
Correlation Analysis of Maintainability Index of Server-Side Script:
PHP

Cho Thet Mon, Khin Mar Myo

University of Computer Studies, Mandalay
chothetmonucsm@gmail.com,kmmyo.ag@gmail.com

Abstract

The maintainability of any software system is
quantified in terms of Maintainability Index
(MI). Many research papers used MI as
Maintainability indicator to validate and predict
the maintainability of their proposed metrics. In
this study the maintainability change of the PHP
language was empirically investigated. The
research performed on 210 PHP source codes
from different domains to compute a
maintainability index of each file. The
correlations between each parameter for
Maintainability Index (MI) with the other
parameters and with the MI itself are calculated.
The parameters of MI are Line of Code (LOC),
Cyclomatic Complexity (CC), and Halstead
Volume (HV). The relationship between
maintainability index and metrics taken for the
study was identified on the basis of the Pearson
correlation analysis. From the results it can be
depicted that the Line of Code (LOC),
Cyclomatic Complexity (CC), and Halstead
Volume (HV) are strongly inversely related to the
maintainability index of PHP.

1. Introduction

Measuring software maintainability early in
the development life cycle, especially at the
design phase, may help designers to incorporate
required enhancement and corrections for
improving maintainability of the final software
[5]. In order to effectively manage the cost of the

software development it is important to forecast
software’s maintainability and identify
maintainability predictors which have an impact
on the software maintenance activity. Many
software metrics have been proposed as
indicators for software product quality in
particular, Oman et al. proposed the
Maintainability Index (MI) [1 and 4]. MI is a
composite metric that incorporates a number of
traditional source code metrics into a single
number that indicates relative maintainability.
The MI is comprised of weighted Halstead
metrics (effort or volume) HV, McCabe's
cyclomatic complexity (CC), Lines of codes
(LOC). This Maintainability Index (MI) has
evolved into numerous variants and has been
successfully applied to a number of industrial
strength software systems. After nearly a decade
of use, MI continues to provide valuable insight
into software maintainability issues.

2. Literature Review

Several maintainability models or
methodologies were proposed to help the
designers in calculating the maintainability of
software so as to develop better and improved
software systems. Many organizations assess the
maintainability of software systems before they
are deployed. Object-oriented design has been
shown to be a useful technique to develop and
deliver quality software. Object-oriented metrics
can be used to assess the maintainability of a
software system. Various software metrics and

1

models have been developed and described.
Wide range of maintainability prediction models
has been proposed in the literature within last
two decades. Some of the models are predicting
maintainability using the metrics from coding as
well as the design phase, while some are
focusing only on design level metrics.

Oman and Hagemeister [4] proposed a
software maintainability hierarchy, in terms of
some maintainability indicators and as per the
hierarchy, Halstead Complexity and Cyclomatic
Complexity are the indicators of maintainability.

Anita Ganpati et al. [2] proposed the
maintainability index observed over fifty
successive versions, applied on Apache, Mozilla
Firefox, and MySQL and FileZilla software. The
MI in terms of software metrics namely Lines of
Code (LOC), Cyclomatic Complexity (CC), and
Halstead Volume (V) was computed for all the
fifty successive versions of four open source
software (OSS). The software metrics were
calculated using Resource Standard Metrics
(RSM) tool and Crystal Flow tool. It was
observed from the results that the MI value was
the highest in case of Mozilla Firefox and was
the lowest in the case of Apache OSS.

Nahlah M.A.M.Najm [3] provided some
insight to the practical implementation of MI
with a new, simple, and effective method in
comparison with the traditional method. This
paper presented a new method to find MI with
respect to LOC only. To validate the method,
Measuring Maintainability Index Software
(MMIS) is developed, that first finds MI with
respect to (LOC, CC, and HV); secondly finds
MI with respect to LOC only. The findings
proved that the new method was easy to
understand, fast to count, and independent on the
program language.

The main purpose of this work is that
maintainability of PHP is calculated. Three
internal software metrics LOC, CC and HV are

used to calculate the maintainability index. Also,
Pearson correlation coefficient is calculated for
each parameter of Maintainability Index (MI)
with the other parameters and with the MI itself.

3. Maintainability Index (MI)

Maintenance is defined by the IEEE as “the
process of modifying a software system or
component after delivery to correct faults,
improve performance or other attributes, or adapt
to a changed environment” [1]. There have been
several attempts to quantify the maintainability
of a software system. The most widely used
software metric which quantifies the
maintainability is known as Maintainability
Index (MI).

Maintainability Index is software metric
which measures how maintainable (easy to
support and change) the source code is. The
maintainability index is calculated as a factored
formula consisting of Lines of Code (LOC),
Cyclomatic Complexity (CC) and Halstead
Volume (HV).

