

127

A Comparison of Naïve Bayes and Random Forest for Software Defect

Prediction

Yan Naung Soe, Khine Khine Oo

University of Computer Studies, Yangon

yannaungsoe@ucsy.edu.mm, khinekhineoo@ucys.edu.mm

Abstract

The software defect can cause the unnecessary

effects on the software such as cost and quality. The

prediction of the software defect can be useful for the

developing of good quality software. For the

prediction, the PROMISE public dataset will be used

and Random Forest (RF) algorithm and Naïve Bayes

algorithm (NB) will be applied with the RAPIDMINER

machine learning tool. This paper will compare the

performance evaluation upon the different number of

trees in RF and NB. As the results, the accuracy will be

slightly increased if the number of trees will be more in

RF. The maximum accuracy is up to 99.59 for RF and

97.12 for NB. The minimum accuracy is 87.13 RF and

45.87 for NB. Another comparison is based on AUC

and all of the results show that RF algorithm is more

accurate than Naïve Bayes algorithm for this defect

prediction.

Keywords: Software Defect, Defect Prediction,

Random Forest, Naïve Bayes

1. Introduction

A defect is an error or a bug one of the software

or application. In the software developing process, the

programmer can make mistakes or error. These

mistakes or errors mean that there are flaws in the

software that are also called defects.

A software defect or bug is a condition in a

software product which does not meet a software

requirement or end-user expectations. In other words, a

defect is an error in coding or logic that causes a

program to malfunction or to produce

incorrect/unexpected results.

The goal of software quality control, and in a

broader sense, quality management in general, is to

remove quality problems in the software [6]. These

problems are referred to by various names such as

bugs, faults, errors, or defects to name a few. As

software engineers, it is needed to find and correct as

many errors as possible before the customer and/or end

user encounter them. It is needed to avoid because

defects may make software bugs. It is important to

detect errors and defects. Figure 1 shows the

software can be damaged due to the defects.

Detection of defects is the types of software

testing. Most of the software defects detection

researches are using data mining algorithm and

tools. There are many approaches to detect such as

static analysis and dynamic analysis. Static analysis

examines code in the absence of input data and

without running the code [1]. It can detect potential

software defect, runtime errors (dereferencing a

null pointer) and logical inconsistencies. Dynamic

analysis is the analysis of computer software that is

performed with executing programs built from that

software on a real or virtual processor.

Researchers focus on the development

process and final product to investigate the reasons

of software defects and to detect as early as

possible. But, the prediction of software defects is

still needed for software development life cycle.

Most defect prediction techniques used in planning

which rely on the historical data. Defect prediction

techniques are varying in the types of data which

are based on the product characteristics or only

defects data.

In the paper, the Predict Or Models In

Software Engineering (PROMISE), public datasets

are used for prediction of software defect. For the

prediction, RAPIDMINER tool is used to apply the

random forest algorithm and naïve bayes algorithm.

The performance evaluation of these algorithms

will show by using the selected datasets. And, this

paper will show the comparison of performance

which is varying the number of trees upon the

random forest algorithm and naïve bayes.

Figure 1. Defects Make Software Crash

mailto:yannaungsoe@ucsy.edu.mm
mailto:khinekhineoo@ucys.edu.mm

128

This paper is organized as follows. In section 2,

it will introduce about cost and impact of software

defects. Section 3 discuss about the related work of the

software defect prediction. In section 4, methodology

of the prediction is presented, including with the usable

datasets, random forest algorithm, naïve bayes and

performance measurement mechanisms. The

experimental results are discussed in section 5. Finally,

this paper will conclude in section 6.

2. Cost and Impact of Software Defects

If software process improvement is considered,

a quality problem that is propagated from one process

framework activity (e.g., modeling) to another (e.g.,

construction) can also be called a “defect” [6]. The cost

of defects can be measured by the impact of the defects

and when these are found. Earlier the defect is found

lesser is the cost of defect. A defect is introduced in the

requirement specification and it is not detected

until acceptance testing or even once the system has

been implemented then it will be much more expensive

to fix. It is quite often the case that defects detected at a

very late stage, depending on how serious they are, are

not corrected because the cost of doing so is too

expensive. Figure 2 shows that the cost effective of

software defect depends on processing time. If the

finding of software defects will take more time, the

software cost may be more expensive.

