
Defensive Analysis on Web-Application Input Validation for
Advanced Persistent Threat (APT) Attack `

Myo Myint Oo, Tun Myat Aung
University of Computer Studies, Yangon

myomyintoo.cu@gmail.com , tma.mephi@gmail.com

Abstract

Nowadays, any kinds of cyber-attacks are
firstly attacked to web site and the site contains
information about business, government and
other organizations. So, the role of web page
security is becoming the essential part of cyber
security. Most of the web pages are suffered from
attacks such as Advanced Persistent Threat
(APT). An APT is an extended campaign
targeted at a specific organization to achieve a
clear objective. Most of the web pages have
much vulnerability due to insecure source codes.
In this paper, it will be defined web page

vulnerabilities on PHP source code. It will be

collected the attacks from the scenarios. The
result can be concluded the attack vectors via the

source code. Each level of source code can be

generated by the attributes of source code. These
attributes can be measured in order to secure
source codes and can be evaluated by measuring
the vulnerabilities metrics.

1. Introduction

Nowadays, the rise in the use of computers
and the growth of the internet brought about
cyber-crimes. Meanwhile, cyber-attacks have
become more sophisticated than ever. In respond
to the developments, the ways of the attack and
defense between cyber-crimes and information
security technologies occur have become
increasingly complicated. One of the most

complex and advanced cyber-attacks in recent
years is the Advanced Persistent Threat (APT),
which attacks corporations and government
agencies. The some of the prominent cases for
APT attack include Stuxnet, Duqu, Red October,
Mask, etc, and each of these attacks had a
different target and purpose. Most of the APT
attack cases are suffered from Web Application
by using watering hole attack. Moreover, web
applications are one of the most common
platforms for information and services delivery
over internet nowadays. Most of the web
applications may contain security vulnerabilities
which enable the attackers to exploit them and
launch attacks. Web sites conducting business,
containing valuable information for a malicious
hacker, are at more vulnerability risk than others.
E-commerce websites hold valuable information
such as credit card numbers, private and personal
data, and are also placed at a high risk position.
Therefore, confidentiality, integrity and
availability of information are lost. Web
application security is becoming more essential
at the present time. Most of the web sites are
developed by the PHP in this day. It has many
advantages but it still has considerable number of
vulnerabilities in order to exploit them.

2. Literature Review

As a highly exploited set of vulnerabilities,
input validation errors have generated a

significant amount of academic interest. A brief

mailto:myomyintoo.cu@gmail.com
mailto:tma.mephi@gmail.com

review through some of the current research
topics is provided. In 2010, the two authors,
Molnar & Livshits proposed the research paper,
SCRIPTGARD: Preventing Script Injection
Attacks in Legacy Web Applications with
Automatic Sanitization [1]. Their research was
an analysis of existing 400,000 lines of code in
web application. They developed a system for

preventing such problems by automatically
matching the correct sanitizer.

The second paper is proposed by
Scholte in 2012. The title was Preventing Input
Validation Vulnerabilities in Web Applications
through Automated Type Analysis [2]. His
research was the novel techniques for preventing
XSS/SQLi using automated data type detection
of inpu

tparameter. This paper claims 65-83% success
against the tested vulnerabilities with no
additional overhead for the developer. And the
two authors, Scholte and Balzarotti was proposed
An Empirical Analysis of Input Validation
Mechanisms in Web Applications and Languages
in 2012 [3].

 The authors performed an empirical study of
over 7000 input validation vulnerabilities. They
used 79 web application frameworks in what is
the largest meta-study in the field to date. In
2011, the author, Samuel purpose Context-
Sensitive Auto- Sanitization in Web Templating
Languages Using Type Qualifiers [4]. This
research was strived to bring better auto-
sanitization to web code being developed within
Java and PHP web templating frameworks.

 In 2014, the author, Yinzhi Cao purposed the
paper, PathCutter: Servering the Self-
Propagation Path of XSS JavaScript Worms in
Social Web Networks [5]. He exploited
JavaScript XSS vulnerabilities rampantly infect
millions of web pages. He proposed PathCutter
as a new approach to severing the self-
propagation path of JavaScript worms.
PathCutter works by blocking two critical steps
in the propagation path of an XSS worm.

3. Attack Vectors from Input

Nowadays, the new web-based attack types
and vectors are coming out. This can cause in
businesses, communities and individuals to take

security seriously now more than they ever have
in the past. With the development of advanced
technologies, attack vectors consists of viruses,
e-mail attachments, web pages, pop-up windows,
instant messages, chat rooms, and deception. All
of these methods involve programming, except
deception, and weakening system defenses. In
this paper, the attack vectors from the input
validations such as SQL Injection, Cross-Site
Request Forgery (CSRF) and Cross-Site
Scripting Attacks (XSS), produce the grade of
security rank and evaluated the quality of web
application on certain types of attacks.

