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Abstract early years of MIR (1985-95), research
concentrated on rudimentary time and frequency
Nowadaysy music Searching and domain features such as (1) windowed

browsing are becoming very important as the amplitude data and derived tempo statistics, and
huge amount of music are accessible over the(2) windowed spectra, reduced spectra, and
Internet. Music recommender systems are derived spectral statistics ("spectral measures").
essential especially for searching and browsing The next generation of MIR (roughly 1995-
music catalogs. In this paper, retrieving the 2005), saw the introduction of more
required information from acoustic music signal Sophisticated features involving higher level
in an efficient way is considered. The system istime and frequency domain features such as beat
to determine similaries among songs, histograms, Mel-frequency cepstral coefficients
particularly, a piece of input music signal (MFCCs) and chromagrams. In addition,
compared with storage music song’s signal into researchers began using more sophisticated
the database and then to retrieve the similar Statistics to aggregate the values of each feature
song. Representing the music signal having Within a song, and using newer machine
sparse nature is accomplished by Matching learning techniques.

Pursuit with time-frequency dictionaries. In This paper presents a content-based
order to matching a candidate segment with the @pproach to determine similar song from a
query segment, the music signal similarity database and retrieve a whole music song
measure is performed by Spatial Pyramid according to the input query. Because of the

Matching challenge of matching a candidate segment with
the query segment, the system could
1. Introduction significantly improve similarity measure using

Spatial Pyramid Matching. And the retrieval
time could considerably improve using

. .MUS'C. sear_chlng f'md br_owsmg frqm Matching Pursuit (MP) Method. Our particular
audio signals is an interesting topic that rece'vesapproach to choose music song also makes it
a lot of_attentlon these (_1ays. These feature Se_tﬁaossible automatic retrieval using matching
are designed to reflect different aspects of mu3|cIoursuit features sets, for example for use in

TUChdgs. timbre, haanony, melgdy a}nd rhyt?.m' browsing rapidly through a list of possible song
n addition, researchers use data from online ¢ inarast returned by a search engine. By

sources that places music in a social context.guiding us to the most significant parts of a

Individual sets of audio content and social . «ic song, it also allows the development of
](c:ontext.featurlalsRhave kbeen ShOWT to.fpe usefulaet and efficient methods for searching very
or various tasks (e.g., classification, |06 collections based purely on the audio
similarity, recommendation). Among them, . oo of  the song, sidestepping the

5|m|lar|_ty IS C“_*C'?' for th_e effectiveness Of computational complexity of existing content-
searching music information and the music based search methods

segmentation._ There exist three general The rest of this paper is organized as
recommer_1dat|qn _approaches, namely thefollows. In Section 2, related work on music
collaborative filtering approach, the content- structure analysis for music searching and

based approach and hybrid approaches. In theorowsing system is discussed. The framework



of the system is introduced in Section 3. The point of the analysis is to calculate frame-by-
feature extraction technique and similarity frame similarities over the whole signal,
matrix from the musical audio signals are constructing a self-similarity matrix. Foote
addressed in Section 3.1 and Section 3.2. Inproposed to use the similarity matrix for
Section 4, overview of our proposed system is visualising music [6]. It was noted that the parts
represented an example of music featuresof music having similar timbral characteristics
extraction with a dictionary and pattern created visible areas in the similarity matrix.
similarity discovery with pyramid kernel level. The borders of these areas were sought and used
Evaluation study is provided in Section 5 in segmenting the piece in [7]. In [8] Foote and

followed by the Conclusion in Section 6. Cooper used a spectral clustering method to
group similarsegments. When the used feature
2. Related Work describes the tonal (pitch) content of the signal

instead of general timbre, e.g., chroma instead
of MFCCs, repetitions generate off-diagonal
stripes to the similarity matrix instead of
rectangular areas of high similarity. Such stripes
reveal similar sequential structures, e.g. melody
lines or chord progressions, instead of just
denoting parts having similar timbral
characteristics, or sounding the same. The two
main approaches (HMM-based “state” method
and “sequence” method relying on stripes in the
similarity matrix) were compared by Peeters [9].
He noted that as the sequence approach requires
a part to occur at least twice to be found, the
HMM approach would be more robust analysis
. . _ method. Still, the stripes have been used in
they trained an ergodic HMM with only few structure analysis by IC;everal authors. Bartsch

