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Abstract 

The software defect can cause the unnecessary 

effects on the software such as cost and quality. The 

prediction of the software defect can be useful for the 

developing of good quality software. For the 

prediction, the PROMISE public dataset will be used 

and Random Forest (RF) algorithm and Naïve Bayes 

algorithm (NB) will be applied with the RAPIDMINER 

machine learning tool. This paper will compare the 

performance evaluation upon the different number of 

trees in RF and NB. As the results, the accuracy will be 

slightly increased if the number of trees will be more in 

RF. The maximum accuracy is up to 99.59 for RF and 

97.12 for NB. The minimum accuracy is 87.13 RF and 

45.87 for NB. Another comparison is based on AUC 

and all of the results show that RF algorithm is more 

accurate than Naïve Bayes algorithm for this defect 

prediction. 
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1. Introduction 

A defect is an error or a bug one of the software 

or application. In the software developing process, the 

programmer can make mistakes or error. These 

mistakes or errors mean that there are flaws in the 

software that are also called defects. 

A software defect or bug is a condition in a 

software product which does not meet a software 

requirement or end-user expectations. In other words, a 

defect is an error in coding or logic that causes a 

program to malfunction or to produce 

incorrect/unexpected results. 

The goal of software quality control, and in a 

broader sense, quality management in general, is to 

remove quality problems in the software [6]. These 

problems are referred to by various names such as 

bugs, faults, errors, or defects to name a few. As 

software engineers, it is needed to find and correct as 

many errors as possible before the customer and/or end 

user encounter them. It is needed to avoid because 

defects may make software bugs. It is important to 

detect errors and defects. Figure 1 shows the 

software can be damaged due to the defects. 

Detection of defects is the types of software 

testing. Most of the software defects detection 

researches are using data mining algorithm and 

tools. There are many approaches to detect such as 

static analysis and dynamic analysis. Static analysis 

examines code in the absence of input data and 

without running the code [1]. It can detect potential 

software defect, runtime errors (dereferencing a 

null pointer) and logical inconsistencies. Dynamic 

analysis is the analysis of computer software that is 

performed with executing programs built from that 

software on a real or virtual processor.  

Researchers focus on the development 

process and final product to investigate the reasons 

of software defects and to detect as early as 

possible. But, the prediction of software defects is 

still needed for software development life cycle. 

Most defect prediction techniques used in planning 

which rely on the historical data. Defect prediction 

techniques are varying in the types of data which 

are based on the product characteristics or only 

defects data. 

In the paper, the Predict Or Models In 

Software Engineering (PROMISE), public datasets 

are used for prediction of software defect. For the 

prediction, RAPIDMINER tool is used to apply the 

random forest algorithm and naïve bayes algorithm. 

The performance evaluation of these algorithms 

will show by using the selected datasets. And, this 

paper will show the comparison of performance 

which is varying the number of trees upon the 

random forest algorithm and naïve bayes. 

Figure 1. Defects Make Software Crash 
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This paper is organized as follows. In section 2, 

it will introduce about cost and impact of software 

defects. Section 3 discuss about the related work of the 

software defect prediction. In section 4, methodology 

of the prediction is presented, including with the usable 

datasets, random forest algorithm, naïve bayes and 

performance measurement mechanisms. The 

experimental results are discussed in section 5. Finally, 

this paper will conclude in section 6. 

2. Cost and Impact of Software Defects 

If software process improvement is considered, 

a quality problem that is propagated from one process 

framework activity (e.g., modeling) to another (e.g., 

construction) can also be called a “defect” [6]. The cost 

of defects can be measured by the impact of the defects 

and when these are found. Earlier the defect is found 

lesser is the cost of defect. A defect is introduced in the 

requirement specification and it is not detected 

until acceptance testing or even once the system has 

been implemented then it will be much more expensive 

to fix. It is quite often the case that defects detected at a 

very late stage, depending on how serious they are, are 

not corrected because the cost of doing so is too 

expensive. Figure 2 shows that the cost effective of 

software defect depends on processing time. If the 

finding of software defects will take more time, the 

software cost may be more expensive.  