3.1. SQL Injection

SQL injection attack exploits the weakness of
web application’s back-end database. This kind
of exploits occurs when user input is not cleaned
for sting escape characters and the web
application submits code amounting to the
database command to the database server. In
2006, Scambray et al described the SQL
injection and the attack involves the following
steps. The first step is to insert invalid data into a
web application’s SQL database input field. The
second step is to manipulate the input until you
can map out the inner workings of the unseen
SQL statement.

 The third step is to craft an input that will
successfully escape the data input context and

allow the ability to enter database commands.
The fourth step is to map the database by with
SQL queries, either by guessing table names,
brute force or some other techniques.

 The last step is to read/ write/ delete the data
of interest with a SQL query [6]. A simple
example of SQL query is as follows:

SELECT AMOUNT

FROM CUSTOMER

WHERE USERNAME = ‘John Smith’
AND PASSWORD = ‘S123’;

Now, by submitting the following text in the
USERNAME and PASSWORD fields, the
attacker can craft his own queries to the
database.

 USERNAME = ‘ ’ OR 1=1 - - /

 PASSWORD = ‘anything’

So, the resulting query may be the following:

 SELECT AMOUNT

 FROM CUSTOMER

 WHERE USERNAME = ‘ ’ OR 1 =1 - -/

 AND PASSWORD = ‘anything’

Since the input field is in this case not
cleaned of escape characters, the double dash is
interpreted by the parser as meaning that
everything to right is a comment and thus

dropped. So, the parsed query that gets into the
database is

 SELECT AMOUNT

 FROM CUSTOMER

 WHERE USERNAME = ‘ ’ OR 1=1

 Which is interpreted as “return all customers’
USERNAME where the username is a null value
or 1=1”. This string will always be true and
thus dump all of the stored AMOUNT.

3.2. Cross-Site Request Forgery (CSRF)

Cross-Site Request Forger (CSRF) is an
attack that forces an end user Cross-Site Request
Forgery (CSRF) is an attack that forces an end
user to execute unwanted actions on a web
application in which they are currently
authenticated. CSRF attacks specifically target
state-changing requests, not theft of data, since
the attacker has no way to see the response to the
forged request. With a little help of social
engineering (such as sending a link via email or
chat), an attacker may trick the users of a web
application into executing actions of the
attacker's choosing. If the victim is a normal
user, a successful CSRF attack can force the user
to perform state changing requests like
transferring funds, changing their email
addresses, and so forth. If the victim is an
administrative account, CSRF can compromise
the entire web application [9].

There are numerous ways in which an end
user can be tricked into loading information from
or submitting information to a web application.

In order to execute an attack, it must be
understood how to generate a valid malicious
request for our victim to execute. It is considered
the following example: John Smith wishes to
transfer 10000 dollars to Merry Smith using the
bank.com web application that is vulnerable to
CSRF. David, an attacker, wants to trick into
sending the money instead of John Smith. The
attack will compromise the following steps. The
first step is to build an exploit URL or script. The
second step is to trick John Smith into executing
the action with social engineering.

3.2.1. GET scenario in PHP

 If the application was designed to primarily
use GET requests to transfer parameters and
execute actions, the money transfer operation
might be reduced to a request like:
GET http://bank.com/transfer.do?acct
=JohnSmith& amount=10000 HTTP/1.1

The attacker, David now decides to exploit
this web application vulnerability using John
Smith as his victim. David first constructs the
following exploit URL which will transfer
100,000 from John Smith's account to his
account. He takes the original command URL
and replaces the beneficiary name with himself,
raising the transfer amount significantly at the
same time:
http:// bank.com/transfer.do?acct=David&
amount= 100000

The social engineering aspect of the attack
tricks John Smith into loading this URL he is
logged into the bank application. This is usually
done with one of the following techniques. The
first method is to send an unsolicited email with
HTML content and the second method is to plant
an exploit URL or script on pages that are likely
to be visited by the victim while they are also
doing online banking.

3.2.2. POST scenario

The only difference between GET and POST
attacks is how the attack is being executed by the
victim. Let's assume the bank now uses POST
and the vulnerable request looks like this:
POST http:// bank.com/transfer.do HTTP/1.1
acct=John Smith&amount=100

Such a request cannot be delivered by using
standard A or IMG tags, but can be delivered by
using a FORM tag:
<form action = “http://bank.com/transfer.do”
method = “POST”>
<input type= “hidden” name= “acct”
value= “David”/>
<input type= “hidden” name= “amount”
value= “10000”/>
<input type= “submit” value= “View my
pictures”/>
</form>

This form will require the user to click on the
submit button, but this can be also executed
automatically by using PHP code.