states, hoping that each state WO_UId represent 8,4 akefield extracted chroma from beat-
musical part, and used the Viterbi decoded state

o .““synchronised frames and used the most
sequence as the description of the mu5|calIorominent off-diagonal stripe to define a
structure. Th? HMM approach was _taken further thumbnail for the piece [10]. Lu et al proposed a
by Aucouturier and Sandler using spectral distance metric considering the harmonic
envelope as the feature [2]: It was noted in both content of sounds, and used 2D morphological
:EeseHT\;Lﬂesttr:at Wg%n u5|tng sué:hl short Tralrlnesoperations (erosion and dilation) to enhance the
€ r ful sates ! noh mg ?Ab(;nlljlsfa ty Istripes [11]. In popular music pieces, the
meaningiul parts, as was nhoped. afiah et al¢jearest repeated part is often the chorus section.
increased the frame length considerably and theGoto[lZ] aimed at detecting it using chroma
nhumber of states up to 8:]) ]EB]' Atter va”'“F‘c? (ilnd presented a method for handling the musical
t 'eh state sekquenlcz, eacb ran;]e was pro(;/] € ey modulation sometimes taking place in the
with some knowledge about the surrounding |,qt refrain of the piece. Music tends to show
context by calculating a state histogram in a 15

f ind The hi h drepetition and similarities on different levels,
frame window. The histograms were then use starting from consecutive bars to larger parts
in clustering the frames by optimising a cost

; . . ; like chorus and verse. Some authors have tried
function with simulated annealing. Rhodes et al

dded  the d - f ~ < to take this into account and proposed methods
added a term to control the duration of stay in 4 operating on several temporal levels. Jehan
certain cluster [4], while Levy et al refined the

) _ constructed several hierarchically related
clustering method to a context aware variant of

f C 51 Anoth | arti similarity matrices [13]. Shiu et al extracted
uzzy C-means [5]. Another popular starting chroma from beat-synchronised frames and then

Automatic analysis of the structure has
been studied mainly for the music information
retrieval search engine of creating a meaningful
summary of a musical piece. One of the first
works operating on acoustic signals was by
Logan and Chu, describing an agglomerative
clustering and hidden Markov model (HMM)
based approaches for key phrase generation [1]
They used mel-frequency cepstral coefficients
(MFCCs) from short (26 ms),overlapping
frames. The clustering method grouped the
frames together iteratively until a level of
stability had been reached. In the HMM method



used dynamic time warping (DTW) to calcul.
a similarity matrix between all the measures
the piece [14]. The higher level music
structure was then modelled with a manu
parametrised HMM. Dannenberg and H
gathered the shorter repeated parts
gradually combined them to create longer, n
meaningful, parts in [15]. Later, Dannenb:
used the stripes in similaritynatrix to find
similar musical sections, and then utilised -
information to aid a beat tracker [16]. CI
proposed to take the context into account
matching two windows of frame level featui
with DTW. Sliding the other window while
keeping the other fixed praled a method t
calculate the similarity on different lags and
determine the lag of maximum similari
Gathering this information in a matrix form
stripes of prominent lags, like the stripes i
similarity matrix. The longer stripes were th
intempreted information about the repeats
structural parts [17]Maddage et al proposec
method for analysing a musical piece combir
different sources of information. Th used
beatsynchronised pitch class profile as
feature and detected chords \ pre-trained
HMMs. Using assumptions of the lengths of
repeated parts, fixed length segm were
matched to get a measure of similarity. Fini
heuristic rules, claimed to apply on Eng-
language pop songsyere used to deduce t
high-level struatre of the piece [1¢

3. Background

3.1. Matching Pursuit Representation

Matching Pursuitis part of a class ¢
signal analysis algorithms known as Ator
Decompositions. These algorithms conside
signal as a linear combination of kno
elementary pieces of signal, called ato
chosen within a dictionary.

