UΛUT,             (2) 

 
Here, Λ=Σ2 is the diagonal matrix of the 

eigenvalues, which is also called principal 
inertia. Thus, the summation of each principal 
inertia is the total inertia which is also the 
amount that quantifies the total variance of S. 
The geometrical way to interpret the total inertia 
is that it is the weighted sum of squares of 
principal coordinates in the full S-dimensional 
space, which is equal to the weighted sum of 
squared distances of the column or row profiles 
to the average profile. This motivates us to 
explore the distance between feature-value pairs 
and classes represented by rows of principal 
coordinates in the full space. The χ2 distance 
between a feature-value pair and a class can be 
well represented by the Euclidean distance 
between them in the first two dimensions of their 
principal coordinates. Thus, a graphical 
representation, called the symmetric map, can 
visualize a feature-value pair and a class as two 
points in the two dimensional map.  

As shown in Fig 1, a nominal feature with 
three feature-value pairs corresponds to three 
points in the map, namely P1, P2, and P3, 
respectively. Considering a binary class, it is 
represented by two points lying in the x-axis, 
where C1 is the positive class and C2 is the 
negative class. Take P1 as an example. The angle 
between P1 and C1 is a11, and the distance 
between them is d11. Similar to standard CA, the 
meaning of a11 and d11 in MCA can be 
interpreted as follows. 
 Correlation: This is the cosine value of the 
angle between a feature-value pair and a class in 
the symmetric map. The symmetric map of the 
first two dimensions represents the percentage of 
the variance that the feature-value pair point is 
explained by the class point. A larger cosine 
value which is equal to a smaller angle indicates 
a higher quality of representation [3]. 

Reliability: As stated before, χ2 distance 
could be used to measure the dependence 
between a feature-value pair point and a class 
point. Here, a derived value from χ2 distance 
called the p-value is used because it is a standard 
measure of the reliability of a relation, and a 
smaller p-value indicates a higher level of 
reliability [3].  

 

 
Fig 1.  The symmetric map of the first two 

dimension 
 

Assume that the null hypothesis H0 is true. 
Generally, one rejects the null hypothesis if the 
p-value is smaller than or equal to the 
significance level, which means the smaller the 
p-value, the higher possibility of the correlation 
between a feature-value pair and a class is true. 
Here, the conventional significant level is 0.05. It 
means that a 5% risk of making an incorrect 
estimate and confidence level of 95%. One never 



rounds a p-value to zero. Low p-values reported 
as “<10-9”, or something similar, indicating that 
the null hypothesis is ‘very, very unlikely to be 
true’, but not ‘impossible’. In this paper, the 
propose M-MCA tries the p-value as smaller as 
possible by adjusting with the significance level. 
By this way, standard measure of the reliability 
can be improved.  

P-value can be calculated through the χ2 
Cumulative Distribution Function (CDF) and the 
degree of freedom is (number of feature-value 
pairs −1) × (number of classes −1). For example, 
the χ2 distance between P1 and C1 is d11 and their 
degree of freedom is (3 − 1) × (2 − 1), and then 
their p-value is 1−CDF (d11, 2). Therefore, 
correlation and reliability are from different 
points of view, and can be integrated together to 
represent the relation between a feature and a 
class. 

 
3.2. Modified –MCA Based Feature    
Selection Model 

 

 
 

Fig 2. Modified –MCA based feature Selection 
model 

 
In Fig 2, Modified-MCA continues to explore 

the geometrical representation of MCA and aims 
to find an effective way to indicate the relation 
between features and classes which contains 
three stages: M-MCA calculation, feature 
evaluation, and stopping criteria. First, before 

applying M-MCA, each feature would be 
discretized into multiple feature-value pairs. For 
each feature, the angles and p-values between 
each feature-value pair of this feature to the 
positive and negative classes are calculated, 
corresponding to correlation and reliability, 
respectively. If the angle of a feature-value pair 
with the positive class is less than 90 degrees, it 
indicates this feature-value pair is more closely 
related to the positive class than to the negative 
class, or vice versa. For p-value, since a smaller 
p-value indicates a higher reliability, (1 - p-
value) can be used as the probability of a 
correlation being true. The p-value is very close 
to zero but the probability of the correlation 
being true is very close to zero as well.  

