
 Analysis of Availability Model Based on Software Aging in SDN Controllers

with Rejuvenation

Aye Myat Myat Paing

Faculty of Computer Science

University of Information Technology, Yangon

Yangon, Myanmar

ayemyatmyatpaing@uit.edu.mm

Abstract

Deficiency of flexibility and programmability of

legacy network architecture has been the concern of

many networking admirers for some years. Software

defined networking (SDN) is a new emerging concept

to logically centralize the network control plane in

order to automate the configuration of individual

network elements. However, the failures of SDN

controller are every large impact on the network

performance and availability. There are different

failure modes in SDN controller outages such as

hardware and software. Unplanned downtime is

mostly caused by software failure due to software

aging rather than hardware failure. The aging related

faults have a huge effect on the availability for

software components, SDN controllers. For that

reason, the work presented in this paper offers the

availability model for software aging of SDN

controllers by applying software rejuvenation. A

stochastic reward net (SRN) is proposed to evaluate

the availability assessment of a cluster of SDN

controllers. And then how software rejuvenation can

improve the performance of SDN controllers is

studied. To evaluate the availability of proposed

model, mathematical analysis is performed.

Keywords: Software Defined Networking,

Availability, Software rejuvenation, SDN controller

I. INTRODUCTION

Software defined networking brought a

revolution in computer networks that is offered to

manage the entire network to be more flexible and

programmable [1]. The central approach for SDN is

built on a single controller which can be managing of

all the node in the infrastructure. However, it can be a

single point of failure. Distribute SDN controllers face

with all the above issue [2]. The availability of SDN

controller is more important issue for the overall

system availability and network performance.

However, SDN controllers’, software component

replication mechanism is not a good solution to

improve the availability, since the main issue of the

failure is often shared among the replicas, for example

a bug in a software code [3]. It can suffer unplanned

downtime due to computer failure, network failure and

software failure and so on. One of the causes of

unplanned software outages are the software aging

phenomenon due to the degradation of software. There

are aging related faults, Mandelbugs, which imitate the

gradual degradation of the system performance,

because memory leaks, data corruption and

accumulation of numeric errors, etc [4]. The most

effective solution to handle software failure due to

software aging is software rejuvenation. Since the

preventative action can be done at optimal time

interval, it reduces the cost of system downtime and

gets higher availability compared to reactive recovery

from failure.

Moreover, a cluster of SDN controllers’

architecture is focused in order to improve high

availability purposes for the network. ONOS, Open

Network Operating System, is a newly released open-

source SDN controller which is used to consider in this

work.

And then availability model of SDN controller

using stochastic reward net is illustrated in order to

evaluate the availability of cluster SDN controllers. In

order to solve the software failure, preventative

maintenance (such as software rejuvenation) is applied

for enhancing the performance of proposed model. To

show the performance of the proposed method,

analytic analysis is presented. To evaluate the models

throughout both analytic analysis and then SHARPE

tool [5] are considered.

The organization of this paper is as follows.

Section 2 provides an overview of the related work.

The proposed research approach for how to solve

software aging of a cluster of SDN controllers is

presented in section 3. The proposed model for

enhancing system availability follows in section 4.

Finally, the conclusion is described in section 5.

II. RELATED WORK

In this section, selected publications are

reviewed which are related to this work.

The researchers [6] presented that SDN is

developed to afford more effective configuration

enhance performance and more flexibility for huge

network designs

The researchers focused on the state-of-art

ONOS controller, designed to scale to large networks,

based on a cluster of self-coordinating controllers and

concentrate on the inter-controller control traffic in

[7]. Vizarreta et.al [4] presented Failure Dynamics in

SDN controllers’ model and evaluates the impact that

different controller failure modes have on its

availability. In case study, they showed how the

proposed model can be used to estimate the controller

steady state availability, quantify the impact of

different failure modes on controller outages, as well

as the effects of software aging, and impact of

software reliability growth on the transient behavior.

The authors [1] presented Software Defined

Networking (SDN) brought an unprecedented

flexibility and programmability into computer

networks. And then they evaluated the benefits by

enhancing the ONOS SDN-IP application with an

adaptive Robust Traffic Engineering Algorithm.

The authors [8] describe that many software

failures are those due to software aging phenomena.