Figure 2. Defects vs Processing Time for 

Effectiveness of Software Cost 

A number of industry studies indicate that 

design activities introduce between 50 and 65 percent 

of all errors (and ultimately, all defects) during the 

software process. However, review techniques have 

been shown to be up to 75 percent effective in 

uncovering design flaws [6]. By detecting and 

removing a large percentage of these errors, the 

prediction process substantially reduces the cost of 

subsequent activities in the software process. 

3. Related Works 

Most of the software defect detection is 

based on the datasets by using machine learning 

techniques. And most of the classification 

processing used WEKA tools for generation the 

result. 

Selvaraj et al. used Support Vector Machine 

(SVM) for software defects prediction. KC1 dataset 

is used for this prediction and it is C++ system 

implementing storage management for ground data 

receipt/processing [7]. Their research can detect the 

defects and defect detectors are calculate as 

classifier predicts no defects and the module has no 

error, classifier predicts no defects and the module 

has error, classifier predicts some defects and the 

module has no error, classifier predicts some 

defects and the module has error. But it can’t solve 

complex problems. The accuracy of this work is 

86.05 % for the KC1 dataset which is used 1391 

samples as training set and 716 samples for testing. 

The results are carried out by WEKA tool.  

Ma et al. proposed software defect prediction 

based on association rule classification. This paper 

assesses that the use of such a classification method 

based on association rule, CBA2 and compares it to 

other rule-based classification methods. And then, 

it investigates whether rule sets generated on data 

from one software project can be used to predict 

defective software modules [3]. Their finding is 

CBA2 algorithm results in both accurate and 

comprehensible rule sets. Comparisons are based 

on the area under the receiver operating 

characteristics curve and AUC represents the most 

informative indicator of predictive accuracy within 

the field of software defect prediction. Twelve 

datasets are used for detection, one-third of each 

dataset is used for testing and the remaining part of 

each dataset is for training with implementing using 

WEKA. The accuracy of each process got around 

69 to 99% but CBA2 classifier would yield a lower 

performance then a rule set induced on the same 

data set. 

Song et al. proposed software defect 

association mining and defect correction effort 

prediction [8]. They used association rule mining 

based methods to predict defect associations and 

defect correction effort and their proposed methods 

to the SEL defect data consisting of more than 200 

projects over more than 15 years. And, the results 

are compared the defect correction effort prediction 

method with other types of methods—PART, C4.5, 



 

129 

 

and Naive Bayes. NASA SEL datasets are used for 

defect, defect isolation effort, the defect correction 

effort dataset. The 37.36 percent of cases in the defect 

data set contain only one defect (will not be correctly 

predicted) and; resulted in a total of 60 sets of rules, 

which consist of more than 1,000 rules. They found 

that higher support and confidence levels may not 

result in higher prediction accuracy. This work got the 

maximum accuracy 96.06% minimum support 20% 

and minimum confidence 30% and the defect 

association prediction, the minimum accuracy is 95.38 

percent, and the false negative rate is just 2.84 percent. 

Most of the existing software defect prediction 

systems are limited in performance analysis. Some are 

used to discuss their proposed method and compare the 

existing techniques. Some are only compared the 

overall performance of the machine learning 

techniques. 

4. Methodology  

This work will use the public datasets that are 

downloaded and these data are applied with random 

forest algorithm. And then, the accuracy is calculated 

with the outcomes by using performance measuring 

mechanisms. 

4.1. Dataset 

The public datasets (software defect prediction) 

are getting from other researchers [2], these datasets 

contain (ar1, ar3, ar4, ar5, ar6, kc1, kc2, kc3, pc1, pc2, 

pc3 and pc4). These datasets are created by NASA, 

then the NASA metrics data program. The name of this 

package is PROMISE Software Engineering 

Repository dataset that make publicly available in 

order to encourage repeatable, verifiable, refutable, and 

improvable predictive models of software engineering.  