After getting the correlation and reliability 
information of each feature-value pair, the 
equations which take the cosine value of an angle 
and p-value as two parameters are defined (as 
presented in Equations (3) and (4)) in the feature 
evaluation stage. Since these two parameters 
may play different roles in different datasets and 
both of them lie between [0, 1], different weights 
can be assigned to these two parameters in order 
to sum them together as an integrated feature 
scoring metric. Considering different nominal 
features contain a different number of feature-
value pairs, to avoid being biased to features 
with more categories like Information Gain does, 
the final score of a feature should be the 
summation of the weighted parameters divided 
by the number of feature-value pairs. Assume 
there are totally K features. For the kth feature 
with jk feature-value pairs, the angles and p-
values for the ith feature-value pair are ai1 and 
pi1 for the positive class, and ai2 and pi2 for the 
negative class, respectively. Then the score of 
the kth feature can be calculated through 
Equation (3) or (4). 

 

( ) ( )( )( )Score k feature w a w p p jth
i i i

j

k

k

= + −∑ 1 1 2 1 2
1

1cos max , /

          (3) 

( ) ( )( )( )Score k feature w a w p p jth
i i i

j

k

k

= + −∑ 1 2 2 2 1
1

1cos max , /

          (4) 
 



If a feature-value pair is closer to the positive 
class, which means ai1 is less than 90 degrees, 
then equation (3) is applied, where max((1− pi1), 
pi2) would allow us to take the p-value with both 
classes into account. This is because that (1−pi1) 
is the probability of the correlation between this 
feature-value pair and the positive class being 
true, and pi2 is the probability of its correlation 
with the negative class being false. Larger values 
of these two probabilities both indicate a higher 
level of reliability. On the other hand, if a i1 is 
larger than 90 degrees, which means the feature-
value pair is closer to the negative class, then 
max((1− pi2), pi1) will be used instead, that is 
Equation (4). w1 and w2 are the weights assigned 
to these two parameters. The pseudo code of 
integrating the angle value and p-value as a 
feature scoring metric [7] is shown in Fig 3. 

 
  Calculating Score 
 
  1 for  k =1 to K 
  2    for  i =1 to jk 
  3       if  cos ai1 > 0 
  4             sumk+= w1 × cos a i1 
  5             if  count i1 > 0.01 AND count i2 > 0.01 
  6                  sumk+= w2 × max((1 − p i1),p i2) 
  7       elseif cos a i1 < 0 
  8             sumk+= w1 × cos a i2 
  9             if count i1 > 0.01 AND count i2 > 0.01 
  10                sumk+= w2 × max((1 − p i2),p i1) 
  11     else 
  12              sumk+=0 
  13  end 
  14      scorek = sumk/jk 
  15end 

 
Fig 3. Calculation score algorithm 

 
Finally, after getting a score for each feature, 

a ranked list would be generated according to 
these scores, and then different stopping criteria 
can be adopted to generate a subset of features 
[3]. 

 
4. Experiments and Results 

 
The proposed M-MCA is evaluated using 

seven different benchmark datasets from WEKA 

and UCI repository. The dataset numbers, dataset 
names, and No. of Features in original datasets 
are shown in Table 1. 

 
Table 1. Datasets description 

 
No. Dataset Name No. of Features 
1 Diabetes 8 
2 Labor 16 
3 Ozone 72 
4 Soybean 35 
5 Weather 5 
6 Ionosphere 34 
7 Contact-lenses 5 

 
In order to get nominal features, 

discretization on the training data set needs to be 
conducted. Next, MCA and M-MCA are 
performed on the discretized training data set. 
After applying, these seven sets of data, one for 
each feature selection method, are run under 
three classifiers, namely Naïve Bayes (NB), 
Decision Table (DT), Rule based JRip (JRip). 
The stopping criterion used for the ranker 
methods is backward elimination. Each time, the 
precision, recall and F-Measure of each classifier 
based on a particular subset of the features can 
be obtained.   

