
APPLICATION OF NEURAL NETWORK FOR PREDICTING SOFTWARE
DEVELOPNIENT FAULTS USING OBJECT-ORIENTED

DESIGN METRICS

Me Me Thet Thwin Tong-Seng Quah

School ofElectronic & Electrical Engineering
Nanyang Technological University

pl 15285@ntu.edu.sg

ABSTRACT

In this paper, we present the application of neural network
for predicting software development faults including
object-oriented faults. Object-oriented metrics can be used
in quality estimation. In practice, quality estimation means
either estimating reliability or maintainability. In the
context of object-oriented metrics work, reliability is
typically measured as the number of defects. Object-
oriented design metrics are used as the independent
variables and the number of faults is used as dependent
variable in our study. Software metrics used include those
concerning inheritance measures, complexity measures,
coupling measures and object memory allocation
measures. We also test the goodness of fit of neural
network model by comparing the prediction result for
software faults with multiple regression model. Our study
is conducted on three industrial real-tirne systems that
contain a number of natural faults that has been reported
for three years [1].

1. INTRODUCTION

Neural networks have seen an explosion of interest over
the years, and are being successfully applied across a
range of problem domains, in areas as diverse as finance,
medicine, engineering, geology and physics. Indeed,
anywhere that there are problems of prediction,
classification or control, neural networks are being
introduced. It can learn by example. In order to make a
neural network useful, the user needs to gather
representative data, and then invokes training algorithms
to train the neural network.

Only a few applications of artificial network to
sofiware quality have appeared in the literature [15].
Khoshgofiarr et al. [15] introduced the use of the neural
networks as a tool for predicting sofiware quality. They
compared the neural-network model with a nonparametric
disciminant model, and found the neural network model
had better predictive accuracy. Their model used domain

metrics derived from the complexity metric data. These
metrics are not adequate for detecting object-oriented
faults. Since the object-oriented paradigm exhibits
different characteristics from the procedural paradigm,
software metrics in object-oriented paradigm need to be
used.

With the increasing use of object-oriented methods in
new software development there is a growing need to
improve current practice in object-oriented design and
development.

Possible problems in system designs can be detected
during development process. Meaningful soflzware metrics
are used for measuring project progress and quality. They
provide help for developers and managers to promote
better designs, more reusable code, and better estimates.
The software metrics can be divided into project metrics
and design metrics. Project metrics are used to predict
project needs, such as staffing levels and total effort. They
also measure the dynamic changes that have taken place
in the state of the project, such as “how much has been
done” and “how much is lefi to do”. These metrics are
more global and less specific than the design metrics.
Design metrics are measurements of the static state of the
project design at a particular point in time. These metrics
are more localized and prescriptive in nature. They look at
the quality of the way the system is being built. The
quality characteristics are reliability, maintainability,
extendibility, usability and reusability [2].

Object-oriented metrics can be used in quality
estimation. In practice, quality estimation means either
estimating reliability or maintainability. In the context of
object-oriented metrics work, reliability is typically
measured as the number of defects. These can be pre-
release or post release. The estimated number of defects
can also be normalized by a size measure to obtain a
defect density estimate.

We aim to build an efficient predictive model by
combining power of neural network and object-oriented
software metrics.

APPLICATION OF NEURAL NETWORK FOR PREDICTING SOFTWARE
DEVELOPMENT FAULTS USING

 DESIGN METRICS

Mie Mie Thet Thwin Tong-Seng Quah

Sch ectronic & Electrical Engineering
Nanyang Technological University

p 1 15285@ntu.edu.sg

ABSTRACT

In this paper, we present the application of neural network
for predicting software development faults including
object-oriented faults. Object-oriented metrics can be used
in quality estimation. In practice, quality estimation means
either estimating reliability or maintainability. In the
context of object-oriented metrics work, reliability is
typically measured as the number of defects. Object-
oriented design metrics are used as the independent
variables and the number of faults is used as dependent
variable in our study. Software metrics used include those
conceming inheritance measures, complexity measures,
coupling measures and object memory allocation
measures. We also test the goodness of fit of neural
network model by comparing the prediction result for
software faults with multiple regression model. Our study
is conducted on three industrial real-time systems that
contain a number of natural faults that has been reported
for three years [l].