As an example, KC datasets are a "C++" system 

implementing storage management for receiving and 

processing ground data that comes from McCabe and 

Halstead features extractors of source code.  These 

features were defined in the 70s in an attempt to 

objectively characterize code features that are 

associated with software quality.  The nature of 

association is under dispute. The McCabe and Halstead 

measures are "module"-based where a    "module" is 

the smallest unit of functionality. In C or Smalltalk, 

"modules" would be called "function" or "method" 

respectively. KC1 dataset contains 21 feature attributes 

and on class label attributes that include defects and 

non-defects. There are 2109 records containing 326 

defects and 1783 non-defects data.  

PC datasets are the data from C functions 

that are flight software for earth orbiting satellite. 

AR datasets are software defect prediction data 

(implemented in C) that are from a Turkish white-

goods manufacturer. Each of the datasets is 

summarized in Table 1. 

Table 1.PROMISE Datasets 

# Attri

butes 

Records Defects Non-

Defects 

ar1 

ar3 

ar4 

ar5 

ar6 

kc1 

kc2 

kc3 

pc1 

pc2 

pc3 

pc4 

29 

29 

29 

29 

29 

21 

21 

21 

21 

36 

37 

37 

121 

63 

107 

36 

101 

2109 

522 

458 

1109 

5589 

1563 

1458 

9 

8 

20 

8 

15 

326 

107 

43 

77 

23 

160 

178 

112 

55 

87 

28 

86 

1783 

415 

415 

1032 

5566 

1403 

1280 

4.2. Random Forest 

Random forest algorithm is a supervised 

classification algorithm that creates the forest with 

a number of trees. 

The pseudo code for random forest 

algorithm can split into two stages [5]. 

 Random forest creation  

 Prediction from the created random forest 

classifier 

4.2.1. Creation 

The following is the pseudo code of the 

process flow of random forest. 

1. Randomly select “k” features from 

total “m” features. (where k << m) 

2. Among the “k” features, calculate the 

node “d” using the best split point. 

3. Split the node into child nodes using 

the best split. 

4. Repeat 1 to 3 steps until “1” number of 

nodes has been reached. 

5. Build forest by repeating steps 1 to 4 for 

“n” number times to create “n” number of 

trees. 

The beginning of random forest algorithm 

starts with randomly selecting “k” features out of 

total “m” features. In the next stage, these are being 

used the randomly selected “k” features to find the 

root node by using the best split approach. After 

that, it will be calculated the “d” nodes using the 
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same best split approach. This will repeat the first 3 

stages until to form the tree with a root node and 

having the target as the leaf node. Finally, it is repeated 

1 to 4 stages to create “n” randomly created trees. This 

randomly created trees to form the random forest. 

4.2.2. Prediction  

To perform prediction using the trained random 

forest algorithm uses the below pseudo code. 

1. Takes the test features and use the rules of 

each randomly created decision tree to predict 

the outcome and stores the predicted outcome 

(target). 

2. Calculate the votes for each predicted target. 

3. Consider the high voted predicted target as 

the final prediction from the random forest 

algorithm. 

To perform the prediction using the trained 

random forest algorithm it will be needed to pass the 

test features through the rules of each randomly created 

the trees. Each random forest will predict different 

target (outcome) for the same test feature. Then by 

considering each predicted target votes will be 

calculated. Then the final random forest returns as the 

predicted target. 

4.3. Naïve Bayes 

The Naive Bayes classifier applies to learning 

tasks where each instance x is described by a 

conjunction of attribute values and where the target 

function f(x)can take on any value from some finite set 

V. A set of training examples ofthe target function is 

provided, and a new instance is presented, described by 

thetuple of attribute values (al,a2 ...an). The learner is 

asked to predict the target value, or classification, for 

this new instance. The naive Bayes classifier is based 

on the simplifying assumption that the attribute values 

are conditionally independent given the target value. 

The assumption is that given the target value of the 

instance, the probability of observing the conjunction 

al,a2 ...anis just the product of the probabilities for the 

individual attributes.  