Figure 2. Defects vs Processing Time for

Effectiveness of Software Cost

A number of industry studies indicate that

design activities introduce between 50 and 65 percent

of all errors (and ultimately, all defects) during the

software process. However, review techniques have

been shown to be up to 75 percent effective in

uncovering design flaws [6]. By detecting and

removing a large percentage of these errors, the

prediction process substantially reduces the cost of

subsequent activities in the software process.

3. Related Works

Most of the software defect detection is

based on the datasets by using machine learning

techniques. And most of the classification

processing used WEKA tools for generation the

result.

Selvaraj et al. used Support Vector Machine

(SVM) for software defects prediction. KC1 dataset

is used for this prediction and it is C++ system

implementing storage management for ground data

receipt/processing [7]. Their research can detect the

defects and defect detectors are calculate as

classifier predicts no defects and the module has no

error, classifier predicts no defects and the module

has error, classifier predicts some defects and the

module has no error, classifier predicts some

defects and the module has error. But it can’t solve

complex problems. The accuracy of this work is

86.05 % for the KC1 dataset which is used 1391

samples as training set and 716 samples for testing.

The results are carried out by WEKA tool.

Ma et al. proposed software defect prediction

based on association rule classification. This paper

assesses that the use of such a classification method

based on association rule, CBA2 and compares it to

other rule-based classification methods. And then,

it investigates whether rule sets generated on data

from one software project can be used to predict

defective software modules [3]. Their finding is

CBA2 algorithm results in both accurate and

comprehensible rule sets. Comparisons are based

on the area under the receiver operating

characteristics curve and AUC represents the most

informative indicator of predictive accuracy within

the field of software defect prediction. Twelve

datasets are used for detection, one-third of each

dataset is used for testing and the remaining part of

each dataset is for training with implementing using

WEKA. The accuracy of each process got around

69 to 99% but CBA2 classifier would yield a lower

performance then a rule set induced on the same

data set.

Song et al. proposed software defect

association mining and defect correction effort

prediction [8]. They used association rule mining

based methods to predict defect associations and

defect correction effort and their proposed methods

to the SEL defect data consisting of more than 200

projects over more than 15 years. And, the results

are compared the defect correction effort prediction

method with other types of methods—PART, C4.5,

129

and Naive Bayes. NASA SEL datasets are used for

defect, defect isolation effort, the defect correction

effort dataset. The 37.36 percent of cases in the defect

data set contain only one defect (will not be correctly

predicted) and; resulted in a total of 60 sets of rules,

which consist of more than 1,000 rules. They found

that higher support and confidence levels may not

result in higher prediction accuracy. This work got the

maximum accuracy 96.06% minimum support 20%

and minimum confidence 30% and the defect

association prediction, the minimum accuracy is 95.38

percent, and the false negative rate is just 2.84 percent.

Most of the existing software defect prediction

systems are limited in performance analysis. Some are

used to discuss their proposed method and compare the

existing techniques. Some are only compared the

overall performance of the machine learning

techniques.

4. Methodology

This work will use the public datasets that are

downloaded and these data are applied with random

forest algorithm. And then, the accuracy is calculated

with the outcomes by using performance measuring

mechanisms.

4.1. Dataset

The public datasets (software defect prediction)

are getting from other researchers [2], these datasets

contain (ar1, ar3, ar4, ar5, ar6, kc1, kc2, kc3, pc1, pc2,

pc3 and pc4). These datasets are created by NASA,

then the NASA metrics data program. The name of this

package is PROMISE Software Engineering

Repository dataset that make publicly available in

order to encourage repeatable, verifiable, refutable, and

improvable predictive models of software engineering.

As an example, KC datasets are a "C++" system

implementing storage management for receiving and

processing ground data that comes from McCabe and

Halstead features extractors of source code. These

features were defined in the 70s in an attempt to

objectively characterize code features that are

associated with software quality. The nature of

association is under dispute. The McCabe and Halstead

measures are "module"-based where a "module" is

the smallest unit of functionality. In C or Smalltalk,

"modules" would be called "function" or "method"

respectively. KC1 dataset contains 21 feature attributes

and on class label attributes that include defects and

non-defects. There are 2109 records containing 326

defects and 1783 non-defects data.

