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Abstract 

 
 This paper proposes a shortest path search 
algorithm based on materialized-path-view 
constructed only on partitioned subgraphs, and its 
three variations referring different levels of distance 
materialization. A road network is partitioned into the 
subgraphs, and the distance materialization is 
performed only in the subgraphs. Therefore, the 
amount of pre-computed data is greatly reduced. The 
shortest path is retrieved by a best-first-search using a 
priority queue. The difference between three 
variations of the algorithm is the materialization level 
of the distance in the subgraphs. The performance of 
them is evaluated comparing with A* algorithm and 
HEPV experimentally. Through the results, we show 
the proposed algorithm outperforms the conventional 
methods. 
 

1. Introduction 
 
 Point of interest (POI) queries based on the road 
network distance become an important role on 
location based services (LBS). For example, queries 
to find the nearest neighbor POIs to a specified query 
point (kNN query), and to find all POIs within a 
specified distance from a query point (range query). 
For these queries, the optimization on the distance or 
the time of travel along the road network is important 
besides the Euclidean distance. 

 A shortest path query finds the shortest distance 
route between specified two points (s and d) on a road 
network. For this purpose, Dijkstra's algorithm and A* 
algorithm have been used.  These algorithms refer an 
adjacency list to find the neighboring nodes to a 
currently noticed node. When two specified points (s 
and d) are located on a long distance, they need much 
repetitive processing (node-expansions). Therefore, 
the processing time increases rapidly in accordance 
with the length of the shortest path. 

 Several methods based on materialized path view 
(MPV) have also been proposed for the fast road 

network distance computation. They retrieve the 
distance by looking up a pre-computed distance table. 
When two points are located on the road network 
nodes, the distance can be obtained by only one 
access to the table. Generally, two points are not 
always located on nodes, therefore, at most 4 times 
access is required. In any case, the road network 
distance can be determined in a constant time by using 
the MPV. 
 However, this MPV has the following problems: 
(1) Usually, a road network contains a large amount of 
nodes, and the data size of the MPV is proportional to 
the square of the number of nodes. Therefore, the data 
amount of the distance table becomes huge for a large 
size of the road network. (2) Very long processing 
time is necessary to construct MPV table, because the 
distance must be calculated over all combinations of 
node pairs. As concerns to the data amount of the 
table, when the total number of nodes in a graph is 
1,000,000 (it corresponds to a road network over the 
range about 100km square), the number of elements in 

MPV table becomes 10�� , therefore several TB 
memory is required. (3) When the weight values (e.g. 
length) of some links in the network are changed by a 
traffic accident or a construction, these changes affect 
the wide area on the table. This update also requires a 
long processing time. 

 To cope with these problems, hierarchical MPV 
methods have been proposed. These methods alleviate 
the problems described above, however, the problems 
cannot be avoided authentically.  A change in a leaf 
level affects to the upper levels. Long computation 
time is necessary for the upper level distance 
calculation. The data amount in a high level layer is 
not always smaller than that of the leaf level, in 
opposition to a usual hierarchical tree structure. 

 Car navigation systems sometimes search the 
shortest paths between two points located very far 
away. In this situation, the most suitable search 
method can be considered as a hierarchical structure 
based on the types of roads [1]. For example, roads 
are divided into the highway and the usual road. First, 
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we search a rough shortest path on the highway 
network, and then search the path between each given 
terminal point and the access point of the highway on 
the usual road network. Though this method may not 
give the shortest path, the result is adequate for the 
usual purpose. 
 In a query for LBS, on the other hand, the shortest 
path must be determined from a large number of 
candidates, and the area  where candidates exist is 
limited in a confined area, for example, the searching 
in an area having 50km 
radius centered the query point. Moreover, point of 
interests (POIs) as query targets are usually located on 
the usual road network. Therefore, it is not suitable to 
adopt the method based on the road attribute hierarchy 
to LBS. 
 This paper proposes a shortest path search 
algorithm based on a lightweight local distance 
materialization, which is constructed on a partition of 
a road network.  These methods outperform A* 
algorithm, and they reduce the data amount drastically 
comparing with the conventional hierarchical distance 
materia-lization methods. 

