
Test Cases Prioritization in User Session based Testing for
Improving Fault Detection Rate

Hsu Mon Maung, Kay Thi Win
University of Computer Studies, Mandalay

hsumon77@gmail.com

Abstract

Web application testing has been used
in finding various faults in order to improve the
quality  of  reliable  web  services.  Among  test
cases generation approaches, user session based
testing is an approach to create test cases with
real user data. However, real user data usage is
extremely large and executing all the test cases
can be time consuming in practice. Executing all
the tests in a reduced test suite can still be time
consuming in practice. This paper describes the
test cases prioritization method to schedule the
test  cases in order to improve the rate of fault
detection. This criterion is based on two factors,
frequency (Feq) and dependent count (Dept) of
requests.  The  average  percent  of  fault  detected
(APFD) metric is used to reveal the permutation
of  test  cases  in  a  way  may  lead  to  faster
detection available faults in a modified version
of web application.

Keywords:  user session based testing, test cases
prioritization, web application testing

1. Introduction

As  the  web  application  usage  has  been
dramatically increased and most daily activities
rely  on  the  services  provided  by  them,  the
qualities  of  these  applications  are  central  role.
Efficient and effective testing of web application
is crucial  for  reliable services.  Testing must be
performed  completely  in  time  without  service
interruption.  Testing,  designing  and  generating
test  cases  are  challenging  tasks  because  web
application is complex and changeable.

User session based test cases generation has
been recently researched to generate test cases by
the use of user session data. For web application
system, field data  has  the additional  advantage
because  the  usage  data  is  independent  of  the
underlying  implementation  and  server
technologies [1]. A user session based test case is
a sequence of base requests and parameter name
value pairs. The advantages of user session based
testing  are  less  dependent  on  heterogeneous
system and can  generate  test  cases  that  reflect
actual user behavior. But, there is a considerable
issue that is collecting, analyzing and replaying
the  large  amount  of  test  cases  generated  from
user session data [2]. Many researchers presented
various reduction and prioritization techniques to
solve these issues.

Even the reduced test suites can be large to
execute  in  some  commercial  system.  In  this
paper,  dependency  and  frequency  based  test
cases prioritization criterion is proposed in which
the test  cases  are ordered based on occurrence
and dependent count of single request contained
in  each  test  case.  The  purpose  of  test  cases
prioritization lies in ordering test cases based on
a particular  technique [3]. There are two main
parts in the system: (1) criterion to prioritize user
session  based  test  cases  and  (2)  evaluate
proposed  criterion  by  using  fault  detected  rate
and  by  comparing  results  of  test  length  based
criterion  proposed  by  [4].  Section  2  presents
related works concerned with user session based
test cases prioritization techniques. In section 3,
background theory in user session based testing
and test cases prioritization. Section 4 describes
proposed  system  and  experimental  results  by
comparing  proposed  system  and  another



prioritization  criterion.  The  conclusion  of
proposed system is described in section 5.

2. Related Works

S.  Roongruangsuwan  and  J.  Daengdej  [5]
proposed  two  new  efficient  prioritization
methods  to  address  the  problem  of  failing
multiple  test  cases  prioritization  and  same
priority  cases.  This  study  proposed  four
prioritization factors to schedule test cases.

S.  Sampath  and  R.  Bryce  [6]  described
several  approaches to  order  reduced  test  suites
using  experimentally  verified  prioritization
criteria for the domain of web applications. This
approach  prioritizes  the  reduced  test  suites  by
applying different verified prioritization criteria.
Moreover,  Mod_APFD_C  which  is  a
modification  of  the  traditional  prioritization
effectiveness measure is also developed to enable
comparison between different sizes of test suites.

Sampath et al. [2] explored the possibility of
using  concept  analysis  for  achieving  reduction
and scalability  in  user  session based testing of
web applications. The method only considers the
base  request.  The  studies  showed  the  low
coverage  of  the  base  requirement,  including
statement  coverage,  fault  coverage  and  base
request coverage. The authors also admitted the
importance of request data and ordering. 

Another  method  presented  by  A.  K.
Upadhyay and A. K. Misra [7], is prioritization
test cases using clustering approach in software
testing. This study applied dendrogram methods
for  prioritization  method  and  also  showed  the
significant improvement in fault detection rate by
prioritized test cases. 

