
210

 Light Materialized Path View for Location Based Services

Yutaka Ohsawa and Aye Thida Hlaing
Saitama University

ohsawa@mail.saitama-u.ac.jp

Abstract

 This paper proposes a shortest path search
algorithm based on materialized-path-view
constructed only on partitioned subgraphs, and its
three variations referring different levels of distance
materialization. A road network is partitioned into the
subgraphs, and the distance materialization is
performed only in the subgraphs. Therefore, the
amount of pre-computed data is greatly reduced. The
shortest path is retrieved by a best-first-search using a
priority queue. The difference between three
variations of the algorithm is the materialization level
of the distance in the subgraphs. The performance of
them is evaluated comparing with A* algorithm and
HEPV experimentally. Through the results, we show
the proposed algorithm outperforms the conventional
methods.

1. Introduction

 Point of interest (POI) queries based on the road
network distance become an important role on
location based services (LBS). For example, queries
to find the nearest neighbor POIs to a specified query
point (kNN query), and to find all POIs within a
specified distance from a query point (range query).
For these queries, the optimization on the distance or
the time of travel along the road network is important
besides the Euclidean distance.

 A shortest path query finds the shortest distance
route between specified two points (s and d) on a road
network. For this purpose, Dijkstra's algorithm and A*
algorithm have been used. These algorithms refer an
adjacency list to find the neighboring nodes to a
currently noticed node. When two specified points (s
and d) are located on a long distance, they need much
repetitive processing (node-expansions). Therefore,
the processing time increases rapidly in accordance
with the length of the shortest path.

 Several methods based on materialized path view
(MPV) have also been proposed for the fast road

network distance computation. They retrieve the
distance by looking up a pre-computed distance table.
When two points are located on the road network
nodes, the distance can be obtained by only one
access to the table. Generally, two points are not
always located on nodes, therefore, at most 4 times
access is required. In any case, the road network
distance can be determined in a constant time by using
the MPV.
 However, this MPV has the following problems:
(1) Usually, a road network contains a large amount of
nodes, and the data size of the MPV is proportional to
the square of the number of nodes. Therefore, the data
amount of the distance table becomes huge for a large
size of the road network. (2) Very long processing
time is necessary to construct MPV table, because the
distance must be calculated over all combinations of
node pairs. As concerns to the data amount of the
table, when the total number of nodes in a graph is
1,000,000 (it corresponds to a road network over the
range about 100km square), the number of elements in

MPV table becomes 10�� , therefore several TB
memory is required. (3) When the weight values (e.g.
length) of some links in the network are changed by a
traffic accident or a construction, these changes affect
the wide area on the table. This update also requires a
long processing time.

 To cope with these problems, hierarchical MPV
methods have been proposed. These methods alleviate
the problems described above, however, the problems
cannot be avoided authentically. A change in a leaf
level affects to the upper levels. Long computation
time is necessary for the upper level distance
calculation. The data amount in a high level layer is
not always smaller than that of the leaf level, in
opposition to a usual hierarchical tree structure.

 Car navigation systems sometimes search the
shortest paths between two points located very far
away. In this situation, the most suitable search
method can be considered as a hierarchical structure
based on the types of roads [1]. For example, roads
are divided into the highway and the usual road. First,

211

we search a rough shortest path on the highway
network, and then search the path between each given
terminal point and the access point of the highway on
the usual road network. Though this method may not
give the shortest path, the result is adequate for the
usual purpose.
 In a query for LBS, on the other hand, the shortest
path must be determined from a large number of
candidates, and the area where candidates exist is
limited in a confined area, for example, the searching
in an area having 50km
radius centered the query point. Moreover, point of
interests (POIs) as query targets are usually located on
the usual road network. Therefore, it is not suitable to
adopt the method based on the road attribute hierarchy
to LBS.
 This paper proposes a shortest path search
algorithm based on a lightweight local distance
materialization, which is constructed on a partition of
a road network. These methods outperform A*
algorithm, and they reduce the data amount drastically
comparing with the conventional hierarchical distance
materia-lization methods.