PC datasets are the data from C functions

that are flight software for earth orbiting satellite.

AR datasets are software defect prediction data

(implemented in C) that are from a Turkish white-

goods manufacturer. Each of the datasets is

summarized in Table 1.

Table 1.PROMISE Datasets

Attri

butes

Records Defects Non-

Defects

ar1

ar3

ar4

ar5

ar6

kc1

kc2

kc3

pc1

pc2

pc3

pc4

29

29

29

29

29

21

21

21

21

36

37

37

121

63

107

36

101

2109

522

458

1109

5589

1563

1458

9

8

20

8

15

326

107

43

77

23

160

178

112

55

87

28

86

1783

415

415

1032

5566

1403

1280

4.2. Random Forest

Random forest algorithm is a supervised

classification algorithm that creates the forest with

a number of trees.

The pseudo code for random forest

algorithm can split into two stages [5].

 Random forest creation

 Prediction from the created random forest

classifier

4.2.1. Creation

The following is the pseudo code of the

process flow of random forest.

1. Randomly select “k” features from

total “m” features. (where k << m)

2. Among the “k” features, calculate the

node “d” using the best split point.

3. Split the node into child nodes using

the best split.

4. Repeat 1 to 3 steps until “1” number of

nodes has been reached.

5. Build forest by repeating steps 1 to 4 for

“n” number times to create “n” number of

trees.

The beginning of random forest algorithm

starts with randomly selecting “k” features out of

total “m” features. In the next stage, these are being

used the randomly selected “k” features to find the

root node by using the best split approach. After

that, it will be calculated the “d” nodes using the

130

same best split approach. This will repeat the first 3

stages until to form the tree with a root node and

having the target as the leaf node. Finally, it is repeated

1 to 4 stages to create “n” randomly created trees. This

randomly created trees to form the random forest.

4.2.2. Prediction

To perform prediction using the trained random

forest algorithm uses the below pseudo code.

1. Takes the test features and use the rules of

each randomly created decision tree to predict

the outcome and stores the predicted outcome

(target).

2. Calculate the votes for each predicted target.

3. Consider the high voted predicted target as

the final prediction from the random forest

algorithm.

To perform the prediction using the trained

random forest algorithm it will be needed to pass the

test features through the rules of each randomly created

the trees. Each random forest will predict different

target (outcome) for the same test feature. Then by

considering each predicted target votes will be

calculated. Then the final random forest returns as the

predicted target.

4.3. Naïve Bayes

The Naive Bayes classifier applies to learning

tasks where each instance x is described by a

conjunction of attribute values and where the target

function f(x)can take on any value from some finite set

V. A set of training examples ofthe target function is

provided, and a new instance is presented, described by

thetuple of attribute values (al,a2 ...an). The learner is

asked to predict the target value, or classification, for

this new instance. The naive Bayes classifier is based

on the simplifying assumption that the attribute values

are conditionally independent given the target value.

The assumption is that given the target value of the

instance, the probability of observing the conjunction

al,a2 ...anis just the product of the probabilities for the

individual attributes.

The naive Bayes learning method involves a

learning step in which the various P(vj) and

P(ai|vj)terms are estimated, based on their frequencies

over the training data. The set of these estimates

corresponds to the learned hypothesis. This hypothesis

is then used to classify each new instance by applying

the rule. Whenever the naive Bayes assumption of

conditional independence is satisfied, this naive Bayes

classification vNB is identical to the MAP

classification [4].

4.4. Performance Evaluation

The evaluation performance of the prediction

of the software defects as the following criteria

such as accuracy, classification error and AUC.

 True Positive (TP): Number of defect

correctly classify.

 False Positive (FP): Number of non-defect

correctly classify.

 True Negative (TN): Number of defect

wrongly classify.

 False Negative (FN): Number of non-

defect wrongly classify.