3.3. Cross-Site Scripting (XSS) attack

A cross-site scripting attack is one of the top
5 security attacks carried out on a daily basis
across the Internet, and PHP scripts may not be
immune. Also known as XSS, the attack is
basically a type of code injection attack which is
made possible by incorrectly validating user
data, which usually gets inserted into the page
through a web form or using an altered
hyperlink. The code injected can be any
malicious client-side code, such as JavaScript,
VBScript, HTML, CSS, Flash, and others. The
code is used to save harmful data on the server or
perform a malicious action within the user’s
browser. Unfortunately, cross-site scripting
attacks occur mostly, because developers are
failing to deliver secure code. Every PHP

programmer has the responsibility to understand
how attacks can be carried out against their PHP
scripts to exploit possible security vulnerabilities.
Reading this article, you will find out more about
cross-site scripting attacks and how to prevent
them in your code.

Let’s take the following code snippet.
<form action= “post.php” method= “post”>
 <input type= “text” name= “cmdTest”
value= “”>
 <input type= “submit” name= “submit”
value = “Submit”>
</form>
Here we have a simple form in which there is a
text box for data input and a submit button. Once
the form is submitted, it will submit the data to
post.php for processing.
Let’s say all post.php does is output the data like
so:
<?php
echo $_POST[“cmdTest”];
?>
Without any filtering, a hacker could submit the
following through the form which will generates
a popup in the browser with the message “Your
web site has been hacked”.
<script>alert(“Your Web site has been
hacked”)</script>
This example, despite its being malicious in
nature, does not seem to do much harm. But
think about what could happen in the JavaScript
code was written to steal a user’s cookie and
extract sensitive information from it? There are
far worse XSS attacks than a simple alert() call.

4. Procedure of Advanced Persistent
Threat

Advanced Persistent Threat refers to a long-
term and sophisticated attack on a specifically
targeted entity. The attacker is often state-
sponsored and seeks to gain high-value

intelligence from other governments, but may
also be performed by and target private
organizations. There are many steps that must be
taken in order for an APT attack to be successful.
The first step is choosing a target. The attacker
first determines whom they wish to infiltrate and
what they wish to steal. Is the target of attacker
to break confidential financial data or source
code or technical drawings? The second step is
target research. Once a target has been selected,
the attacker will do extensive background
research on his target. The third step is
penetration. After a target has been acquired, the
attacker typically creates a customized phishing
email in the hope that their target will open an
attachment that contains an exploit that allows
the attacker to plant remote access malware on
the target’s computer. The fourth step is elevation
of privileges.

 Once the attacker has gained a foothold
inside a target’s network, an attempt is made to
exploit vulnerabilities on other internal
computers to gain further access on the network.
The fifth step is internal network movement. If
the attacker was successful in gaining further
access inside the network, they can then expand
their control to other machines on the network
and compromise other computers and servers,
allowing them to access data throughout the
network. The sixth step is data theft. Once
network access has been achieved, data can be
easily stolen. Passwords, files, databases, email
accounts and other potentially valuable data can
all be sent back to the attacker. The last step is
maintenance and administration.

Even after the requisite data has been stolen,
an attacker may decide to remain present on the

target’s network. This requires vigilance on the
attacker’s part in order to evade detection and
maintain surveillance on the target’s data assets
to ensure further data can be stolen. The attacker
first chose the target and then he did the targeted

research. He must do any method to attack the
target organization. Most of the cases are firstly
used to attack to the web sites [8].

5. Proposed Methodology

In our proposed research method, there will
be five main processes. They are

(1) Analysis of web attacks
scenarios
(2) Finding vulnerabilities points
(3) Source code analysis
(4) Generating source code
attributes
(5) Evaluating with vulnerabilities
metrics.

In the first process, the attacks vectors will be
found through the past occurrences (scenarios) of
web sites, and these resulted attack vectors are
exploited on PHP source code. The result of the
first process is attack scenarios. In the second
process, there will be found the vulnerabilities
points of the source code. The result of the
second process is vulnerabilities points. In the
third process, the source codes of the
vulnerabilities points are analyzed in order to
defense the vulnerabilities. The result of the third
process is the grade or rank of the secure codes.
In the fourth process, there will be generated the
source code attributes. Attributes are generated
from the source code by using resultant ranks.
So, the result is certain kind of source code
attributes. In the last process, the attributes can
be evaluated as the quality of web application by
the use of measuring vulnerabilities metric
method. So, the last result is vulnerabilities
metrics. This research will be done at the second
step of APT procedure. The illustration of the
tentative methodology is shown in Figure 1.