 The rest of the paper is organized as follows.
Section 2 summarizes related work. Section 3
proposes the shortest path finder algorithm. The

proposed methods and the conventional methods are
evaluated experimentally in Section 4. Section 5
summarizes the present paper.

2. Related work

 A shortest path query is a basic operation in
several types of queries based on the road network
distance, for example, kNN queries, ANN queries,
CNN queries, and trip planning queries. Shortest path
query algorithms have been studied since 1950's and
several data structures and algorithms [2] have been
proposed for this query. They can be categorized into,
(1) methods compute-on-demand using adjacency list
of nodes, and (2) methods used pre-computed optimal
path.
 Dijkstra's algorithm and A* algorithm are
representative algorithms for the former type. A*
algorithm is usually faster than Dijkstra's algorithm.
 Materialized path view (MPV) approaches belong
the latter type. It retrieves the shortest path by a
lookup query in the pre-computed distance table. This
method needs O(n2) space when the number of the
nodes on the given graph is n. Therefore it is difficult

to use when the network is large. Jing et al. [3]
proposed semi-materialized method of the shortest
path route to reduce the data amount. It only records
the next pursued node along the shortest path, and the
whole shortest path route is restored by tracking the
next visiting node in sequence.
 The shortest path can be retrieved fast on MPV,
however, it has a problem in a huge data amount as
mentioned above. Therefore, several

hierarchical representation methods have been
proposed to reduce the amount of data. For example,
Jing et al. [3] proposed the hierarchical encoded
path view (HEPV) using hierarchical representation
and semi-materialized approach. The principle of this
method is partitioning a given graph G into several
subgraphs SGi. Distances between every two possible
combination of nodes are calculated to compose a
locally materialized distance table. Next, merging the
neighboring subgraphs, it constructs the higher level
subgraphs in a stepwise fashion. In a higher level, the
distance table is built only for the border nodes
between the subgraphs.

 The hierarchical representation, such as HEPV, is
suitable for the fast calculation of the shortest path
between two points. However, the tables size in a
higher hierarchy increase rapidly, then the total
memory size of this structure becomes very large.
Adding this, when a weight of the link is changed
by a traffic accident or road maintenance, changing of
weights (for example, distance) in the table affects a
wide area in the table.

 Jung et al. proposed another hierarchical
materialized path view named HiTi graph [4]. This
method also materializes distance between two nodes
in the graph, and constructs the hierarchy. The big
difference between HiTi and HEPV is that HiTi does
not materialize in the leaf level subgraphs. Therefore,
the total data amount of the HiTi graph is smaller than
HEPV. The HiTi prunes the hierarchical tree leaves by
using A* algorithm. Shekhar et al. [5] analyzed
hierarchical-MPV in terms of the storage/

computation-time trade offs. Their paper is closely
related with our work, however, their investigation
assumes the hierarchical structure essentially. This
point is the main difference with the discussion
developed in the rest of the paper.

3.Shortest Path Finder

212

3.1.Data Structure

 A road network is modeled as a directed graph
G(V,E,W), where V is a set of nodes (intersections). E
is the set of edges (road segments), and W is the set of
link weights. A fragment SGi(V i,Ei,Wi) of a graph
G(V,E,W) is a partitioned subgraph, where V� � V,
E� � E , and W� � W . If the end points of an edge
e�� � E� are v� and v�, then v� � V� and v� � V�. This

subgraph is denoted as SGi in the rest of the paper
where there is no ambiguity.

Fig. 1(a) shows an example of a road network
graph, here small circles are nodes and lines are
edges. Fig. 1 (b) depicts a partition of the graph
shown Fig. 1(a). In this partition, the nodes shown by
black dots belong to at least two neighboring
subgraphs; i.e., the nodes belonged to the plural
subgraphs are called the border nodes. Two subgraphs
are defined adjacent if they have at least one common
border node. The set of border nodes of SGi is
denoted by BVi. In this partition, each edge belongs to
only one subgraph. The nodes shown in white circles
in the figure are referred as inner nodes: they are the
rest of the nodes in a subgraph except the border
nodes.