 Accuracy (Acc): Percentage of correctly

identified for prediction.

Acc = (TP+TN)/(TP+TN+FP+FN) (1)

 Classification Error (Err): Percentage of

incorrectly identified for prediction.

Err = (FP+FN)/(TP+TN+FP+FN) (2)

The Area under the curve (AUC) is a

performance metrics for the binary classifiers. By

comparing the ROC curves with the area under the

curve, or AUC, it captures the extent to which the

curve is up in the northwest corner. The higher

AUC is the better result. Normal threshold for two

classes is 0.5 and the algorithm classify upon the

true and false. In this paper, AUC values will be

calculated based on positive class (true).

5. Experimental Result

The experimental results are compared with

three categories which are based on the number of

trees such as 10, 100 and 1000 trees in random

forest. Table 2 and 3 show the prediction accuracy

and error. In Table 2, all of the accuracy is the same

in ar1, ar4, kc3 and pc2. Other results show that

most of the prediction accuracy is slightly increase

when the number of trees will be more. Using 10

trees for random forest, some of results are stable

but most are slightly decrease accuracy result. If the

number of tree will increase up to 100, most of

accuracy results are slightly increase. If the number

of tree will create up to 1000, there is no difference

upon the accuracy results. As the result show that

the usage of around 100 trees is more suitable for

131

the prediction of the software defects by using the

PROMISE datasets. In the datasets, there are 20

percent of records are the defects classes and others are

non-defects records.

Table 2. Accuracy of Defect Prediction (Acc)

Number of Trees

10 10
2
 10

3

ar1 92.56 92.56 92.56

ar3 95.24 95.24 93.65

ar4 87.85 87.85 87.85

ar5 88.89 97.22 97.22

ar6 88.12 87.13 87.13

kc1 84.54 84.64 84.59

kc2 85.06 85.25 85.25

kc3 90.61 90.61 90.61

pc1 93.06 93.15 93.15

pc2 99.59 99.59 99.59

pc3 89.76 89.76 89.76

pc4 87.79 87.86 87.93

Table 3 shows the classification error for

software defect prediction based on RF algorithm. The

minimum error rate is 0.41 and the maximum error rate

is only 15.44. These error rates are acceptable rate in

prediction. If it will be applied by using feature

selections method, it can get more acceptable the error

rate.

Table 3. Classification Error of Defect Prediction

(Err)

Number of Trees

10 10
2
 10

3

ar1 7.44 7.44 7.44

ar3 4.76 4.76 6.35

ar4 12.15 12.15 12.15

ar5 11.11 2.78 2.78

ar6 11.88 12.87 12.87

kc1 15.46 15.36 15.41

kc2 14.94 14.75 14.75

kc3 9.39 9.39 9.39

pc1 6.94 6.85 6.85

pc2 0.41 0.41 0.41

pc3 10.24 10.24 10.24

pc4 12.21 12.14 12.07

Another comparison is based on the area under

the receiver operating characteristics curve (AUC). The

AUC represents the most informative indicator of

predictive accuracy within the field of software defect

prediction. In the Table 4, AUC values will be

calculated based on positive class (true). Most of the

results show that the values will be increased if

random forest will create more trees. By

summarizing these three tables, the prediction of

defects is more suitable for using around 100 trees

in the forest.

Table 4. AUC Performance of Defect Prediction

Number of Trees

10 10
2
 10

3

ar1 0.61 0.891 0.897

ar3 0.873 0.918 0.973

ar4 0.849 0.939 0.928

ar5 0.973 0.982 0.982

ar6 0.658 0.853 0.858

kc1 0.595 0.716 0.763

kc2 0.856 0.86 0.862

kc3 0.643 0.854 0.871

pc1 0.588 0.643 0.659

pc2 0.566 0.565 0.629

pc3 0.517 0.777 0.791

pc4 0.616 0.849 0.878

Table 5.Accuracy Comparison of Naïve Bayes

and Random Forest (100 trees)