According to Coleman, a MI value above 85
indicates that the software is highly
maintainable, a value between 85 and 65
suggests moderate maintainability, and a value
below 65 indicates that the system is difficult to
maintain [1]. First we need to measure the
following metrics from the source code:

-HV = Halstead Volume
-CC = Cyclomatic Complexity
-LOC = count of source Lines of Code
From these measurements the MI can be

calculated [1].The original polynomial equations
defining MI are as follows:
MI = 171 - 5.2 * ln (HV) - 0.23 * (CC) - 16.2 *
ln(LOC) (1)

HV is series of tokens which can be classified
as operators (any symbol or reserved keyword in
a program that specifies an algorithmic action,

2

most punctuation marks) and operands (any
symbol used to represent data).

HV=N log2 n
Where:
-n1= the number of distinct operators
-n2= the number of distinct operands
-N1= the total number of operators
-N2= the total number of operands
-Program vocabulary: n =n1+n2
-Program length: N= N1+N2
CC = no. of condition statements + no. of

loops statements + 1
LOC is the number of lines of code in the

function.

4. Research Methodology

PHP is a general-purpose server-side
scripting language designed for Web
development to produce dynamic Web pages.
Not only the separated PHP codes but also the
whole project can be tested to measure and
analyze MI of PHP. In this study, a number of
210 PHP source codes were used as the data
sources that are collected from different domains.
These codes are fed as inputs to proposed
measuring tool to assess maintainability. The
various software metrics namely LOC, CC,
Halstead Volume and MI required for studying
the maintainability index change were calculated.
Also, the Pearson correlation analysis is used to
test the distribution for each of the MI
parameters.

5. Experimental Results

In this analysis, the different features of 210
PHP codes from different sources mainly from
www.php.net web site are tested and they are
divided into 3 groups according to their input
features that are ranged such that ID-1 to ID-45
are web application PHP, ID-46 to ID-90 are
procedural PHP and ID-91 to ID-210 are object-
oriented PHP. The results for the maintainability

index of 210 PHP codes are depicted in Figure 1.
According to the quantitative analysis results,
most of the MI values were increased for web
application and procedural PHP codes. That is
because most of web application programs are
especially written for user interface forms that
contain less complexity values. And procedural
PHP files are the basic PHP programming files
that are easier to understand that lead to
maintainable codes and vice versa they did not
contain complex features.

ID
-1

ID
-9

ID
-1

7

ID
-2

5

ID
-3

3

ID
-4

1

ID
-4

9

ID
-5

7

ID
-6

5

ID
-7

3

ID
-8

1

ID
-8

9

ID
-9

7

ID
-1

05

ID
-11

3

ID
-1

21

ID
-1

29

ID
-1

37

ID
-1

45

ID
-1

53

ID
-1

61

ID
-1

69

ID
-1

77

ID
-1

85

ID
-1

93

ID
-2

01

ID
-2

09
0

20

40

60

80

100

120

MI for Different PHP files

Number of PHP Files

M
I V

la
lu

es

Figure 1.Maintainability Index for Different
PHP Files

6. Correlation Analysis

There are a lot of studies done on measuring
software metrics and analyzing the correlations
between them to determine the way software
characteristics are influencing each other. To
verify this, the relation between them is studied
by applying correlation indicators, PEARSON
coefficient being one of them [6]. We analyzed
the collected dataset by calculating correlation
coefficient for each pair of metrics. The
correlation coefficient is a numerical value
between -1 and 1 that expresses the strength of
the linear relationship between two variables.
When r is closer to 1 it indicates a strong positive
relationship. A value of 0 indicated that there is
no relationship. The values close to -1 signal a

3

strong negative relationship between the two
variables. We explore the correlation between
each parameter of the MI with the other
parameters and with the MI itself. These are
presented in forms of propagation in Figure 2 to
Figure 7 consequently.

0 20 40 60 80 100 120

0

200

400

600

800

1000

1200

1400

LOC

H
V

 To determine the significant of sample
correlation, we need to use a critical value table
to examine weak or strong correlation between
two variables [7]. The obtained correlation
coefficients that are significant are set in
boldface. The chosen significant level is p-value
=0.05. This means that for the corresponding
pairs of metrics there exists a correlation at the
95% confidence level.

6.1. Line of Code (LOC) Correlations

Using a simple correlation analysis between
two variables, the relations among LOC vs. CC,
LOC vs. HV and LOC vs. MI are explored.

0 20 40 60 80 100 120

0

5

10

15

20

25

30

35

LOC

C
C

Figure 2. Correlation Coefficient between
LOC and CC

The obtained relation stated that the
correlation between LOC vs. CC is an extreme
correlation with value 0.703119.