1. INTRODUCTION

Neural networks have seen an explosion of interest over
the years, and are being successfully applied across a
range of problem domains, in areas as diverse as finance,
medicine, engineering, geology and physics. Indeed,
anywhere that there are problems of prediction,
classification or control, neural networks are being
introduced. It can leam by example. In order to make a
neural network useful, the user needs to gather
representative data, and then invokes training algorithms
to train the neural network.

Only a few applications of artificial network to
software quality have appeared in the literature [15].
Khoshgoftarr et al. [15] introduced the use of the neural
networks as a tool for predicting software quality. They
compared the neural-network model with a nonparametric
disciminant model, and found the neural network model
had better predictive accuracy. Their model used domain

metrics derived fiom the complexity metric data. These
metrics are not adequate for detecting object-oriented
faults. Since the object-oriented paradigm exhibits
different characteristics from the procedural paradigm,
software metrics in object-oriented paradigm need to be
used.

With the increasing use of object-oriented methods in
new software development there is a growing need to
improve current practice in object-oriented design and
development.

Possible problems in system designs can be detected
during development process. Meaningful software metrics
are used for measuring project progress and quality. They
provide help for developers and managers to promote
better designs, more reusable code, and better estimates.
The software metrics can be divided into project metrics
and design metrics. Project metrics are used to predict
project needs, such as staffing levels and total effort. They
also measure the dynamic changes that have taken place
in the state of the project, such as “how much has been
done” and “how much is left to do”. These metrics are
more global and less specific than the design metrics.
Design metrics are measurements of the static state of the
project design at a particular point in time. These metrics
are more localized and prescriptive in nature. They look at
the quality of the way the system is being built. The
quality characteristics are reliability, maintainability,
extendibility, usability and reusability [2].

Object-oriented metrics can be used in quality
estimation. In practice, quality estimation means either
estimating reliability or maintainability. In the context of
object-oriented metrics work, reliability is typically
measured as the number of defects. These can be pre-
release or post release. The estimated number of defects
can also be normalized by a size measure to obtain a
defect density estimate.

We aim to build an efficient predictive model by
combining power of neural network and object-oriented
software metrics.

п

2. RELATED WORK
Toshihiro Kamiya et al. [3] presented a method to,
estimate the fault-proneness of 'the class in-the early ー
phase, using several complexity metrics for“ object—'

' oriented software. They introduced four checkpoints into
the analysis/design/irnplementation phase, and estimate
the fault-prone classes using the applicable metrics at each,
checkpoint. They estimate thefault-proness by using the
multivariate logistic regression analysis. _

Emanm and Melo [4] have performed to construct a
logistic regression model to predict which classes in a
future release of a commercial Java application will be
faulty. The model was then validated on a subsequent
release of the same application. Their results indicated
that the prediction model had a high accuracy. They used
ten design metrics, two defined by» Chidamber and
Kemerer [5] and eight by Briand et al [6].

In [7], the relationships between existing object-
oriented coupling, cohesion, and inheritance measures and
the probability of fault detection in system classes during
testing explored empirically. Their univariate regression
analysis have shown that many coupling and inheritance
measures are strongly related to‘the probability of fault
detection in a class. Their multivariate’regression analysis
results showed that by'using some of the coupling and
inheritance measures, very accurate models could be
derived to predict in which classes most of the faults
actually lie. In order to draw more general conclusions
and confirm the, results, they conducted the same study
again using an industrial system developed by
professional in [8]. ' 〝

L. Briand et al. [9] built a fault-proneness prediction
model based on a set of ОО measures using data collected
from a mid-sized Java system using logistic regression
analysis, and then applied the model to a different Java
system developed by‘ the same team. They then evaluated

' the accuracy the model’s prediction in that system and the
model’s economic viability using a cost-benefit model.