The purpose of test case prioritization lies in
ordering  test  cases  based  on  a  particular
technique [8]. This approach mainly focused on
possibility  of  revealing  faults  earlier  in  the
testing process. In this system, K-means cluster
based prioritization is used to reduce the number
of  comparisons  and  effectiveness.  K-means
clustering methods produce clusters from a set of

objects  based  upon the squared  error  objective
functions.

3. Background Theory

This section describes about the user session
based testing and type of  test  requirements  for
this testing. Test case prioritizing is also briefly
described in this section. 

3.1. User Session based Testing

User session based testing is a type of black
box testing. A user session based test case is a
sequence  of  user  requests  in  the  form of  base
requests  and  parameter  name  value  pairs  (eg,
form  field  data).  User  session  based  testing
makes use of field data to create test case, which
has the great potential to effectively generate test
case that can effectively detect residual faults [6].
The key advantage is the minimal configuration
changes that need to be made to the web server
to  collect  user  requests  [2].  Sample  process  of
user session data collecting is shown in figure 1. 

Figure 1. User Session based Test
Cases

The  user  session  based  test  cases  can  be
viewed  the  perspective  of  the  different  test
requirements.  The test  requirement  data can be
extracted  from  collected  log  data.  The
summarized  test  requirements  are  described  as
follows [6].

 base: Form of a base request

 Seq: Form of base sequences of size 2

 Name:  Form  of  base  request  and

parameter name



 Name_value: Form  of  base  request,

parameter name and parameter value
 Seq_name: Form of size 2 sequences of

base request and parameter name

3.2. Test Cases Prioritization

Test  cases  prioritization  techniques  become
more significant when the time to replay all the
tests is insufficient under test. These techniques
prioritize  and  schedule  test  cases  in  order  that
attempts to maximize some objective functions.
[5].  Rothermel  et  al.[9]   define  test  cases
prioritization problem as follows:
Given: T, a test suite;

       PT, the set of permutations of T;
      F, a function from PT to the real numbers;

Problem: Find T′ € PT such that (  T′′) (T′′€PT)
(T′′ ≠ T′) [f (T′) ≥ f (T′′)]. Here, PT is set of all
possible prioritizations of T and f is a function
that,  applied  to  any  such  ordering.  In
prioritization  process,  test  cases  are  executed
according  to  some  criterion  to  satisfy  some
performance goal. Some prioritization criteria are
test  length based,  code based,  frequency based
and other possible criteria.   Most criteria focus
on  the  goal  of  increasing  the  rate  of  fault
detection earlier in the testing process.  

 
4. Proposed System 

This  paper  mainly  focuses  on  test  suite
prioritization  process.  Our  proposed  system
consists  of  three  main  phases:  generating  test
cases,  reducing  test  cases  and  prioritizing
reduced  test  cases  for  subject  application.  The
overview  framework  of  proposed  system  is
shown in Figure 2. 

4.1. Test Cases Generation

In  test  cases  generation  process,  the  daily
usage  logs  are  collected  from  specific  web
application.  The  user  session  data  is  parsed  to
extract necessary information such as IP address,

GET,  POST  methods,  time  stamp  and  cookie
information.  The unwanted  and  redundant  data
are  removed.  The user  access  log is  converted
into test cases in the form of http requests that
can be sent to the web server.

Figure 2. Overall Process of Proposed System

4.2. Test Cases Reduction

When a request from a new IP address arrives
at the server, a user session is identified as initial
and when the user leaves or session time out, the
user  session  is  identified  as  the  end.  The  30
minutes is taken to identify the user session. 

In this phase, Shanon’s  entropy  gain  theory
is applied to reduce test cases [10].

E( H )=−∑
i=0

n

P i Logn Pi (1)

where  Pi is  probability  of  linki that  are
accessed by users and n is the number of links of
web  site.  This  process  is  implemented  in  our
previous work to reduce test  cases that  are not
only  small  in  size  but  also  equivalent  in
effectiveness  to  an  original  test  suite.  The
concept  in  this  reduction  method  is  that  the

∀



higher  entropy  value  may  lead  to  more  URLs
covered [11].