The naive Bayes learning method involves a 

learning step in which the various P(vj) and 

P(ai|vj)terms are estimated, based on their frequencies 

over the training data. The set of these estimates 

corresponds to the learned hypothesis. This hypothesis 

is then used to classify each new instance by applying 

the rule. Whenever the naive Bayes assumption of 

conditional independence is satisfied, this naive Bayes 

classification vNB is identical to the MAP 

classification [4]. 

4.4. Performance Evaluation 

The evaluation performance of the prediction 

of the software defects as the following criteria 

such as accuracy, classification error and AUC.  

 True Positive (TP): Number of defect 

correctly classify. 

 False Positive (FP): Number of non-defect 

correctly classify. 

 True Negative (TN): Number of defect 

wrongly classify. 

 False Negative (FN): Number of non-

defect wrongly classify. 

 Accuracy (Acc): Percentage of correctly 

identified for prediction. 

Acc = (TP+TN)/(TP+TN+FP+FN) (1) 

 Classification Error (Err): Percentage of 

incorrectly identified for prediction. 

Err = (FP+FN)/(TP+TN+FP+FN) (2) 

 

The Area under the curve (AUC) is a 

performance metrics for the binary classifiers. By 

comparing the ROC curves with the area under the 

curve, or AUC, it captures the extent to which the 

curve is up in the northwest corner. The higher 

AUC is the better result. Normal threshold for two 

classes is 0.5 and the algorithm classify upon the 

true and false. In this paper, AUC values will be 

calculated based on positive class (true). 

5. Experimental Result 

The experimental results are compared with 

three categories which are based on the number of 

trees such as 10, 100 and 1000 trees in random 

forest. Table 2 and 3 show the prediction accuracy 

and error. In Table 2, all of the accuracy is the same 

in ar1, ar4, kc3 and pc2. Other results show that 

most of the prediction accuracy is slightly increase 

when the number of trees will be more. Using 10 

trees for random forest, some of results are stable 

but most are slightly decrease accuracy result. If the 

number of tree will increase up to 100, most of 

accuracy results are slightly increase. If the number 

of tree will create up to 1000, there is no difference 

upon the accuracy results. As the result show that 

the usage of around 100 trees is more suitable for 
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the prediction of the software defects by using the 

PROMISE datasets. In the datasets, there are 20 

percent of records are the defects classes and others are 

non-defects records. 

Table 2. Accuracy of Defect Prediction (Acc) 

# 
Number of Trees 

10 10
2
 10

3
 

ar1 92.56 92.56 92.56 

ar3 95.24 95.24 93.65 

ar4 87.85 87.85 87.85 

ar5 88.89 97.22 97.22 

ar6 88.12 87.13 87.13 

kc1 84.54 84.64 84.59 

kc2 85.06 85.25 85.25 

kc3 90.61 90.61 90.61 

pc1 93.06 93.15 93.15 

pc2 99.59 99.59 99.59 

pc3 89.76 89.76 89.76 

pc4 87.79 87.86 87.93 

Table 3 shows the classification error for 

software defect prediction based on RF algorithm. The 

minimum error rate is 0.41 and the maximum error rate 

is only 15.44. These error rates are acceptable rate in 

prediction. If it will be applied by using feature 

selections method, it can get more acceptable the error 

rate. 

Table 3. Classification Error of Defect Prediction 

(Err) 

# 
Number of Trees 

10 10
2
 10

3
 

ar1 7.44 7.44 7.44 

ar3 4.76 4.76 6.35 

ar4 12.15 12.15 12.15 

ar5 11.11 2.78 2.78 

ar6 11.88 12.87 12.87 

kc1 15.46 15.36 15.41 

kc2 14.94 14.75 14.75 

kc3 9.39 9.39 9.39 

pc1 6.94 6.85 6.85 

pc2 0.41 0.41 0.41 

pc3 10.24 10.24 10.24 

pc4 12.21 12.14 12.07 

Another comparison is based on the area under 

the receiver operating characteristics curve (AUC). The 

AUC represents the most informative indicator of 

predictive accuracy within the field of software defect 

prediction. In the Table 4, AUC values will be 

calculated based on positive class (true). Most of the 

results show that the values will be increased if 

random forest will create more trees. By 

summarizing these three tables, the prediction of 

defects is more suitable for using around 100 trees 

in the forest. 