So, they proposed a new framework for predicting in

real time the time-until-crash of web applications

which suffer from software aging using machine

learning techniques.

Ros et. al [9] have shown that in order to

achieve the availability of five nines, the forwarding

devices are required to connect at least two controllers,

for all wide area network include in their study.

Studies [9] and [4] separate between permanent and

transient hardware and software failures.

In the following section, an availability model

for software aging of SDN controllers is proposed

using stochastic reward nets model and analyze the

availability for cluster of SDN controllers in case of

software aging failure.

 III. PROPOSED RESEARCH APPROACH FOR

SOFTWARE AGING IN SDN CONTROLLERS

With the aim of making networks not only more

programmable but also easier to manage, SDN based

network architecture has been presented. This system

consists of a cluster of ONOS controllers and then the

exchange of routing traffic among the controllers as

shown in Figure 1. In this SDN based network

scenario, the configuration, ONOS 1.2 [10, 11]

controllers are considered. It is based on all in one

SDN hub VM. To imitate the network controlled

OpenFlow protocols is used.

Each network device can connect to multiple

ONOS controllers, but each domain has its primary

controller with full control for forwarding tables and

so on. Each controller interacts with all the other

controllers and then they send and accept keep-alive

messages among controllers for monitoring in a cluster

member. If one controller fails, the other controller in

a cluster can take the operation from the affected

controller. Controller failure frustrates the network

ability to serve new requests coming from the network

application. Moreover, after node or link failure, it

needs to be routing or rerouting for the physical

network. There are different failure modes in

controller occur with different occurrence. In this

work, node failure cause of software aging failure is

considered on SDN controllers. Therefore, in order to

detect and solve the software aging in case of memory

exhaustion in SDN controllers, management server

which includes aging detector and rejuvenation

manager is considered. Accordingly, in this model two

kinds of preventive maintenance (software

rejuvenation methodology) have been considered and

evaluated.

Taking the rejuvenation action, there is a

downtime. For this reason, the rejuvenation action can

be done at optimal times in order to reduce the cost of

system downtime. The main process of aging detector

and how rejuvenation policy used to solve the aging

problem are discussed in subsection A and B.

Figure 1. System Architecture

A. Aging Detector

In the management server, the Aging Detector

module make the detection of software aging. The

responsibility of the aging detector, it can detect the

resource exhaustion for memory due to the amount of

traffic exchange among a cluster of controllers and

updating their states.

SDN controller’s failures related to the software

aging are detected from both configuration and

network. In this work, Mandelbugs in SDN controller

is considered. So, the Aging Detector is collecting the

resource status Memory, and number of threads or

number of connections among the SDN controllers.

Because of these parameters can estimate the service

time to crash due to software aging. When the aging

detector detects resource exhaustion, the proposed

rejuvenation policies are applied. Some potential

failure happens in SDN controller, the rejuvenation

manager that is software component in management

server triggers the partial and full rejuvenation

according to the failure and estimation of time to crash

that detected form Aging Detector.

The work of aging detector and rejuvenation

manager is shown in the sequence diagram as figure 2.

Figure 2. Sequence Diagram for Aging Detector

and Rejuvenation Manager

B. Rejuvenation Policy

When Aging Detector detects software aging

happens in each SDN controller, the rejuvenation

manager will activate the rejuvenation action. The two

kinds of rejuvenation policies will be performed on

that system. It is based on the condition of the unstable

state a minimal maintenance (a partial system clean

and restart) or a major maintenance with rejuvenation

(clean and restart) is applied.

According to the collecting the resource from

Aging Detector, it can be detected some condition

could not work well. At that time minimum

maintenance is conducted. It is called partial restart

and can restore its not working or out of order service

such as configuration or Database connections and

some other resources back to a healthy state. During

the minimal maintenance, controller can provide

continued services because this maintenance is a

partial system cleanup.

Then, Aging Detector estimate the time to crash

of controllers that have violated the threshold (Time

Limit) defined by the system administrators per each

service or per the whole framework, the rejuvenation

manager triggers the major maintenance that is full

rejuvenation. So, OS and all services on that controller

must be stopped and the rejuvenation action restarts

the OS to recover all its free memory. This

rejuvenation is also called full restart. When one of the

controllers in cluster needs to do major maintenance

with rejuvenation, another SDN controller in cluster is

to take the responsible for that rejuvenation triggered

controller.