Figure1. Flat graph and its partition

Figure 2. Distance Tables

Fig. 2(a) extracts SG2 from Fig. 1. The numerical
value attached each link shows the weight of the link,
for example, the length of the link or the travel time to
pass through the link. In the rest of the paper, we
assume the weight as the length of the link. Fig. 2(b)
shows the shortest path length between every two
border nodes in SG2. The lengths are calculated by
traveling inside of the subgraph, therefore these
values are not always global shortest path lengths. If
there is no connected path between a paired nodes
inside the subgraph, the infinity value is assigned to
the related element of the table. Though the matrix is
symmetry in this example, it is not always
symmetrical in the real road network because of the
existence of one way road. In the rest of the paper, we
refer this table as a border-to-border distance table
(BBDT).

Fig. 2(c) shows another table, the inner-to-border
node distance table (IBDT), which shows the distance
from an inner node to a border node. This table is
used to retrieve the distance from the starting point as
an inner node to a border node. Since the distance on
the road network is not symmetric, the transposed
matrices of Fig. 2(c) is also necessary to obtain the
distance between a border node and the destination
point.

Fig. 2(d) shows the node-to-node distance table
(NNDT), listed distances of all combinations of the
nodes in SG2. This table is used to acquire the
distance between two arbitrarily specified nodes.
Either IBDT or NNDT is used alternatively in the SPF
algorithms described in Sect. 3.3.

3.2.Simple Path Finder Algorithm

Fig. 3 shows the processing flow of the shortest
path finder (SPF). In the following description, s and
d denote the starting point and the destination point of
the shortest path to be retrieved. The SPF is controlled
by a best-first search using a priority queue (PQ). The
PQ manages the records constructed by the following
items.

<p, Cost, dfs, fSG, phase>

Here, p is the currently noticed point; s, d, or a
border node. Cost is the lower bound road network
distance between s and d. The PQ returns the record
by ascending order of this value. dfs (distance-from-
source) is the shortest road network distance between

213

s and the currently noticed node p. fSG is the subgraph
ID in which p belongs. The last item, phase is a value
to show the progress of the processing. It is changed
from PHASE0 (initial state) to PHASE3 (final state)
according to the progress of the processing.

At first, the subgraph, SGs, which contains the road
segment under s, is determined. Next, Cost is
calculated by the equation, Cost =dE(s,bi)+dE(bi,d), for
all border nodes b� � BVs of SGs. Here, dE(x,y)
denotes the Euclidean distance between x and y. In
this initial stage, the following records are composed
and enqueued to the PQ. In this processing stage, the
records have PHASE0 as the phase value.

<bi, dE(s,bi)+dE(bi,d), 0, SGs,PHASE0> �b� � BVn

Next, a record (e) that has minimum Cost value is
dequeued from the PQ as shown in Fig. 3(b). At the
beginning of the processing, e.phase is PHASE0. For
the border node e.p, the road network distance
dN(s,e.p) is calculated. Here, dN(x,y) denotes the road
network distance between x and y. The way to
determine the road network distance is described in
Sect. 3.3. Cost value for this node is calculated by the
equation Cost=dN(s,e.p)+dE(e.p,d), composing the
following record, and then it is enqueued in the PQ.

<e.p, Cost, dN(s,e.p), e.fSG, PHASE1>

When the phase value of the obtained record (e)
from the PQ is PHASE1 (see Fig. 3 (c)), the road
network distance from s to the current node (e.p) has
already been determined. All subgraphs that contain
e.p as a border node is also determined. And then, for
each subgraph SGn, Cost is calculated by the
following equation.

Cost=e.dfs+dN(p,bi)+dE(bi,d)�b� �BVn)

Here, BVn is a border node set of SGn. The
following record is composed, and then it is enqueued
in the PQ.