Table 4. AUC Performance of Defect Prediction 

# 

 

Number of Trees 

10 10
2
 10

3
 

ar1 0.61 0.891 0.897 

ar3 0.873 0.918 0.973 

ar4 0.849 0.939 0.928 

ar5 0.973 0.982 0.982 

ar6 0.658 0.853 0.858 

kc1 0.595 0.716 0.763 

kc2 0.856 0.86 0.862 

kc3 0.643 0.854 0.871 

pc1 0.588 0.643 0.659 

pc2 0.566 0.565 0.629 

pc3 0.517 0.777 0.791 

pc4 0.616 0.849 0.878 

 

Table 5.Accuracy Comparison of Naïve Bayes 

and Random Forest (100 trees) 

# Naïve Bayes Random Forest 

ar1 80.17 92.56 

ar3 87.30 95.24 

ar4 85.98 87.85 

ar5 86.11 97.22 

ar6 87.13 87.13 

kc1 82.50 84.64 

kc2 83.72 85.25 

kc3 84.72 90.61 

pc1 89.00 93.15 

pc2 97.12 99.59 

pc3 45.87 89.76 

pc4 87.93 87.86 

 

The comparative results of defect prediction 

based on Naïve Bayes and Random Forest 

algorithms is shown in Table 5 and Figure 3.Almost 

the results of Random Forest are more accurate 

than Naïve Bayes especially in one of dataset such 

as pc3.In only one dataset (pc4), the prediction 

result of Naïve Bayes is more accurate than 

Random Forest. But, it is only 0.07 percentage 

difference that the result is based on one hundred 

trees. If it is used one thousand trees on Random 

Forest, there is no difference accuracy with these 

two algorithms for this dataset. 
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Table 6. Prediction Results using Naïve Bayes for 

p1, pc2, pc3 and pc4 datasets 

Prediction 
Non 

Defect 
Defect 

Accurac

y 

pc1 
Non Defect 964 52 

89.00% 
Defect 68 23 

pc2 
Non Defect 5423 13 

97.12% 
Defect 143 10 

pc3 
Non Defect 575 18 

45.87% 
Defect 828 142 

pc4 
Non Defect 1210 106 

87.93% 
Defect 70 72 

 

Table 6 shows the prediction results for pc 

datasets that are predicted by Naïve Bayes. Most of the 

accuracy of datasets is acceptable but the accuracy of 

p3 dataset is significantly low. This algorithm can’t 

effectively classify for pc3 dataset because it wrongly 

classifies 828 out of 1403 non-defects records and it 

can correctly classify 575 records on non-defects data. 

The prediction accuracy of this dataset has only 

45.87% due to the value of some records are too 

distinct with others. But, this algorithm can 

significantly classify on other datasets and the 

prediction rates are between 80% and 97%. As all 

comparison of detection rates for these two algorithms, 

Random Forest algorithm is more stable than Naïve 

Bayes for software defect prediction with these 

datasets.  

Figure 3. Accuracy Comparison of Naïve Bayes 

and Random Forest 

 

6. Conclusions  

Most of the software defect prediction works are 

based on the datasets by using machine learning 

techniques. In this paper, the prediction results are 

based on PROMISE public datasets by using Naïve 

Bayes and Random Forest algorithm. The results show 

that Random Forest that uses around hundred trees is 

more accurate and stable than Naïve Bayes. Random 

forest algorithm is more stable for this defect 

prediction to get the high accuracy. In the future, it 

will be analyzed the prediction for software defects 

by using another datasets and machine learning 

algorithms for getting the most stable in software 

defect prediction. 
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