In Table.2 and 3, the evaluation is discussed 
by means of average Recall, average Precision 
and average F-measure over three classifiers 
rather than from individuals.  

 
Precision, Recall and F-measure 

 
In statistics, the F1 score (also F-score or F-

measure) is a measure of a test's accuracy. It 
considers both the precision p and the recall r of 
the test to compute the score: p is the number of 
correct results divided by the number of all 
returned results and r is the number of correct 
results divided by the number of results that 
should have been returned. The F1 score can be 
interpreted as a weighted average of the 
precision and recall, where an F1 score reaches 
its best value at 1 and worst score at 0. 



The traditional F-measure or balanced F-
score (F1 score) is the harmonic mean of 
precision and recall: 

 

precis ion
X Y

Y
=

| |

| |
I

                                  (5) 

reca ll
X Y

X
=

| |

| |
I

                                         (6) 

F
precision recall

precision recall
=

+
2.

.

                         (7) 
 

Where, X is relevant features, Y is retrieved 
features, and |X| and |Y| mean the number of 
features in set X and Y. 

Based on the classification results, we can see 
significantly that the proposed M-MCA perform  
better than MCA and other feature selection 
methods, since MCA is better than others [3]. 

 
Table 2. Average performance of Modified-

MCA based feature selection 
 

Dataset Modified-MCA 
Precision Recall F-Measure 

1 0.54 0.16 0.24 
2 0.85 0.86 0.85 
3 0.92 0.89 0.90 
4 0.41 0.64 0.50 
5 0.51 0.67 0.59 
6 0.92 0.91 0.91 
7 0.56 0.68 0.61 

Avg 0.67 0.69 0.66 
 

Table 3. Average Performance of MCA based 
feature selection 

 
Dataset MCA 

Precision Recall F-Measure 
1 0.49 0.11 0.18 
2 0.80 0.80 0.80 
3 0.90 0.82 0.86 
4 0.40 0.62 0.48 
5 0.50 0.62 0.55 
6 0.86 0.84 0.85 
7 0.50 0.61 0.55 

Avg 0.64 0.63 0.63 

According to Table 2 and 3, it can be seen 
significantly M-MCA produces better results 
than MCA not only on individual dataset but also 
on overall average, by means of precision, recall, 
and F-measure. 
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Fig 4. Comparison of number of features 
 

In Fig 4, the comparison of number of 
features generated by M-MCA and MCA are 
shown, comparing with the number of features in 
original datasets. In the original Diabetes dataset, 
there are 8 features. M-MCA can reduce it to 5 
features, while MCA can reduce to 7. There are 
16 features in Labor dataset. M-MCA and MCA 
reduce to 8 and 10 features respectively. While 
MCA reduces 72 features of Ozone dataset to 52, 
M-MCA can significantly reduce to 23 features. 
For Soybean and Weather datasets, M-MCA can 
reduce 35 and 5 features of original datasets to 
23 and 3, respectively. It is better than MCA can 
do: 35 to 30 and 5 to 4. In Ionosphere, although 
MCA reduce 34 features of original dataset to 
20, M-MCA can reduce to 13. In Contact-lenses, 
it can be seen M-MCA reduce 2 more features 
than MCA do. Therefore, the size of the feature 
subspace generated by M-MCA outperforms to 
those by MCA. 
 
5. Conclusion 

 
In this study, a new feature subset selection 

algorithm for classification task, M-MCA, was 
developed. Based on the results of that 
experiment, the performance of M-MCA is 
evaluated by several measures such precision, 



recall and F-measure. Seven different datasets 
are used to evaluate the proposed method. The 
results are compared to simple MCA. The 
average F-measure over three classifiers 
increased from 0.63 on MCA to 0.66 on M-
MCA. The size of feature subspace can also be 
reduced significantly as shown in Fig. 3. The 
results assure that proposed M-MCA makes 
better results than MCA, over three popular 
classifiers. 
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