<b i,Cost,e.dfs+dN(p,bi), SGn, PHASE1>

Continuing the processing, when a record obtained
from the PQ reaches a border node of the subgraph
containing d, the record shown below is composed
and it is enqueued in the PQ.

<e.p,e.dfs+dE(e.p,d),e.dfs,e.fSG,PHASE2>

In this case, the value of the road network distance
from s to e.p plus the Euclidean distance between e.p
and d is assigned to Cost value, and PHASE2 is
assigned to phase value.

Figure 3. Processing flow of SPF

When the phase value of the dequeued record from
the PQ is PHASE2, the road network distance
between e.p and d is calculated. Composing the
following record, and it is enqueued into the PQ.

<e.p,e.dfs+dN(e.p,d),e.dfs,SGd,PHASE3>

The way how to determine dN(e.p,d) is described in
Sect. 3.3.

When the phase value of the dequeued record is
PHASE3, the shortest path distance between s and d
has been determined. The fact that the record is
dequeued from the PQ means it has the minimum
Cost value among all records contained in the PQ. It
means the shortest path distance is determined and
returned, and then the searching process is terminated.

214

3.3.Distance calculation method inside
subgraph

This section describes three variations of SPF in
Sect. 3.2.; SPFLM (SPF with light materialization),
SPFMM (SPF with medium materialization), and
SPFFM (SPF with full materialization). The
difference between these methods is how to determine
the distance between one of the specified points (s and
d) and the border nodes of the subgraph where the
point belongs to.

SPFLM calculates the distance by A* algorithm
referring usual adjacency list of the road network.
Usual A* algorithm, we hereafter refer this as pair-
wise A* (PWA*) algorithm, can search the shortest
path efficiently when two terminal points are located
nearly. The extent of the subgraph is small, hence, the
distance determination inside a subgraph satisfies this
condition. However, this operation is invoked several
times in transition from PHASE0 to PHASE1 and
from PHASE2 to PHASE3.

 SPFMM obtains the distance between s and a
border-node and the distance between a border-node
and d by referring the IBDT. However, when s and d
are located in the same subgraph, the distance
between s and d cannot be obtained by the IBDT: the
distance is obtained by PWA* algorithm for this case.

The last algorithm, SPFFM, determines the
shortest path from a point to a border node in a
subgraph by referring the NNDT, which has all
combinations of the distances between any two inner-
nodes. The distances in the NNDT are calculated only
inside a subgraph, therefore they are not always the
global minimum distances. Hence, the shortest path
searching by the algorithm described in Sec. 3.2 is
also necessary even when s and d are located in the
same subgraph.

Table 1 shows the tables described in Sect. 3.1
used in the three SPF algorithms.

Table 1. Used tables in each SPF algorithm

Data
table

SPFLM SPFMM SPFFM

BBDT � � �
IBDT �
NNDT �
Adj.List � �

4. Experimental results

 This section evaluates the performance of three
proposed variations; SPFLM, SPFMM, and SPFFM,
by comparison with two representative conventional
methods, PWA* algorithm and HEPV. All algorithms
are implemented by Java, and are evaluated on a PC
with an Intel Core i7 CPU 960 (3.2GHz), 9GB
memory. Table 2 shows the road network maps used
in this experiment.

 Table 2．．．． Road network maps used in the

experiments

Map
name

No.
nodes

No.
links

Adj. list
size

MapS 16,284 24,914 1.5M
MapM 109,373 81,233 6.8MB
MapL 465,245 638,282 39.7MB

 Partitioning of a road network into the subgraphs
are performed by the following method: (1) we
selected nodes (source-nodes) on the given road
network for a specified number of divisions: (2)
applying multiple sources Dijkstra's algorithm, we
categorized each node into a subgraph that has the
same source node as nearest neighbor. Three types of
tables, BBDT, IBDT, and NNDT were prepared for
each subgraph. Higher level of HEPV is constructed
based on this partition.