When software rejuvenation is performed the

system stops serving resulting in a downtime that can

be affected the operational costs. But due to its

proactive feature, the downtime due to rejuvenation is

less than downtime due to an unscheduled software

failure. Furthermore, partial rejuvenation can be less

downtime cost than full rejuvenation. Therefore, two

kinds of rejuvenation (preventative maintenance) are

considered in order to reduce system downtime in case

of software aging.

IV. STICHASTIC REWARD NETS (SRN)

MODEL FOR PROPOSED SYSTEM

A stochastic reward nets (SRN) model with two

kinds of rejuvenation mechanism for a cluster of SDN

controllers is described in Figure 3. It has n tokens

which represented n SDN controllers in cluster. In

initial condition, all controllers are working well state,

indicated by a token in place PUp. When transition TI

fires the controller enters the inspection state and a

token moves from PUp to PI. After inspection is

complete (firing the transition Tup,) no action is taken

if the system is found to be in working state. Transition

TU,I models the unstable state of the controller. When

this transition fires, (i.e., a token reaches place PU,I) the

controller is operational but in the unstable state. The

transition TU,I models the unstable state and under

inspection state of the SDN controller. At that time,

some service in SDN controller is not working well but

it is still running. So, it needs to a partial system clean

and restart for SDN controller. After minimal

maintenance is complete (firing the transition Tm), the

controller enters the operational state.

As the time progress, each controller can

eventually transit to software aging state in place PFP

detected from the aging detector as memory leaks

which reproduces the gradual degradation of the

system performance through the transition TAging. If

the one of the SDN controller is about to be major

maintenance with rejuvenated, the traffic control and

the routing decision of the packet on affected

controller is switched to another controller in cluster

and then the effected controller will be started for the

new requests and sessions before rejuvenation through

the transition Tsw. It can return to the original SDN

after the accomplishment of the rejuvenation such as

system clean and restart.

Consequently, the rejuvenation interval is

defined through clock with guard function ginterval.

The tokens are in the place Pclock and PFP. If there is a

token in Ptrigger through guard gtrig, and there are

controllers to be rejuvenated. In that state token is

placed in PFP, immediate transition trej is enable

through the function grej as shown in Table 2. After

the controller has been rejuvenated, it will be in the

working state through transition TH_rej. And then,

immediate transition is enabled by using greset and a

token is switched to Pclock.

If the software aging failure cannot be detected,

the controller can fail because of software aging and

the controller is not working in the place of PAging. At

that time, there is no active controller in a cluster, the

system may outage and then the system goes to Down

state in the place of PDown through the transition THfail.

From a whole system down, the system can be

restoration with the transition TRepair. If one SDN

controller is used in system architecture, the downtime

can be more because it does not switch to routing

decision and some other services to another active

controller. Otherwise, there is an active controller in a

cluster; the controller can be replaced through the

transition TReplace. After repairing the fail controller

through TRepair, the controller can join in the cluster.

The Markov reward model which is mapped

from proposed SRN constructs a marking dependency

and enabling functions (or guards) facilitate the

construction of model in order to solve the steady state

availability for proposed model. Then, the SRN model

has been evaluated through numerical derivation that

can be shown how rejuvenation mechanism can reduce

downtime and the architecture for a cluster of SDN

controllers can improve the system availability with

the mapping of reachability graph in sub section A

Figure 3. Stochastic Reward Nets Model for

Software Aging in SDN controllers

TABLE I. DESCRIPTION FOR PLACES OF PROPOSED

MODEL

Places Description

PUp A cluster of SDN controllers Up state

PI Inspection state in SDN controllers

PU,I SDN Controllers unstable state under

inspection

PFP Software Aging state in SDN

controller

PR Proactive Software Rejuvenation state

in SDN controller

PAging SDN controller Software aging failure

state

PReplace SDN controller replaced state

PDown Failure state of all SDN controller in

cluster

Pclock Rejuvenation interval state

Ppolicy_rej Rejuvenation policy state

Ptrigger Rejuvenation state

A. Reachability Analysis

In this section, the reachability graph is

constructed for the mapping of proposed model.