In [10], empirical study was performed with the data
from a commercial Java appliéation using logistic
regression. They found that Depth of Inheritance Tree
(DIT) is a good measure of familiarity and, has a
quadratic relationship with fault-proneness. Their
hypotheses were confirmed for Import Coupling to other
classes, Export Coupling and Number of Children metrics.
The Ancestor based Import Coupling metrics were not
associated with fault-proneness after controlling for the
confounding effect of DH.

Yida Mao, Н.А. Sahraoui and H. Lounis [11]
proposed an experiment to verify three hypotheses about
the impact of three internal characteristics (inheritance,
coupling and complexity) of 00 applications on
reusability. That verification was done through a machine-
leaming approach C4.5 [12]. To verify the hypotheses,

〝 【 they used six inheritance metrics, 18 design coupling
metrics, 12 code coupling metrics and 13 complexity
metrics. The results of their experiment show that the
selected metrics can predict with a high level of accuracy
the classes that can be potentially reusable. The four
predictive models obtained give a satisfactory results
(74% to 89% of accuracy).

3. DESIGN OF THE EMPIRICAL STUDY

The objective of this study is to estimate how many faults
are remaining in the programs. The use of object-oriented
software development techniques add new elements to
software complexity in the software development process
and in the software product. Traditional metrics are not
adequate for detecting object-oriented faults. Object-
oriented faults that are strongly related to the ОО features
and are introduced by these features such as inheritance
and polymorphism. The object management faults that are
related to object management such as object copying,
dangling reference, object memory usage faults and so on
[1]. Our neural network model aims to predict the number
of all kinds of faults including object-oriented faults. We
used software metrics including both object-oriented
metrics and traditional complexity software metrics. In
this study, we use software metrics concerning with
inheritance related measures, complexity measures,
coupling measures and memory allocation measures. To
detect software faults, we selected the following metrics,
which are defined by Mei-Huei Tang et al. [1], Chidamber
and Kemerer [5].

3.1. Inheritance related measures

Inheritance is a kind of relationship among classes that
enables programmers to reuse previously defined objects,
including variables and operations. Inheritance decreases
complexity by reducing the number of operations and
attributes, but this abstraction of objects can make
maintenance and design difficult. The following metrics
are used to measure the depth and breadth of the
inheritance hierarchy.

・ Depth of Inheritance Tree (DIT) of a class is the
length of the longest path from the class to the
root in the inheritance hierarchy. This determines
the complexity of a class based on its ancestors,
since a class with many ancestors is likely to
inherit much of the complexity of its ancestors.
The deeper a class is in the hierarchy, the greater
the number of methods it is likely to inherit
making it more complex to predict its behavior.

・ Number of Children (NOC) measures the number
of immediate descendants of a particular class.

- -

- -

2. RELATED WORK

Toshihiro Kamiya et al. [3] presented a method to
estimate the fault-proneness of -the class in the e&ly
phase, using several complexity metrics for object-
oriented software. They introduced four checkpoints into
the analysis/design/implementation phase, and estimate
the fault-prone classes using the applicable metrics at each
checkpoint. They estimate the fault-proness by using the
multivariate logistic regression analysis.

Emanm and Melo [4] have performed to construct a
logistic regression model to predict which classes in a
future release of a commercial Java application will be
faulty. The model was then validated on a subsequent
release of the same application. Their results indicated
that the prediction model had a high accuracy. They used
ten design metrics, two defined by Chidamber and
Kemerer [5] and eight by Briand et a1 [6].

In [7], the relationships between existing object-
oriented coupling, cohesion, and inheritance measures and
the probability of fault detection in system classes during
testing explored empirically. Their univariate regression
analysis have shown that many coupling and inheritance
measures are strongly related to the probability of fault
detection in a class. Their multivariate regression analysis
results showed that by using some of the coupling and
inheritance measures, very accurate models could be
derived to predict in which classes most of the faults
actually lie. In order to draw more general conclusions
and c o n f i i the results, they conducted the same study
again using an industrial system developed by
professional in [SI.

L. Briand et al. [9] built a fault-proneness prediction
model based on a set of 00 measures using data collected
from a mid-sized Java system using logistic regression
analysis, and then applied the model to a different Java
system developed by the same team. They then evaluated
the accuracy the model’s prediction in that system and the
model’s economic viability using a cost-benefit model.