4.3  Process  of  Proposed  Prioritization
Method

Many criteria  have  been proposed how test
cases  are  ordered  to  get  the  efficient  fault
detection quality.  In  reduction  techniques,  the
criteria  create  smaller  test  suite  than  original
suite but test  cases are in no specific order.  In
this  system,  the  new  prioritization  criterion  is
proposed to be more efficient in fault finding of
reduced test suites.

The proposed criterion considers two factors
dependent count (Dept) and frequency (Feq) of
single request in ordering multiple test cases. In
some  cases,  although  the  frequency  of  base
request is high, the accessed requests in this test
case  may  be  initial  pages  or  start  pages  (e.g.
home.php or index.php).
The  procedures  of  proposed  method  are
described in Table 1:

Table 1. Procedure of Proposed Method
Input : set of reduced test cases T
            set of request S 
            Output : prioritized test cases PT

Step  1:  The  dependency  table  of  base  request  is
constructed to order the test suites based on dependent
count d of base request sequences Si.

Step  2:  The  frequency  table  of  base  request  is
constructed to order the test suites based on dependent
count feq of base request sequences Si.

Step 3: Order the sequences (S0, S1,...,Si) in decreasing
order of both d and feq.

Step 4: Replay the prioritized test cases according to
this criterion to server.

Firstly,  the  request  is  selected  to  sort  the
dependency and frequency of it.  The frequency
table  is  constructed  in  decreasing  order  of
occurrence of this request in the test suite. The

second  factor  (Dept)  dependency  of  request  is
the  important  factor  for  prioritization  because
this may increase the fault detection rate. 

For the test suite in the experiment, there are
118  requests  in  the  reduced  test  suite  to
prioritize.  In  proposed  prioritization  process,
firstly  one  request  is  selected  from  total  118
requests.  The  dependent  count  (Dept)  and
frequency  (Feq)  of  the  selected  request  are
calculated  and  then  test  cases  are  ordered
according to these values.  The order of test cases
shown in sample Table 2 is prioritized with the
request
ucsm.edu.mm/index.php/component/users/?
view=remind.  In  this  test  prioritizing,  the  user
(119.31.123.207) is  the first  test  case to replay
because  the  frequency  and  dependent  count  of
this test case are highest. The value zero in the
table means that the selected url does not contain
in the test cases.

4.4 Evaluation of the Proposed System

Fault  detection  technique  can  be  used  in
evaluating the efficiency of prioritized test cases.
For  detection  experiment,  naturally  occurring
faults  that  were  discovered  by  users  during
application deployment  are used to analyze the
effectiveness  of  the  test  suites  from  the  test
requirements. The 21 faults are used in analyzing
fault detection effectiveness. Table 3 shows that
fault  identification  of  each  test  case  in  our
experiment. Eight test cases can find all 21 faults
which are link faults in our experiment. 

Table 2. Frequency Table of Access Sequence
User  IP
Address

Frequency
(Feq)

Dependency
(Dept)

119.31.123.207 8 4

203.81.93.18 0 0

203.81.88.190 0 0

203.81.93.76 0 0

203.81.69.87 0 0



From  Table  3,  it  is  clear  that  test  case  t1
detects  11  faults;  t2  one  fault  and  so  on.  To
analyze  the  fault  detection  results  of  proposed
approach,  the average percent  of  fault  detected
(APFD) is calculated by using reduced test cases
of proposed reduction method.

To  evaluate  the  APFD  results  of  proposed
criterion,  the  value  of  fault  detection  rates  is
analyzed  based  on  single  request  in  test  suite.
There are 118 requests in the reduced test suite.
In this experiment, 40 requests of total requests
(118)  in  the  reduced  test  suite  are  used  for
calculating dependent count and frequency.  The
test order with highest APFD value is selected to
replay  the  test  cases  to  the  server.  The  APFD
values of prioritized test cases can be calculated
by using equation 2.