 Let 7 tuples (πUp, πI i, πU,Ii, πR i, πAging, πDown,

and πReplace i) denote the marking with πx =1, if a token

is presented in place πx, and zero otherwiseas shown in

figure 4.

This figure illustrates with squares

representing the markings and arcs representing

possible transition between the markings. Let λI, λU,I,

μup, μm, λR, μrej, λsw-age, μreplace, λfailand μrepairbe the

transition rates associated with TI, TU,I,Tup, Tm, TR,

TH_rej, TAgingFailure, TReplace, THfail, and Trepairrespectively.

By mapping through actions of this graph with

stochastic process, steady-state solution can be

achieved.

TABLE II. GUARD FUNCTION FOR PROPOSED MODEL

Name : Guard Function

ginterval : (#(PFP) = =1)

grej : (#(Ptrigger) = =1)

greset : (#(PR) = =1)

gtrig : (#(Ppolicy_rej) = =1)

Figure 4. Reachability Graph for the proposed

model

The summing the probabilities of all states in

proposed system equation is described in Equation 1.

𝜋𝐼 + 𝜋𝑈,𝐼 + 𝜋𝑅 + 𝜋𝐴𝑔𝑖𝑛𝑔 + 𝜋𝐷𝑜𝑤𝑛 + 𝜋𝑅𝑒𝑝𝑙𝑎𝑐𝑒

+ 𝜋𝑈𝑝 = 1

 (1)

The combination of balance equation that

obtained from figure 4 with the above the summing of

probabilities, the closed form solution can be

achieved.

𝜋𝐼 = ∑
𝜆𝐼

𝜇𝑢𝑝
⁄

𝑛

𝑖=1

𝜋𝑈𝑝
(2)

𝜋𝑈,𝐼 = ∑
𝜆𝑈,𝐼

𝜇𝑚
⁄

𝑛

𝑖=1

𝜋𝑈𝑝
(3)

𝜋𝑅 = ∑
𝜆𝑠𝑤−𝑎𝑔𝑒

𝜇𝑟𝑒𝑗
⁄

𝑛

𝑖=1

𝜋𝑈𝑝
(4)

𝜋𝐴𝑔𝑖𝑛𝑔 = 𝐴𝜋𝑈𝑝

(5)

𝜋𝐷𝑜𝑤𝑛 =
𝜆𝑓𝑎𝑖𝑙

𝜇𝑟𝑒𝑝𝑎𝑖𝑟
⁄ 𝐴𝜋𝑈𝑝

(6)

𝜋𝑅𝑒𝑝𝑙𝑎𝑐𝑒 = ∑
𝜇𝑟𝑒𝑝𝑙𝑎𝑐𝑒

𝜇𝑟𝑒𝑝𝑎𝑖𝑟
⁄

𝑛−1

𝑖=1

𝐴𝜋𝑈𝑝

(7)

TABLE III. THE MEANING OF THE PROBABILITY’S

ARE AS FOLLOWS.

𝜋𝑈𝑝 : The probability of SDN controllers

are working state

𝜋𝐼𝑖
 : The probability of SDN controller is

under inspection state

𝜋𝑈,𝐼𝑖
 : The probability of SDN controller is

not working well state

𝜋𝑅𝑖
 : The probability of SDN controller is

Rejuvenation state

𝜋𝐴𝑔𝑖𝑛𝑔 : The probability of SDN controller is

software aging failure state

𝜋𝐷𝑜𝑤𝑛 : The probability of SDN controllers

are Down state

𝜋𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑖
 : The probability of SDN controller is

replace state

B. Analysis of Availability and Downtime

In this subsection, according to the numerical

derivation, availability and downtime are evaluated.

Availability is a probability of SDN concept-based

network infrastructure which provides the services in

each instant time through reachability graph. In this

model, SDN controller services have been focused.