MP aims at finding spars
decompotitions of signals over redundant ba
of elementary waveforms.

3.1.1. Dictionary Approximation

Matching pursuit that decompos
music signal into a linear expansion
waveforms that are selected from a redun
dictionary of functions. Wavelet tranforms
should be designed as follovictionary: A
dictionary contains a collection of blocks p
the signal on which they operate. It can sei
across all the blocks (i.e., all the scales ant
the bases) for the atom which brings the n
energy to the analyzed sign8look: A book is
a collection of atoms. Summing all the atom:
a book gives a signaAtoms. An elementan
piece of signal. An atom is organized by
Gabor atoms.
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Figure 1. Implementation of our Matching
Pursuit Algorithm

The implementation of the Matchir
Pursuit algorithm uses roughly 3 ste
1. Update the correlations in the blocks,
applying the relevant correlation computat
algorithm to the analyzed signal, and find
maximum correlation in the same lo
2. Crede the atom which corresponds to
maximum correlation with the signal (and st
this atom in the book).
3. Subtract the created atom from the anal\
signal, thus obtaining a residual sig and re-
iterate the analysis on this residual.

Residual Signal



Using Matching Pursuit method is price of frequency localization properties. The Gabor
efficiency and convergence. Time compression function in our new search model is defined as
is quite excellent by extracting prominent atoms
(features). In order to achieve the required Gons () =K5uw.9(t
information in our system, the algorithm could o
use the following steps:

p u) cos[2rw(t —u) + 0] (5)

wherey = (s,u,w,0) denotes the parameters
to the Gabor function, withs,u,w,0
corresponding to an atom’s position in scale,
time, frequency and phase, respectively. The
Gabor dictionarywas implemented with the
parameters of atoms chosen from dyadic
sequences of integers [19].

1. initialization:
m=0,x, =Xy = X; 1
2. computation of the correlations between the

signal and every atom, using inner products :

3.2. Spatial Pyramid Matching for
Pattern Discovery

3. search of the most correlated atom, by

V€ D: Corr(ay,,w) =< x,w> (2)

searching for the maximum inner product: Spatial Pyramid Matchings to find an
approximate correspondence between these two
Wy, = argmaxCorr (X, w) 3) sets by level. At each level of resolution, it
weD works by placing a sequence of increasingly
) ) ) coarser grids over the features.
4, subtracflon of the corresponding weighted A pyramid match kernel allows for multi-
atom ©mVm from the signal : resolution  matching of two collections of
features in a high-dimensional appearance
41 = X — O Wiy €)) space, but discards all spatial information.
Another problem with this approach is that the
where K=< Xp, Wy, >; quality of the approximation to the optimal

partial match provided by the pyramid kernel

5. If the desired level of accuracy is reached, in degrades linearly with the dimension of the
terms of the number of extracted atoms or in feature space. In our system, the approximate

terms of the energy ratio between the original matching  pattern  discovery (SPM) s
signal and the current residuft+: , stop;  constructed the pyramid level and then the

otherwise, re-iterate the pursuit over the humber of matches at level L is given by
residual:m = M+1and go to step 2. histogram intersection function. In determining

SPM, SPM is used step by step level to improve

Music song signal analysis of our ma_tching musical data space and taking a
system is desirable to obtain sparse v_velghted sum of the number of mqtches. At any
representations that are able to reflect the signaifixed resolution, two points are said to match if
structures. The functions used for MP in our they fall into the same cell of the grid. For
algorithm are Gabor function, i.e. Gaussian- Matching pattern discovery, our system used
windowed sinusoids. The Gabor function is histogram intersection function. The histogram
evaluated at a range of frequencies covering thelntersection function is as follows:
available spectrum, scaled in length (trading . b L
time resolution for frequency resolution), and 9(Hy, Hy) = Xy min (Hy @, Hy (D) (6)
translated in time. Each of the resulting ] o ]
functions is called an atom, and the set of atoms In the following, it will be abbreved

is a dictionary which covers a range of time- ?(H% Hy)to7'. To achieve more definitely
pattern matching, our system modified step by



step level pyramid kernel function. Note that the music signal. Music signal structural features
number of matches found at level ‘I' also are represented as a dictionary withost
includes all the matches found at the finer level prominent atoms that match their time-
I+1. Therefore, the number of new matches frequency signature.