Table 3. Data size (MB)

Map PW
A*

SPFL
M

SPFM
M

SPFFM HEPV

MapS 1.5 2.6 6.7 14.5 30.1
Map
M

6.8 11.3 28.7 70.1 376.1

MapL 39.7 65.8 166.6 400.0 8,287.6

 Fig.4 compares the processing time of the
shortest path searching among the PWA*, SPFLM,
SPFFM, and two layered HEPV, using MapS divided
into 100 subgraphs. The horizontal axis shows the
distance between s and d. We generated 1,000 pairs of
s and d by a pseudo-random sequence. For each s-d
pair, the shortest path was searched by five
algorithms. (SPFMM is omitted from this figure to
avoid intricacy: it performed almost the same as
SPFFM.) This figure presents the results that is
selected one after every 5 queries. All LRU buffers
were cleared in advance for every query. The most of
processing time by SPFLM, SPFFM, and HEPV stay
under 20 ms over the whole distance range.
Meanwhile, the processing time of PWA* increases

215

almost linearly in accordance with the increase of the
distance.

Next, we generate several sets of points by a
pseudo-random sequence to simulate points of interest
(POI) on the road network links. The number of
generated points were specified by a probability Prob.
For example, when Prob=0.01, a POI exists on 100
road links. We searched 10 nearest neighbor (NN)
POIs of a query point (q) in Euclidian distance. After
that, the road network distances are computed for the
found POIs by PWA*, SPFLM, SPFMM, and
SPFFM. We determined 10 query points randomly on
the road network. Fig. 5(a) shows the average
processing time spent to determine 10 shortest paths
on MapS; Fig. 5(b) and (c) show the results of the
same experiments over MapM and MapL,
respectively.

These three results show similar processing times
for the same Prob. For denser than Prob=0.002, the
processing time of the SPFLM shows almost the same
value with PWA*. This is because the path length is
small in high Prob values, and PWA* algorithm can
run fast.

Fig. 5(d) compares the processing time of SPFLM
and SPFFM by varying the average number of nodes
in subgraphs. In SPFFM, the processing time is
minimum when the average number of nodes is 240,
On the other hand, in SPFLM, it is minimum when
the average is 150: the processing time increases in
accordance with the number of nodes. SPFLM needs
to search the distance between border nodes of a
subgraph, and the distance is calculated by PWA*
algorithm. Therefore, when the size of a subgraph is
smaller, the processing cost is shorter.

5. Conclusion

 This paper proposes a shortest path search
algorithm and its three variations using the light
distance materialization that are suitable for LBS. The
data amount of the presented methods can be reduced
in comparing with the conventional hierarchical
network distance materialized methods; HEPV and
HiTi. Especially, SPFLM reduces the data amount
drastically. On the other hand, SPFMM and SPFFM
achieve similar time efficiency with HEPV.

Consequently, when the distance between two
points is large, SPFLM outperforms PWA*
substantially, nevertheless the SPFLM uses a small
amount of pre-computation data. LBS is apt to request
for the shortest path searches over rather than nearly
located points, and the operation is repeated over a
large number of times in a query; for example as in
the incremental Euclidean restriction strategy.

Figure 5. Processing time of the route to 10-NN
POIs

In this situation, the relative search speed of PWA*
increases, because the hit ratio in LRU buffer
managing adjacency list is increased. kNN queries
evaluated in this paper is for such example. When the
density of POI is high, the difference of the

Figure 4. Processing time when s and d are
places on nodes (MapS)

216

processing times between SPFLM and PWA*
becomes small. On the other hand, SPFMM and
SPFFM outperform the other methods even in such
situation.

References
[1] B.Liu, J.Tay, 11

th
 CAIA, pp.306-312, 1995

[2] L.Fu, D.Sun, L.R.Rilett, Computers & Operations

Research 33, pp.3324-3343, 2006

[3] N.Jing et al., 5th ICIKM, pp.268-276, 1996

[4] S.Jung, et al., IEEE Trans. KDE, 14, pp.1029-1046, 2002

[5]S.Shekhar et al., ISLSD, pp.94-111, 1997