 The rest of the paper is organized as follows. 
Section 2 summarizes related work. Section 3 
proposes the shortest path finder algorithm. The 

proposed methods and the conventional methods are 
evaluated experimentally in Section 4. Section 5 
summarizes the present paper. 

 

2. Related work 

 
 A shortest path query is a basic operation in 
several types of queries based on the road network 
distance, for example, kNN queries, ANN queries, 
CNN queries, and trip planning queries. Shortest path 
query algorithms have been studied since 1950's and 
several data structures and algorithms [2] have been 
proposed for this query. They can be categorized into, 
(1) methods compute-on-demand using adjacency list 
of nodes, and (2) methods used pre-computed optimal 
path. 
 Dijkstra's algorithm and A* algorithm are 
representative algorithms for the former type. A* 
algorithm is usually faster than Dijkstra's algorithm. 
 Materialized path view (MPV) approaches belong 
the latter type. It retrieves the shortest path by a 
lookup query in the pre-computed distance table. This 
method needs O(n2) space when the number of the 
nodes on the given graph is n. Therefore it is difficult 

to use when the network is large. Jing et al. [3] 
proposed semi-materialized method of the shortest 
path route to reduce the data amount. It only records 
the next pursued node along the shortest path, and the 
whole shortest path route is restored by tracking the 
next visiting node in sequence. 
 The shortest path can be retrieved fast on MPV, 
however, it has a problem in a huge data amount as 
mentioned above. Therefore, several 

hierarchical representation methods have been 
proposed to reduce the amount of data. For example, 
Jing et al. [3] proposed the hierarchical encoded 
path view (HEPV) using hierarchical representation 
and semi-materialized approach. The principle of this 
method is partitioning a given graph G into several 
subgraphs SGi. Distances between every two possible 
combination of nodes are calculated to compose a 
locally materialized distance table. Next, merging the 
neighboring subgraphs, it constructs the higher level 
subgraphs in a stepwise fashion. In a higher level, the 
distance table is built only for the border nodes 
between the subgraphs. 

 The hierarchical representation, such as HEPV, is 
suitable for the fast calculation of the shortest path 
between two points. However, the tables size in a 
higher hierarchy increase rapidly, then the total 
memory size of this structure becomes very large. 
Adding this, when a weight of the link is changed 
by a traffic accident or road maintenance, changing of 
weights (for example, distance) in the table affects a 
wide area in the table. 

  Jung et al. proposed another hierarchical 
materialized path view named HiTi graph [4]. This 
method also materializes distance between two nodes 
in the graph, and constructs the hierarchy. The big 
difference between HiTi and HEPV is that HiTi does 
not materialize in the leaf level subgraphs. Therefore, 
the total data amount of the HiTi graph is smaller than 
HEPV. The HiTi prunes the hierarchical tree leaves by 
using A* algorithm. Shekhar et al. [5] analyzed 
hierarchical-MPV in terms of the storage/ 

computation-time trade offs. Their paper is closely 
related with our work, however, their investigation 
assumes the hierarchical structure essentially. This 
point is the main difference with the discussion 
developed in the rest of the paper. 

 
 
 

3.Shortest Path Finder 
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3.1.Data Structure 
 
    A road network is modeled as a directed graph 
G(V,E,W), where V is a set of nodes (intersections). E 
is the set of edges (road segments), and W is the set of 
link weights. A fragment SGi(V i,Ei,Wi) of a graph 
G(V,E,W) is a partitioned subgraph, where V� � V, 
E� � E , and W� � W . If the end points of an edge 
e�� � E� are v� and v�, then v� � V� and v� � V�.  This 

subgraph is denoted as SGi in the rest of the paper 
where there is no ambiguity. 

Fig. 1(a) shows an example of a road network 
graph, here small circles are nodes and lines are 
edges. Fig. 1 (b) depicts a partition of the graph 
shown Fig. 1(a).  In this partition, the nodes shown by 
black dots belong to at least two neighboring 
subgraphs; i.e., the nodes belonged to the plural 
subgraphs are called the border nodes. Two subgraphs 
are defined adjacent if they have at least one common 
border node. The set of border nodes of SGi is 
denoted by BVi. In this partition, each edge belongs to 
only one subgraph. The nodes shown in white circles 
in the figure are referred as inner nodes: they are the 
rest of the nodes in a subgraph except the border 
nodes. 
 