In [lo], empirical study was performed with the data
from a commercial Java application using logistic
regression. They found that Depth of Inheritance Tree
(DIT) is a good measure of familiarity and, has a
quadratic relationship with fault-proneness. Their
hypotheses were confiied for Import Coupling to other
classes, Export Coupling and Number of Children metrics.
The Ancestor based Import Coupling metrics were not
associated with fault-proneness after controlling for the
confounding effect of DIT.

Yida Mao, H.A. Sahraoui and H. Lounis [ll]
proposed an experiment to verify three hypotheses about
the impact of three internal characteristics (inheritance,
coupling and complexity) of 00 applications on
reusability. That veriiication was done through a machine-
learning approach C4.5 [12]. To verify the hypotheses,

they used six inheritance metrics, 18 design coupling
metrics, 12 code coupling metrics and 13 complexity
metrics. The results of their expeMent show that the
selected metrics can predict with a high level of accuracy
the classes that can be potentially reusable. The four
predictive models obtained give a satisfactory results
(74% to 89% of accuracy).

3. DESIGN OF THE EMPIRICAL STUDY

The objective of this study is to estimate how many faults
are remaining in the programs. The use of object-oriented
software development techniques add new elements to
software complexity in the software development process
and in the software product. Traditional metrics are not
adequate for detecting object-oriented faults. Object-
oriented faults that are strongly related to the 00 features
and are introduced by these features such as inheritance
and polymorphism. The object management faults that are
related to object management such as object copying,
dangling reference, object memory usage faults and so on
[l]. Our neuraI network model aims to predict the number
of all kinds of faults including object-oriented faults. We
used software metrics including both object-oriented
metrics and traditional complexity software metrics. In
this study, we use software metrics concerning with
inheritance related measures, complexity measures,
coupling measures and memory allocation measures. To
detect software faults, we selected the following metrics,
which are defined by Mei-Huei Tang et al. [I], Chidamber
and Kemerer [5].

3.1. Inheritance related measures

Inheritance is a kind of relationship among classes that
enables programmers to reuse previously defined objects,
including variables and operations. Inheritance decreases
complexity by reducing the number of operations and
attributes, but this abstraction of objects can make
maintenance and design difficult. The following metrics
&-e used to measure the depth and breadth of the
inheritance hierarchy.

Depth of Inheritance Tree (DIT) of a class is the
length of the longest path from the class to the
root in the inheritance hierarchy. This determines
the complexity of a class based on its ancestors,
since a class with many ancestors is likely to
inherit much of the complexity of its ancestors.
The deeper a class is in the hierarchy, the greater
the number of methods it is likely to inherit
making it more complex to predict its behavior.

Number of Children (NOC) measures the number
of immediate descendants of a particular class.

This measures an amount of potential reuse of
the class. The more reuse a class might have, the
more complex it may be, and the more classes
are directly affected by changes in its
implementation.

3.2. Coupling measures

Coupling metrics measure the degree of inter dependence
among the components of a sofiware system. High
coupling makes a system more complex; highly
interrelated modules are harder to understand, change or
correct. By minimize coupling, propagating errors across
modules can be avoided. These metrics are as follows:

・ Coupling Between Objects (CBO) is defined as
the number of other classes to which it is
coupled.

о Response For a Class (RFC) is the number of
methods that can potentially be executed in
response to a message received by an object of
that class. The response set of a class consists of
the set of M methods of the class, and the set of
methods directly or indirectly invoked by
methods in M.

・ Inheritance Coupling (IC) provides the number
of parent classes to which a given class is
coupled. A class is coupled to its parent class if
one of its inherited methods is functionally
dependent on the new or redefined methods in
the class.

・ Coupling Between Methods (CBM) provides the
total number of new/redefmed methods to which
all the inherited methods are coupled. CBM
measures the total number of function
dependency relationships between the inherited
methods and new/redefmed methods.

3.3. Complexity measures

In this study, the following metrics are used to evaluate
the complexity of a class.

・ Weighted Methods per Class (WMC) is defined
as being the number of all member functions and
operators defined in each class.