APFD=1−
t f 1+ t f 2+t f 3+…+t fn

mn
+

1
2n

(2)

According to the APFD metric,  total  number
of test cases in a given test suite is n and F is a
set  of  m faults  detected  by  T.  Let  TFi  be  the
position of the first test case t in T′, where T′ is
an ordering of T, that detects fault i. The APFD
values are between 0 and 1 and higher numbers
imply  faster  (better)  fault  detection  rates.  The
prior knowledge of the faults detected by the test
suite is available to the testers.

Table 3. Detected Faults in Each Test Case

Test
Case

User IP Faults

t1 203.81.93.18
f1, f2, f3, f4, f5, f6, f7, f8,
f10, f11

t2 203.81.88.190 f12

t3 203.81.69.87 f13

t4 203.81.93.76 f14

t6 203.81.94.61 f15, f16

t7 203.81.93.73 f17

t11 203.81.88.191 f18

t16 119.31.123.207 f19-f20-f21

4.5 Experiment and Analysis
 
In  empirical  studies,  the  official  website  of

the  University  of  Computer  Studies,  Mandalay
(UCSM)  is  used.  It  is  now  deployed  and
maintained by PhD students  at  the UCSM. On
this website, Users can view the proceedings and
workshop  announcement,  exam  results,  lecture
invitation,  and  activities  and  other  related
information in this site. The 55 access log files
are collected using UCSM web site  during the
2013-2014 and 2014-2015 academic years at the
UCSM.  To  observe  the  effectiveness  of
prioritizing  test  cases  in  our  experiments  25
reduced  test  cases  form  745  user  sessions  are
used.  These  reduced  test  cases  are  ordered  by
using two methods,  test  length based  ordering,
and proposed prioritization criterion.

4.5.1 Test Length based Prioritization

Many criteria  have  been proposed how test
cases  are  ordered  to  get  the  efficient  fault
detection quality. In this system, the test length
based criteria proposed by [4] is used to compare
the results of proposed test prioritized criterion.
Ordering test cases based on their requests length
can affect the fault detection of the ordered test
suite  [12].  In  test  length  based  criterion,  the
number of requests in each test case is counted
and test cases are ordered in descending (Request
Long to Short) order of test length and ascending
order (Request Short to Long), where the length
of test case is the number of requests in this test
case. For the example test suite in Table 4 test
cases  that  have  maximum  length  of  these
requests are selected for execution before other
test  cases  in  the  test  suite.  In  the  same length
case; one of them is selected at random.

According to the test length based prioritizing
criterion, the test cases are ordered by the request
length  long  to  short.  The  percent  of  faults
detected versus the fraction of the test suite are



shown  in  Figure  3.  The  area  under  the  curve
represents  the  weighted  average  of  the
percentage of faults detected over the life of the
test suite.

Table 4. Frequency Table of Access Sequence

User IP Address
No.  of
Requests

203.81.93.18 69

203.81.88.190 56

203.81.69.87 35

203.81.93.76 35

203.81.94.89 33

203.81.94.61 33

203.81.93.73 33

203.81.93.78 33

203.81.88.188 31

203.81.93.74 29

 

0

20

40

60

80

100
100

Test Cases

Fa
ul

t F
ra

ct
io

n 
(%

)

Figure 3. Fault Fraction of Request L to
Request S

On the test length based order (Figure 3), the
first  test  case  (t1)  detects  11  of  21  faults  are
detected and thus 52.38% of the faults have been
detected  after  t1  has  been  executed.  After
running test case t2, one more fault is detected
and  thus  57.14%  of  fault  detects  have  been
detected. The test  order  detects 100% of faults
after  executing  t16.  Therefore,  the  resulting
APFD for this test length based order (Req L to
Req S) is 79.33%.

Analyzing  APFD  values  on  another  order
(Req Short to Req Long) is described in Figure 4.

The first  fault  f1 has been detected by the test
case t1 with the position of 25. Therefore, only
14.29% of the faults are detected after replaying
t16. In this ordering, the 100% of faults fraction
is  obtained  after  the  last  test  case  t1  has  been
executed. The APFD value of this prioritization
(Req S to Req L) is very low, 12.67%. Therefore,
the  experimental  results  show  that  the
prioritization results of Request L to Request S
performed better than the Request S to Request
L.