 
Figure1. Flat graph and its partition 

 

 
Figure 2. Distance Tables 

Fig. 2(a) extracts SG2 from Fig. 1. The numerical 
value attached each link shows the weight of the link, 
for example, the length of the link or the travel time to 
pass through the link. In the rest of the paper, we 
assume the weight as the length of the link. Fig. 2(b) 
shows the shortest path length between every two 
border nodes in SG2. The lengths are calculated by 
traveling inside of the subgraph, therefore these 
values are not always global shortest path lengths. If 
there is no connected path between a paired nodes 
inside the subgraph, the infinity value is assigned to 
the related element of the table. Though the matrix is 
symmetry in this example, it is not always 
symmetrical in the real road network because of the 
existence of one way road.  In the rest of the paper, we 
refer this table as a border-to-border distance table 
(BBDT). 

Fig. 2(c) shows another table, the inner-to-border 
node distance table (IBDT), which shows the distance 
from an inner node to a border node. This table is 
used to retrieve the distance from the starting point as 
an inner node to a border node. Since the distance on 
the road network is not symmetric, the transposed 
matrices of Fig. 2(c) is also necessary to obtain the 
distance between a border node and the destination 
point. 

Fig. 2(d) shows the node-to-node distance table 
(NNDT), listed distances of all combinations of the 
nodes in SG2. This table is used to acquire the 
distance between two arbitrarily specified nodes. 
Either IBDT or NNDT is used alternatively in the SPF 
algorithms described in Sect. 3.3. 
 

3.2.Simple Path Finder Algorithm 

Fig. 3 shows the processing flow of the shortest 
path finder (SPF). In the following description, s and 
d denote the starting point and the destination point of 
the shortest path to be retrieved. The SPF is controlled 
by a best-first search using a priority queue (PQ).  The 
PQ manages the records constructed by the following 
items. 

<p, Cost, dfs, fSG, phase> 

Here, p is the currently noticed point; s, d, or a 
border node. Cost is the lower bound road network 
distance between s and d. The PQ returns the record 
by ascending order of this value. dfs (distance-from-
source) is the shortest road network distance between 
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s and the currently noticed node p. fSG is the subgraph 
ID in which p belongs. The last item, phase is a value 
to show the progress of the processing. It is changed 
from PHASE0 (initial state) to PHASE3 (final state) 
according to the progress of the processing. 

At first, the subgraph, SGs, which contains the road 
segment under s, is determined.  Next, Cost is 
calculated by the equation, Cost =dE(s,bi)+dE(bi,d), for 
all border nodes b� � BVs  of SGs. Here, dE(x,y) 
denotes the Euclidean distance between x and y. In 
this initial stage, the following records are composed 
and enqueued to the PQ. In this processing stage, the 
records have PHASE0 as the phase value.  

<bi, dE(s,bi)+dE(bi,d), 0, SGs,PHASE0> �b� � BVn 

Next, a record (e) that has minimum Cost value is 
dequeued from the PQ as shown in Fig. 3(b). At the 
beginning of the processing, e.phase is PHASE0. For 
the border node e.p, the road network distance 
dN(s,e.p) is calculated. Here,  dN(x,y) denotes the road 
network distance between x and y. The way to 
determine the road network distance is described in 
Sect. 3.3. Cost value for this node is calculated by the 
equation Cost=dN(s,e.p)+dE(e.p,d), composing the 
following record, and then it is enqueued in the PQ. 

<e.p, Cost, dN(s,e.p), e.fSG, PHASE1> 

When the phase value of the obtained record (e) 
from the PQ is PHASE1 (see Fig. 3 (c)), the road 
network distance from s to the current node (e.p) has 
already been determined. All subgraphs that contain 
e.p as a border node is also determined. And then, for 
each subgraph SGn, Cost is calculated by the 
following equation. 