・ Average Method Complexity (AMC) provides
the average method size for each class.

3.4. Object/memory allocation measures

A class with more obj eat/memory allocating activities
tends to introduce more the object management faults that
are related to object management such as object copying,
dangling reference, object memory usage faults and so on.

0 Number of Object/Memory Allocation metric
measures the total number of statements that
allocates new object or memories in a class.

4. ElVIPHERICAL RESULTS

The applications used in this study are three subsystems of
an HMI (Human Machine Interface) sofiware, which is a
fully networked Supervisory Control and Data
Acquisition system [1]. Subsystem A is a user interface-
oriented program that consists of 20 classes. Subsystem B
is real-time data logging process that defines 48 classes.
Subsystem C is a communication-oriented program that
defines 29 classes.

We divided the data into training set, test set and
production set. We extract 19 patterns of the total patterns
to make the test set to prevent over training network so
they will generalize well on new data and 19 patterns to
make the production set to be used to test the network’s
results with the data the network has never seen before.
The remainder 59 patterns are set for the training set.

The Ward Network [17] is used in this investigation.
It is a Backpropagation network that has three slabs in the
hidden layer. Hidden layers in neural network are known
as feature detectors. A slab is a group of neurons. When
each slab in the hidden layer has a different activation
function, it offers three ways of viewing the data. We use
linear function to the output slab. It is useful for our
problem where the output is a continuous variable. It does
not represent categories. Although the linear function
detracts from the power of the network somewhat, it
sometimes prevents the network from producing outputs
with more error near the min or max of the output scale.
In other words the results may be more consistent
throughout the scale with smaller learning rates,
momentums, and initial weight sizes. We use hyperbolic
tangent (tanh) function is used in one of the slabs of
hidden layer because it is better for continuous valued
outputs especially if the linear function is used on the
output layer. Gaussian function is used in one of the slabs
of hidden layer. This function is unique, because unlike
the others, it is not an increasing function. It is the classic
bell shaped curve, which maps high values into low ones,
and maps mid-range values into high ones. Gaussian
Complement is used in one of the slabs of hidden layer to
bring out meaningful characteristics in the extremes of the

This measures an amount of potential reuse of
the class. The more reuse a class might have, the
more complex it may be, and the more classes
are directly affected by changes in its
implementation.

3.2. Coupling measures

Coupling metrics measure the degree of inter dependence
among the components of a software system. High
coupling makes a system more complex; highly
interrelated modules are harder to understand, change or
correct. By " i z e coupling, propagating errors across
modules can be avoided. These metrics are as follows:

0 Coupling Between Objects (CBO) is defined as
the number of other classes to which it is
coupled.

Response For a Class (RFC) is the number of
methods that can potentially be executed in
response to a message received by an object of
that class. The response set of a class consists of
the set of M methods of the class, and the set of
methods directly or indirectly invoked by
methods in M.

Inheritance Coupling (IC) provides the number
of parent classes to which a given class is
coupled. A class is coupled to its parent class if
one of its inherited methods is functionally
dependent on the new or redefined methods in
the class.

0 Coupling Between Methods (CBM) provides the
total number of newiredefined methods to which
all the inherited methods are coupled. CBM
measures the total number of function
dependency relationships between the inherited
methods and newiredefined methods.

3.3. Complexity measures

In this study, the following metrics are used to evaluate
the complexity of a class.

0 Weighted Methods per Class (WMC) is defined
as being the number of all member functions and
operators defined in each class.

Average Method Complexity (AMC) provides
the average method size for each class.

3.4. Objectlmemory allocation measures

A class with more objectlmemory allocating activities
tends to introduce more the object management faults that
are related to object management such as object copying,
dangling reference, object memory usage faults and so on.

Number of Objecthlemory Allocation metric
measures the total number of statements that
allocates new object or memories in a class.

4. EMPHERICAL RESULTS

The applications used in this study are three subsystems of
an HMI (Human Machine Interface) software, which is a
fully networked Supervisory Control and Data
Acquisition system [l]. Subsystem A is a user interface-
oriented program that consists of 20 classes. Subsystem B
is real-time data logging process that defines 48 classes.
Subsystem C is a communication-oriented program that
defines 29 classes.