0

20

40

60

80

100

33.33

Test Cases

Fa
ul

t F
ra

ct
io

n 
(%

)
Figure 4. Fault Fraction of Request S to

Request L

4.5.2 Proposed Prioritization Method
To  evaluate  the  APFD  results  of  proposed

criterion,  the  value  of  fault  detection  rates  are
analyzed  based  on  single  request  in  test  suite.
There are 118 requests in the reduced test suite.
In this experiment, 40 requests of total requests
(118)  in  the  reduced  test  suite  are  used  for
calculating dependent count and frequency.  The
test order with highest APFD value is selected to
replay the test cases to the server.

Table 5. APFD Values of Sixteen Ordering
URL
s

APFD
(%)

Fe
q

Dep
t

R1 81.42 63 2
R2 85.05 43 2
R3 79.71 94 2
R4 85.81 50 2
R5 80.29 16 3
R6 79.71 72 3
R7 84.48 8 4
R8 84.48 1 4
R9 79.71 126 3
R10 80.29 23 3
R11 79.52 99 2



R12 79.71 60 2
R13 79.52 6 2
R14 84.48 8 1
R15 84.48 2 2
R16 82.57 1 4

According  to  the  empirical  results,  16
prioritizations  of  total  40  requests  performed
better  than  the  test  length  based  criterion.  The
APFD values of 16 prioritizations with frequency
and dependency are shown in Table 5.

The APFD results of ten prioritizations based
on proposed criterion are equal results with test
length  based  criterion  (Long  to  Short)  and
fourteen  orderings  performed  lower  APFD
values  than  test  length  based  ordering.  These
values  with  associated  frequency  and
dependency are described in Table 6 and Table 7.

Table 6. APFD Values of Ten Ordering
URL
s

APFD
(%)

Fe
q

Dep
t

R17 79.33 7 3

R18 79.33 28 3

R19 79.33 15 3

R20 79.33 36 3

R21 79.33 31 2

R22 79.33 47 3

R23 79.33 3 3

R24 79.33 36 3

R25 79.33 23 3

R26 79.33 5 3

The  highest  APFD  value  is  obtained  by
ordering test cases based on R4. The dependent
count of R4 is 2 and occurrence numbers are 50.
By inspection, it is clear that proposed criterion
results in the earliest detection of the most faults
and  illustrates  an  optimal  order,  with  APFD
85.81%. Figure 5 shows the test suite fraction of
R 4. Analyzing the percent of fault  fraction on
R4,  over  90%  of  the  faults  are  detected  after
replaying t6. In this ordering, the 100% of faults
fraction  is  obtained  after  the  test  case  t11  has
been executed.

General  assumption  is  that  the  factor
frequency (feq) is important to prioritize the test
cases because the percentage of faults involving
may be high in user frequently accessed requests.
In  the  empirical  results  shown  in  Table  7,
although the frequency is high, the APFD value
is  low.  One  of  findings  is  that  75.90%  APFD
value  is  obtained  on  the  request  R27 with  the
maximum frequency (3686).

Table 7. APFD Values of Fourteen Ordering
URL
s

APFD
(%)

Feq
Dep
t

R27 75.90
368
6

0

R28 78.19 10 3

R29 78.57 1 3

R30 78.57 1 1

R31 78.95 17 3

R32 75.90 48 2

R33 75.71 39 2

R34 78.57 140 2

R35 78.00 27 2

R36 78.00 74 2

R37 77.24 43 2

R38 79.14 7 2

R39 78.19 5 2

R40 77.23 72 2

From results of dependency table, the requests
R7, R8 and R16 have highest dependent counts
(4).  It  is  observed  that  prioritizations  on  these
requests performed the higher percent of APFD
values  than  the  test  length  based  criteria,
although the frequency values of R7, R8 and R16
are low counts which are 8, 1 and 1 respectively.
Therefore, the dependent count of each request is
also  important  factor  for  deciding  to  prioritize
the test cases. 



0

20

40

60

80

100
100.00

Test Cases

Fa
ul

t F
ra

ct
io

n 
(%

)

Figure 5. Fault Fraction of Request R4
The  experimental  results  reveal  that  the

important  factor is  not  only frequency but also
dependent count of each request in prioritization
process.  But,  there  may  be  some  deviation
according to the experimental results because of
limitation of APFD metric.