Figure1. Flow of Proposed Methodology

6. Evaluating Web Application by
using Vulnerabilities Metric

Vulnerabilities metric is an area in computer
security science that has been receiving adequate
attention in recent times. Majority of works
about vulnerabilities metric is mainly
definitional, targeted towards providing
guidelines for defining a security metric and
specifying criteria for which to strive to achieve
security. It is just a little that had been reported
on actual metric that have been proven useful in
practice. The Web Application Security Metrics
(WASE) is a model that measures the security
vulnerabilities found in any web page to enable
individuals; merchants as well as commercial
software developer determines the security
strength of their web sites before putting them
into e-business transactions on the Internet [7].

PHP applications have statistically significant
higher rates of injection vulnerabilities than non-

Evaluating with vulnerabilities metric

Generating source code attributes

Source code analysis

Finding vulnerabilities points

Analysis of web attacks scenarios

PHP applications, and PHP applications tend not
to use frameworks. As most web security experts
likely expect, XSS and injection are the most
pressing and severe vulnerabilities, as shown by
the Open Source Vulnerability Database
(OSVDB) and The Open Web Application
Security Project (OWASP). In this paper, the
input validation attributes of PHP source code
may be the use of metacharacters (M), the use of
wrong type (W), the use of too much input (TM),
the abuse of hidden interfaces (HI), and the use
of bearing unexpected commands (UC).

In this research, any kind of PHP application
will be measured by using these attributes. These
attributes can lead to the attacks such as Cross
Site Request Forgery, Cross Site Scripting and
SQL injection attacks. For example, there are
five web applications by using PHP. The source
code of these sites can be measured by the above
attributes: M, W, TM, HI and UC. The
vulnerabilities percentage in each attribute can be
calculated by the Equation (1). The
vulnerabilities metric is constructed by using
vulnerabilities percentage of each attribute as
shown in Table 1. The bar chart of vulnerabilities
analysis can be seen in Figure 2. In this figure,
there are sample of five PHP web applications
such as site 1, site 2, site 3, site 4 and site 5.
These sites can contain the web vulnerabilities
such as using metacharacter, using wrong types,
using too much input, abusing of hidden
interfaces, and bearing unexpected commands
from the aspect of input validation attributes.
These vulnerabilities can be considered as
vulnerabilities attributes. Each type of attribute
can be computed by using Equation (1). The
computed result can be expressed in bar chart
with sample of five PHP web applications over
the each type of vulnerability attribute. Each site
can be expressed with different colors.

number of vulnerabilities∈eachattribute
tot ��l number of vulnerabilities

×100

(1)

Table 1. Sample Vulnerabilities Metric
M W TM HI UC

Site1 20 10 0 25 30
Site2 30 50 40 25 0
Site3 0 60 70 30 50
Site4 40 0 50 35 38
Site5 39 36 20 0 25

Figure 2. Bar chart of vulnerabilities analysis

7. Conclusion

Vulnerabilities in a web application evolved
from the early development of the web
technology in APT. As the time passed, some of
the vulnerabilities were eradicated and some of
them are still there, while new types of
vulnerabilities were created and some serious
vulnerabilities can be expected in the future.
Similarly, sometimes attacks are done with
compound vulnerabilities such as injection with
XSS or injection with DNS hijacking whose
consequences are more severe. In the real world,
it would be difficult to say that an application is
completely secure. Despite all the web threats,
application can attain a maximum security with a
better coding approach and the developer’s
knowledge of web security. This purposed
methodology supports the web developers for
writing and testing the secure codes.

References

[1] Molnar, Livishits, “SCRIPTGARD:
Preventing Scirpt Attacks in Legacy Web
Applications with Automatics Sanitization”,
2012.
[2] Scholte, “Preventing Input Validation
Vulnerabilities in Web Applications through
Automated Type Analysis”, 2012.
[3] Scholte, Balzarotti, “An Empirical Analysis
of Input Validation Mechanisms in Web
Applications and Languages”, 2012.
[4] Samuel, “Context-Sensitive Auto-
Sanitization in Web Templating Languages Using
Type Qualifier”, 2011.
[5] Yinzhi Cao, “PathCutter: Servering the Self
Propagation Path of XSS JavaScript Worms in
Social Web Networks”, 2014.
[6] Erik Couture, “Web Application Injection
Vulnerabilities”, May 20th, 2013.
[7] G. E. Okereke, “Security Metrics Model for
Web Application Vulnerability Analysis”, African
Journal of Computing & ICT, 2006.
[8] “Advanced Persistent Threat”
www.business.att.com
[9] “Cross-Site Request Forgery (CSRF)”,
https://www.owasp.org