Based on the proposed model, the whole system may

be totally down when all controllers failed because of

software aging failure and there is no hardware extra

for replace SDN based network. The system is not

available in Down state, there is a token in the place

(PDown). Downtime is the expected total downtime of a

cluster of SDN controllers-based network in an

interval of T (24*30*12 days). The system availability

in the steady-state and Downtime are defined as

follows:

Availability = 1-Unavailability (9)

Availability = 1-πDown (10)

Downtime (T) = T* πDown (11)

The applicability of the proposed model and

solution methodology through numerical examples are

illustrated using the transition firing rate. A good

estimate value for a range of the model is assumed

because the exact transition firing rates are not well

known normally. So, experiments are performed using

the following failure profile in literature [9, 4, and 12]

mentioned in Table 4.

TABLE IV. PARAMETERS VALUES AND DESCRIPTION

Transition Description Values

TI, TU,I Inspection of Aging

Probably

1time/a day

Tup After Inspection without

maintenance Rate

0.3

Tm After Inspection with

maintenance Rate

0.6

TAging Software Aging Rate 1 day

TAgingFailure Failure Rate that effect

of aging

7 days

Tsw Switch over rate 5 secs

THFail Hardware/Physical host

failure rate

6 months

TRepair SDN Controller

Physically Repair Time

24 hrs

TReplace Replacement Time for

Extra SDN Controller

2 hrs

Tinterval Rejuvenation interval 2times/a

month

TH_rej Rejuvenation rate 2 mins

T Unit Time Interval 24*30*12

days

The influence of number of SDN controller

along with different failure rate caused of software

aging on availability is shown in Figure 5. It can be

seen the result that the need of at least two or three

SDN controllers for achieving “five-nines”

availability. So, the availability is dependent on the

number of SDN controllers. According to the analysis,

the higher mean time to software aging failure of SDN

controller, the higher availability can be obtained.

Figure 5. Availability vs different software aging

failure time for multiple SDN controllers

The Figure 6 shows the differences in

downtime with different number of SDN controller in

cluster through different controller software aging

failure time. The more controllers, the lower downtime

can be obtained. As a result, the downtime decreases

up to 5 minutes for three SDN controllers. According

to the analysis, the consideration of a cluster of

multiple controllers can be affected on system

downtime. Therefore, cluster of SDN controller’s

architecture are applied in this work.

Figure 6. Downtime vs different software aging

failure time for multiple SDN controllers

In our proposed research approach, two kinds

of proactive rejuvenation are used for counteracting

the software aging affected on SDN controller. With

the purpose of it, the inspection for probably of

software aging in SDN controller is very important

because it can be noticed that the rejuvenation action

applies or not. So, the influence of mean time between

inspections (MTBI) along with different controller of

software aging failure is evaluated through the

proposed model. The analysis result of availability

using above mentioned system-parameters is shown in

Figure 7. There are several different values of time to

carry out the inspection. The MTBI are assumed 6

hours and 12 hours. The lower MTBI, the higher

availability can be reached.

Figure 7. Availability vs different software aging

failure time with different Inspection time for

aging

The Figure 8 shows the differences in

downtime with different software aging failure using

various MTBI. From the result, the lower MTBI for

SDN controller, the lower downtime can be obtained.

For the best and most expensive of all SLA services,

the downtime will be up to five minutes per year and

application uptime would also be about 99.999% of

the time. According to the downtime analysis, the

inspection time for probably of software aging is

important in SDN controller.

Figure 8. Downtime vs different software aging

failure time with different Inspection time for

aging

Figure 9. Availability vs different software aging

failure time with different Rejuvenation interval

The Figure 9 shows the differences in

availability with different software aging failure

between once a week starting one day using various

rejuvenation interval. From the result, if the

rejuvenation did many times, the lower availability

will be obtained. According to the analysis results, the

rejuvenation interval should be optimal time interval

and it is probably important for different software

aging failure in SDN controller.

Figure 10. Downtime vs different software aging

failure time with different Rejuvenation interval

The differences in downtime with different

software aging failure using various rejuvenation

interval is shown in figure 10. According to the

analysis results, the rejuvenation interval should be

optimum interval because the more rejuvenation, the

lower downtime can be achieved especially software

aging failure in a week.

According to the analysis results shown in

figures, the failure rate caused of aging has also an

impact on the numerical analysis of availability and

downtime of the proposed model. However, aging

failure rate is not accurate parameters, because it

depends on the many factors such as controller

utilization rate such as CPU, memory and so on. In our

studies, the cause of software aging is based on

memory exhaustion because SDN controller

responsible that the control plan of forwarding

networking devices is extracted and moved to the

entity. Therefore, the varying aging failure rates are

considered to evaluate the proposed model. The

software aging caused by other factors like CPU

utilization can be considered with different software

rejuvenation interval in future.