found at level | is giveng' — 71 fc - - ‘
I=0,....... L-1. The weight associated with le osf

. 1 h h - | . ]
is set tom , Which is inversely proportione ost
cell width at that level. The definition c o4}

original signal
reconstructed signal []
— difference

pyramid kernel is: 02| .

7 |
KH(X,Y) = 94+ Shd o (70 = 77 @ Ll |
[20].

04t

Spatial Pyramid Matchindor Patte
Discovery & its efficiency, its use of impl
correspondences that respect the joint ste 28f
of co-occuring features, and its resistan T : = 5 5 )
‘superfluqus‘ data point.s_. Since_ pyramid Maich rigure 3. Difference between original signal
kernel is al§o positive-definite  function, 5nq reconstructed signal
convergence is guaranteed, model free and

effective for finding sparse over-complete |, Figure 3, it shows an example music song

06}k

representation. signal  dictionary containing maximum
prominent 1000 atoms at data sampled 26.2kHz
4. Music Searching and Browsing analyzed with Matching Pursuit, an efficient
System implementation of the algorithm.
X Y H(Xn) H(Y o) 1i=2
Input = =
A Query = —
MP = —
A 4
Dictionary with Atoms 2 |H{X|1\ e e
co r
SPM =1z =
A 4 - :_‘-i_ —
MP Features Similarity MetaData = —
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A 4 :
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Figure 2. Overview of Music Searching and
Browsing System
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(a) Featuressets  (b) Histogram pyramids (c)
A block diagram of the system can be !ntersections _
seen in Figure 2. The proposed method created19ure4. An Example of Pattern Discovery
matching pursuit features from a query input With histogram intersection function.




A pyramid matching determines a partial matching pursuit and spatial pyramid matching
correspondence by matching feature points oncemethod, the approach would be more effective
they fall into the same histogram bin. In this and efficient than existing methods in retrieving
example, two 1-D feature sets are used to formsimilar music information. Performance metric
one histogram pyramid. Each row corresponds of our proposed method can be measured in
to a pyramid level. In (a), the seis on the left  terms of accuracy.
side, and the set Y is on the right. (Features
Points are distributed along the vertical axis, 6. Conclusion
and these same points are repeated at each
level.) Bold dashed lines indicate a pair matched In music information retrieval, music
at this Ievel, and bold black lines indicate a Searching and browsing particuiar music songs
match already formed at a former resolution. In jn an efficient manner is still demanding. We
(b) multi-features hiStOgramS are ShOWn, with demonstrate a promising approach for new
bin counts along the horizontal axis. In (C) the search engine model in music information
intersection pyramid between the histograms in retrieval. The new system would use matching
(b) are represented. pursuit and spatial pyramid matching for

Pyramid match kernel ~measures determining significant features of music pieces
similarity achieved from a partial matching and retrieving music queries in efficient way.
between two sets as shown in Figure 4. TheThe feature sets will be achieved by matching
optimal description of the music song from the pyrsuit method as training and testing data.
meta database is found in respect to the fastelRetrieving similar music pieces from a database
and more similar function defined in Spatlal is Compieted by matching the MP features space
Pyramid MatChing method as detail described in by Step by Step level using Spatiai pyrarnid
Section 2. USing MatChing Pursuit inCOOperatEd matching_ Better Speed and accuracy on |arge
with Spatial Pyramid Matching method in this collection of musical songs can be expected
new search engine model, the new model can be,pon the whole architecture of the system.
optimised by occupying different groups in
order which eliminates much of the search References
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