Naïve Bayes Random Forest

ar1 80.17 92.56

ar3 87.30 95.24

ar4 85.98 87.85

ar5 86.11 97.22

ar6 87.13 87.13

kc1 82.50 84.64

kc2 83.72 85.25

kc3 84.72 90.61

pc1 89.00 93.15

pc2 97.12 99.59

pc3 45.87 89.76

pc4 87.93 87.86

The comparative results of defect prediction

based on Naïve Bayes and Random Forest

algorithms is shown in Table 5 and Figure 3.Almost

the results of Random Forest are more accurate

than Naïve Bayes especially in one of dataset such

as pc3.In only one dataset (pc4), the prediction

result of Naïve Bayes is more accurate than

Random Forest. But, it is only 0.07 percentage

difference that the result is based on one hundred

trees. If it is used one thousand trees on Random

Forest, there is no difference accuracy with these

two algorithms for this dataset.

132

Table 6. Prediction Results using Naïve Bayes for

p1, pc2, pc3 and pc4 datasets

Prediction
Non

Defect
Defect

Accurac

y

pc1
Non Defect 964 52

89.00%
Defect 68 23

pc2
Non Defect 5423 13

97.12%
Defect 143 10

pc3
Non Defect 575 18

45.87%
Defect 828 142

pc4
Non Defect 1210 106

87.93%
Defect 70 72

Table 6 shows the prediction results for pc

datasets that are predicted by Naïve Bayes. Most of the

accuracy of datasets is acceptable but the accuracy of

p3 dataset is significantly low. This algorithm can’t

effectively classify for pc3 dataset because it wrongly

classifies 828 out of 1403 non-defects records and it

can correctly classify 575 records on non-defects data.

The prediction accuracy of this dataset has only

45.87% due to the value of some records are too

distinct with others. But, this algorithm can

significantly classify on other datasets and the

prediction rates are between 80% and 97%. As all

comparison of detection rates for these two algorithms,

Random Forest algorithm is more stable than Naïve

Bayes for software defect prediction with these

datasets.

Figure 3. Accuracy Comparison of Naïve Bayes

and Random Forest

6. Conclusions

Most of the software defect prediction works are

based on the datasets by using machine learning

techniques. In this paper, the prediction results are

based on PROMISE public datasets by using Naïve

Bayes and Random Forest algorithm. The results show

that Random Forest that uses around hundred trees is

more accurate and stable than Naïve Bayes. Random

forest algorithm is more stable for this defect

prediction to get the high accuracy. In the future, it

will be analyzed the prediction for software defects

by using another datasets and machine learning

algorithms for getting the most stable in software

defect prediction.

References

[1] N. Ayewah, D. Hovemeyer, D. J. David

Morgenthaler, J., Penix, and W. Pugh, “Using Static

Analysis to Find Bugs”, IEEE Software,

ISSN: 0740-7459, 19 August 2008.

[2] G. Boetticher, T. Menzies, and T. Ostrand,

“PROMISE Repository of Empirical Software

Engineering Data Repository”, West Virginia

University, Department of Computer Science, 2007.

[3] B. Ma, K. Dejaeger, J. Vanthienen, and B. Baesens,

“Software defect prediction based on association

rule classification”, Department of Decision

Sciences and Information Management, K. U.

Leuven, B-3000, Leuven, Belgium, 2011.

[4] T. M. Mitchell, “Machine Learning”, ISBN:

0070428077, McGraw-Hill

Science/Engineering/Math, March, 1997.

[5] S. Polamuri, “How the Random Forest Algorithm

Works in Machine Learning”, May 2017, [Online]

available:

http://dataaspirant.com/2017/05/22/random-forest-

algorithm-machine-learing/

[6] R. S. Pressman, “Software Engineering – A

Practitioner’s Approach”, 7th Edition, ISBN 978–

0–07–337597–7, 2010.

[7] P. A. Selvaraj, and P. Thangaraj, “Support Vector

Machine for Software Defect Prediction”,

International Journal of Engineering & Technology

Research, ISSN Online: 2347-4904, 2013.

[8] Q. Song, M. Shepperd, M. Cartwright, M., and C.

Mair, “Software Defect Association Mining and

Defect Correction Effort Prediction”, IEEE

Transactions on Software Engineering, DOI:

10.1109/TSE.2006.1599417, 2006.