As seen in Figure 2, where X axis represented
LOC and Y axis represented CC, dots
represented intersection between LOC values
and CC values for each function sequentially and
line represent correlation coefficient between
LOC and CC.

There is a significant correlation between
LOC vs. HV with value 0.599221.

Figure 3. Correlation Coefficient between
LOC and HV

As seen in Figure 3, where X axis
represented LOC and Y axis represented HV,
dots represented intersection between LOC
values and HV values for each function
sequentially and line represent correlation
coefficient between LOC and HV.

As seen in Figure 4, where X axis
represented LOC and Y axis represented MI, dots
represented intersection between LOC values
and MI values for each function sequentially and
line represent correlation coefficient between
LOC and MI.

The negative correlation between LOC and
MI with value -0.80606 indicated that as the size
of program increased the MI seem to decrease.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

LOC

M
I

Figure 4. Correlation Coefficient between
LOC and MI

4

6.2. Cyclomatic Complexity (CC)
Correlations

Appling simple correlation coefficient for CC
vs. HV and CC vs. MI, reaching that the
correlation between CC vs. HV is extreme
correlation with value 0.8320.

0 200 400 600 800 1000 1200 1400

0

5

10

15

20

25

30

35

HV

C
C

Figure 5. Correlation Coefficient between HV
and CC

As seen in Figure 5, where X axis
represented HV and Y axis represented CC, dots
represented intersection between CC values and
HV values for each function sequentially and line
represent correlation coefficient between CC and
HV.

0 5 10 15 20 25 30 35

0

20

40

60

80

100

120

CC

M
I

Figure 6. Correlation Coefficient between CC
and MI

As seen in Figure 6, where X axis
represented CC and Y axis represented MI, dots
represented intersection between CC values and
MI values for each function sequentially and line
represent correlation coefficient between CC and
MI.

There was a very significant negative
correlation between CC and MI with value
-0.756. The more complex a piece of software,
the more effort is required to maintain it. The
higher the software complexity, the more
difficult it is to understand its source code for
maintenance and evaluation purposes. The
observed relation indicated that complexity
metric has been demonstrated to have a strong
negative correlation with MI.

6.3 Halstead Volume (HV) Correlations

Finally as seen in the correlation between HV
vs. MI is inverse correlation with value -0.812.

0 200 400 600 800 1000 1200 1400

0

20

40

60

80

100

120

HV

M
I

Figure 7. Correlation Coefficient between HV
and MI

As seen in Figure 7 where X axis represented
HV and Y axis represented MI, dots represented
intersection between HV values and MI values
for each function sequentially and line represent
correlation coefficient between HV and MI.

7. Conclusion

5

Using the MI to assess source code and
thereby identify and quantify maintainability is
an effective approach. The MI provides an
excellent guide to direct human investigation.
This paper provides some insight to the practical
implementation of MI with different domains. It
is observed that there is a decrease in the
maintainability index of object-oriented PHP.
Moreover, the correlation analysis results have
shown that the software metrics namely CC,
LOC, Halstead volume are inversely related to
the maintainability of PHP software. In
particular, depending on the results, the HV and
LOC can be considered as the most important
factor for controlling the maintainability of the
PHP.

References

[1] D. M. Coleman, D. Ash, B. Lowther, and P. W.
Oman, “Using Metrics to Evaluate Software System
Maintainabilit”, IEEE Computer, vol. 27, no. 8, pp.
44–49, 1994.

 [2] A. Ganpati, Dr. A. Kalia, Dr.H. Singh, October
2012, “A Comparative Study of Maintainability Index
of Open Source Software” IJETAE, Volume 2, Number
10, Pages 228 – 230

[3] M.A.M. Nahlah, “Measuring Maintainability
Index of a Software Depending on Line of Code Only”,
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16,
Issue 2, Ver. VII (Mar-Apr. 2014), PP 64-69.

 [4] P. Oman and J. Hagemeister, “Metrics for
assessing a software system's maintainability,”
Proceedings of the Conference on Software
Maintenance, IEEE Computer Society Press, pages
337–344, 1992.

[5] S. W. A. Rizvi and R. A. Khan, “Maintainability
Estimation Model for Object-Oriented Software in
Design Phase (MEMOOD)”, JOURNAL OF

COMPUTING, VOLUME 2, ISSUE 4, APRIL 2010,
ISSN 2151-9617.

[6]http://en.wikipedia.org/wiki/Pearson_product-
moment_correlation_coefficient.

[7]http://faculty.fortlewis.edu/CHEW_B/Documents/T
able of critical values for Pearson correlation.htm

6