5. Conclusion

Large amount of user session based test cases
in web application testing is not practical within
time constraint. In this paper, a new prioritization
method is presented to make more efficient the
fault  detection  rate  of  reduced  test  cases.
According to the analyzed results, the proposed
prioritization method yields higher APFD values
than the test length based criterion because they
are  prioritized  based  on  frequency  (Feq)  and
dependency  (Dept)  of  each  request.  From  our
experience,  faults  can  be  detected  faster  in
replaying  test  cases  by  considering  not  only
frequency  but  also  dependent  count  of  each
request.  The APFD values of proposed criterion
are  ranging  between  75.71%,  to  maximum
85.81% respectively and  the order of test cases
that has the maximum value 85.81% is selected.
From  the  experimental  results  on  another
prioritization  method  (test  length  based
criterion), the maximum APFD value is 79.33%.
It  is  found  that  ordering  the  fault  detection
quality of prioritized test case using the proposed
method can perform better results for testability
of user session data. Our findings also show that
prioritizing  test  cases  based  on both  frequency
and  dependency  can  support  finding  faults  as
early  as  possible  under  testing  process.

Therefore,  the  prioritizing  test  cases  in  user
session  data  can  help  software  testers  for
improving  the  test  results  of  web  based
applications. 

References

[1] S. Sprenkle, E. Gibson, S. Sampth, and L. Pollock,
“A case  study  of  automatically  creating  test  suites
from  web  application  field  data”,  Portland,  Maine,
USA, TAVWEB06 (Jul. 2006).
[2] S. Sampth, V. Mihaylov, A. Souter, and L. Pollock,
“A Scalable Approach to User Session based Testing
of  Web  Applications  through  Concept  Analysis”,
Proc.19th  Int.  Conf.  Automated  Sofw.  Eng.
Washington DC, USA, 2006, pp. 132-141.
[3]  S.  G.  Elbaum,  A.  G.  Malishevsky,  and  G.
Rothermel,  “Test  Case  Prioritization:  A  Family  of
Empirical  Studies”,  IEEE  Transactions  on  Software
Engineering, 28(2): 2002.

[4]  M.  R.  Keyvanpour,  H.  Homayoun  and  H.
shirazee,  “Automatic  Software  Test  Cases
Generation:An  Analytical  Classification
Framework”,  International  Journal  of  Software
Engineering and Its Applications, Vol. 6, No. 4,
October, 2012.
[5]  S. Roongruangsuwan and J. Daengdej,  “Test
Cases  Prioritization  Techniques”,  Journal  of
Theoretical  and  Applied  Information  Technology,
JATIT 2010.
[6]  S.  Sampath  and  R.  C.  Bryce,  “Improving  the
Effectiveness of Test Suite Reduction for User Session
based Testing of  Web Application”,  Information and
Software Technology 54 (2012), 724-738.
[7] A. K. Upadhyay and A. K. Misra “Prioritizing Test
Suites  using  Clustering  Approach  in  Software
Testing”.  ISSN:  2231-2307,  volume-2,  Issue-4,
September, 2012.
[8] S. Elbaum, A. G. Malishevsky, and G. Rothermel,
“Test  Case  Prioritization:  A  Family  of  Empirical
Studies”, IEEE Transactions on Software Engineering,
Vol. 28, No. 2, February 2002.
[9] S. Elbaum, A. G. Malishevsky and G. Rothermel ,
“Prioritizing  Test  Cases  for  Regression  Testing”,
International  Symposium  of  Software  Testing  and
Analysis, August 2000, p. 102-112.
[10]  K.  D.  Bailey,  “Entropy  Systems  Theory”,
December, 2013.



[11] H. M. Maung, “Test Cases Reduction Approach in
User  Session  based  Testing  for  Web  Application”,
ICCA, (2014).
[12]  S.  Sampathy,  R.  C.  Brycez,  G.  Viswanathy,  V.
Kandimallaz,  and  A.  G.  Koru,  "Prioritizing  User

Session  based  Test  Cases  for  Web  Applications
Testing", Proceedings of 1st International Conference
on  Software  Testing,  Verification,  and  Validation,
IEEE,2008.