Cost=e.dfs+dN(p,bi)+dE(bi,d)�b� �BVn) 

Here, BVn is a border node set of SGn. The 
following record is composed, and then it is enqueued 
in the PQ. 

<b i,Cost,e.dfs+dN(p,bi), SGn, PHASE1> 

Continuing the processing, when a record obtained 
from the PQ reaches a border node of the subgraph 
containing d, the record shown below is composed 
and it is enqueued in the PQ. 

<e.p,e.dfs+dE(e.p,d),e.dfs,e.fSG,PHASE2> 

In this case, the value of the road network distance 
from s to e.p plus the Euclidean distance between e.p 
and d is assigned to Cost value, and PHASE2 is 
assigned to phase value. 

 

 

Figure 3. Processing flow of SPF 

When the phase value of the dequeued record from 
the PQ is PHASE2, the road network distance 
between e.p and d is calculated. Composing the 
following record, and it is enqueued into the PQ. 

<e.p,e.dfs+dN(e.p,d),e.dfs,SGd,PHASE3> 

The way how to determine dN(e.p,d) is described in 
Sect. 3.3. 

When the phase value of the dequeued record is 
PHASE3, the shortest path distance between s and d 
has been determined. The fact that the record is 
dequeued from the PQ means it has the minimum 
Cost value among all records contained in the PQ. It 
means the shortest path distance is determined and 
returned, and then the searching process is terminated. 
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3.3.Distance calculation method inside 
subgraph 

This section describes three variations of SPF in 
Sect. 3.2.; SPFLM (SPF with light materialization), 
SPFMM (SPF with medium materialization), and 
SPFFM (SPF with full materialization). The 
difference between these methods is how to determine 
the distance between one of the specified points (s and 
d) and the border nodes of the subgraph where the 
point belongs to. 

SPFLM calculates the distance by A* algorithm 
referring usual adjacency list of the road network. 
Usual A* algorithm, we hereafter refer this as pair-
wise A* (PWA*) algorithm, can search the shortest 
path efficiently when two terminal points are located 
nearly. The extent of the subgraph is small, hence, the 
distance determination inside a subgraph satisfies this 
condition. However, this operation is invoked several 
times in transition from PHASE0 to PHASE1 and 
from PHASE2 to PHASE3. 

 SPFMM obtains the distance between s and a 
border-node and the distance between a border-node 
and d by referring the IBDT. However, when s and d 
are located in the same subgraph, the distance 
between s and d cannot be obtained by the IBDT: the 
distance is obtained by PWA* algorithm for this case. 

The last algorithm, SPFFM, determines the 
shortest path from a point to a border node in a 
subgraph by referring the NNDT, which has all 
combinations of the distances between any two inner-
nodes. The distances in the NNDT are calculated only 
inside a subgraph, therefore they are not always the 
global minimum distances. Hence, the shortest path 
searching by the algorithm described in Sec. 3.2 is 
also necessary even when s and d are located in the 
same subgraph. 

Table 1 shows the tables described in Sect. 3.1 
used in the three SPF algorithms. 

 

Table 1. Used tables in each SPF algorithm 

Data 
table 

SPFLM SPFMM SPFFM 

BBDT �  �  �  
IBDT  �   
NNDT   �  
Adj.List �  �   

 
4. Experimental results 

    This section evaluates the performance of three 
proposed variations; SPFLM, SPFMM, and SPFFM, 
by comparison with two representative conventional 
methods, PWA* algorithm and HEPV. All algorithms 
are implemented by Java, and are evaluated on a PC 
with an Intel Core i7 CPU 960 (3.2GHz), 9GB 
memory. Table 2 shows the road network maps used 
in this experiment. 

 Table 2．．．．  Road network maps used in the 

experiments 

Map 
name 

No. 
nodes 

No. 
links 

Adj. list 
size 

MapS 16,284 24,914 1.5M 
MapM 109,373 81,233 6.8MB 
MapL 465,245 638,282 39.7MB 

 

 Partitioning of a road network into the subgraphs 
are performed by the following method: (1) we 
selected nodes (source-nodes) on the given road 
network for a specified number of divisions: (2) 
applying multiple sources Dijkstra's algorithm, we 
categorized each node into a subgraph that has the 
same source node as nearest neighbor. Three types of 
tables, BBDT, IBDT, and NNDT were prepared for 
each subgraph. Higher level of HEPV is constructed 
based on this partition. 