According to the figures, it is shown that the

derivation results and SHARPE [13] simulation results

are the almost same. Therefore, it can be proved that

the numerical derivation results for proposed model are

acceptable.

V. CONCLUSION

This research work is intended for SDN based

network infrastructure meant for improving the

network performance. The objective is specially

associated with how to solve software aging failure in

SDN controllers which can be impact on network

performance. Based on the numerical analysis using

failure profile, a stochastic reward nets model for

software aging of SDN controllers is evaluated in

available and downtime. As the obtained results shown

in figures, it can be said this approach get the high

availability and lower downtime (uptime about

99.999% of the time) when the number of SDN

controllers increased.

Two kinds of rejuvenations can also enhance the

availability of SDN based network with optimal

rejuvenation interval that can reduce the downtime of

the system as shown in results.

Although the (n) numbers of controllers in a

cluster are deployed in the proposed model, evaluation

result show that multiple SDN controllers, at least two

or three controllers offer the high availability of the

services and in order to achieve minimizes downtime

than traditional network. For future work, how

software aging failures influences the impact on SDN

based environment in other SDN controller instead of

ONOS.

REFERENCES

[1] D. Sanvito, D. Moro, M. Gulli, I. Filippini, A.

Capone, A. Campanella, ONOS Intent Monitor

and Reroute Service: enabling plug & play

routing logic, IEEE International Conference on

Network Softwarization 2018, NetSoft 2018,

Montreal, Canada.

[2] A. Panday, C. Scotty, A. Ghodsiy, T. Koponen,

and S. Shenker, “CAP for networks,” in HotSDN.

ACM, 2013, pp. 91–96.

[3] T. A. Nguyen, T. Ecom, S. An, J. S. Park, J. B.,

Hong and D.S. Kim, Availability modeling and

analysis for software defined networks,

Dependable Computing (PRDC) 2015 IEEE 21st

Pacific Rim International Symposium on IEEE,

2015, pp. 159-168.

[4] P. Vizarreta, P. Heegaard, B. Helvik, W. Kellerer

and C. M. Machuca, Characterization of Failure

Dynamics in SDN Controllers, 9th International

Workshop on Resilient Networks Design and

Modeling (RNDM), 2017.

[5] K. S. Trivedi, SHARPE 2002: Symbolic

Hierarchical Automated Reliability and

Performance Evaluator. In Proc. Int. Conference

on Dependable Systems and Networks, 2002, pp.

544.

[6] T. E. Ali, A. H. Morad, M. A. Abdala, Load

Balance in Data Center SDN Networks,

International Journal of Electrical and Computer

Engineering (IJECE), Vol. 8, No.5, 2018, pp.

3086-3092.

[7] A. S. Muqaddas, A. Bianco, P.Giaccone, G.

Maier, Inter- controller Traffic in ONOS clusters

for SDN networks, 2016 IEEE International

Conference on Communications (ICC).

[8] J. Alonso, J. Torres, J. Ll. Berral and R. Gavalda,

Adaptive on-line software aging prediction based

on Machine Learning, 2010 IEEE/IFIP

International Conference on Dependable Systems

& Networks (DSN).

[9] F. J. Ros and P. M. Ruiz, Five nines of

southbound reliability in software-defined

networks, Proceedings of the third workshop on

Hot topics in software defined networking. ACM,

2014, pp. 31-36.

[10] Distributed ONOS Tutorial ONOS Wiki, Created

by Ali "The Bomb" AlShabibi, last modified by

Jonathan Hart on Apr 03, 2015.

[11] ON.Lab, ONOS: Open Network Operating

System, http://onosproject.orj/, 2017.

[12] Software Rejuvenation. Department of Electrical

and Computer Engineering, Duke University,

http://www.software-rejuvenation.com.

[13] J. Saisagar, K. D. Prashant, SDN Enabled Packet

Based Load-Balancing (Plb) Technique in Data

Center Networks‟ Department Of Computer

Science Engineering, Srm University, Vol. 12,

No. 16, August 2017.