Table 3. Data size (MB) 

Map PW
A* 

SPFL
M 

SPFM
M 

SPFFM HEPV 

MapS 1.5 2.6 6.7 14.5 30.1 
Map
M 

6.8 11.3 28.7 70.1 376.1 

MapL 39.7 65.8 166.6 400.0 8,287.6 

        Fig.4 compares the processing time of the 
shortest path searching among the PWA*, SPFLM, 
SPFFM, and two layered HEPV,  using MapS divided 
into 100 subgraphs. The horizontal axis shows the 
distance between s and d. We generated 1,000 pairs of 
s and d by a pseudo-random sequence. For each s-d 
pair, the shortest path was searched by five 
algorithms. (SPFMM is omitted from this figure to 
avoid intricacy: it performed almost the same as 
SPFFM.) This figure presents the results that is 
selected one after every 5 queries. All LRU buffers 
were cleared in advance for every query.  The most of 
processing time by SPFLM, SPFFM, and HEPV stay 
under 20 ms over the whole distance range. 
Meanwhile, the processing time of PWA* increases 
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almost linearly in accordance with the increase of the 
distance.  

Next, we generate several sets of points by a 
pseudo-random sequence to simulate points of interest 
(POI) on the road network links. The number of 
generated points were specified by a probability Prob. 
For example, when Prob=0.01, a POI exists on 100 
road links. We searched 10 nearest neighbor (NN) 
POIs of a query point (q) in Euclidian distance. After 
that, the road network distances are computed for the 
found POIs by PWA*, SPFLM, SPFMM, and 
SPFFM. We determined 10 query points randomly on 
the road network. Fig. 5(a) shows the average 
processing time spent to determine 10 shortest paths 
on MapS; Fig. 5(b) and (c) show the results of the 
same experiments over MapM and MapL, 
respectively. 

 

 

These three results show similar processing times 
for the same Prob. For denser than Prob=0.002, the 
processing time of the SPFLM shows almost the same 
value with PWA*. This is because the path length is 
small in high Prob values, and PWA* algorithm can 
run fast. 

Fig. 5(d) compares the processing time of SPFLM 
and SPFFM by varying the average number of nodes 
in subgraphs.  In SPFFM, the processing time is 
minimum when the average number of nodes is 240, 
On the other hand, in SPFLM, it is minimum when 
the average is 150: the processing time increases in 
accordance with the number of nodes. SPFLM needs 
to search the distance between border nodes of a 
subgraph, and the distance is calculated by PWA* 
algorithm. Therefore, when the size of a subgraph is 
smaller, the processing cost is shorter. 

 

5. Conclusion 

    This paper proposes a shortest path search 
algorithm and its three variations using the light 
distance materialization that are suitable for LBS. The 
data amount of the presented methods can be reduced 
in comparing with the conventional hierarchical 
network distance materialized methods; HEPV and 
HiTi. Especially, SPFLM reduces the data amount 
drastically. On the other hand, SPFMM and SPFFM 
achieve similar time efficiency with HEPV.     

Consequently, when the distance between two 
points is large, SPFLM outperforms PWA* 
substantially, nevertheless the SPFLM uses a small 
amount of pre-computation data. LBS is apt to request 
for the shortest path searches over rather than nearly 
located points, and the operation is repeated over a 
large number of times in a query; for example as in 
the incremental Euclidean restriction strategy.  

 

Figure 5. Processing time of the route to 10-NN 
POIs 

In this situation, the relative search speed of PWA* 
increases, because the hit ratio in LRU buffer 
managing adjacency list is increased. kNN queries 
evaluated in this paper is for such example. When the 
density of POI is high, the difference of the 

Figure 4. Processing time when s and d are 
places on nodes (MapS) 
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processing times between SPFLM and PWA* 
becomes small. On the other hand, SPFMM and 
SPFFM outperform the other methods even in such 
situation. 
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