We divided the data into training set, test set and
production set. We extract 19 pattems of the total pattems
to make the test set to prevent over training network so
they will generalize well on new data and 19 pattems to
make the production set to be used to test the network's
results with the data the network has never seen before.
The remainder 59 patterns are set for the training set.

The Ward Network [17] is used in this investigation.
It is a Backpropagation network that has three slabs in the
hidden layer. Hidden layers in neural network are known
as feature detectors. A slab is a group of neurons. When
each slab in the hidden layer has a different activation
function, it offers three ways of viewing the data. We use
linear function to the output slab. It is useful for our
problem where the output is a continuous variable. It does
not represent categories. Although the linear function
detracts from the power of the network somewhat, it
sometimes prevents the network from producing outputs
with more error near the min or max of the output scale.
In other words the results may be more consistent
throughout the scale with smaller learning rates,
momentums, and initial weight sizes. We use hyperbolic
tangent (tanh) function is used in one of the slabs of
hidden layer because it is better for continuous valued
outputs especially if the linear function is used on the
output layer. Gaussian function is used in one of the slabs
of hidden layer. This function is unique, because unlike
the others, it is not an increasing function. It is the classic
bell shaped curve, which maps high values into low ones,
and maps mid-range values into high ones. Gaussian
Complement is used in one of the slabs of hidden layer to
bring out meaningful characteristics in the extremes of the

data. The learning rate and momentum are set to 0.1 and
initial weight is set to 0.3.

To measure of the goodness of fit of the model, we
use the coefficient of multiple determination (R—square),
the coefficient of correlation(r), r-square, mean square
error, mean absolute error, minimum absolute error and
maximum absolute error.

Coefficient of correlation (r) (Pearson’s Linear
Correlation Coefficient) is a statistical measure of the
strength of the relationship between the actual versus
predicted outputs. The r coefficient can range from -1 to
+1. The closer r is to 1, the stronger the positive linear
relationship, and the closer r is to —1, the stronger the
negative linear relationship. When r is near О, there is no
linear relationship.

s,,y =Z靭一豊(Z簾)(Z刀
Where n equals the number of patterns, x refers to the set
of actual outputs, and y refers to the predicted output.

Coefficient of multiple determination (R2) is a
statistical indicator. It compares the accuracy of the model
to the accuracy of a trivial benchmark model wherein the
prediction is just the mean of all of the samples. It can
range from O to 1, and a perfect fit would result in an R-
square value of 1, a very good fit near 1, and a very poor
fit less than О. It is calculated as follows:

where y is the actual value for the dependent variable, ÿ
is the predicted value of y and ÿ is the mean of the y
values.

Table l. Analysis result from two models
rª __.x Regression Neural Network

R-square _Г 0.806521172 0.943334217
r correlationг- câeffickæt) 0.91861 0.93667

r- square 0.84384 0.877346
Mean square error 1.2627 1.0419
Mean absolute error 0.854763 0.787345
Min absolute error 0.10609 0.010182

Max absolute error 2.57276 2.1703

Production Set Result - Prediction of no. of faults
12

w

債

no
. d

fa
u
lh

a.

m 11 12 п ‥ � 纏 17 "_m
Pattern no.

—I-- regression+Actua| + neural network

[Figure 1. Prediction results ofneural network model and
regression model

Table 1 shows these values that are obtained from the
regression model and neural network model for the
production set. Figure l displays the comparison of
prediction result from these models.

5. CONCUSIONS

This empirical study presents the prediction of faults in
three industrial real-time systems using a multiple
regression model and a neural network model. From the
results presented above, object-oriented metrics appear to
be useful to predict the number of faults. Moreover,
neural network model can predict the number of faults
more exactly than multiple regression model for sofiware
engineering data.

6. ACKNOWLEDGMENTS

The authors would like to thank Associate Professor Dr.
Mei-Hwa Chen, Computer Science Department,
University at Albany, State University of New York, for
allowing us to test our model with data they had collected
from industrial real-time systems [l].

7. REFERENCES

[1] Mei-Huei Tang, Ming-ng Kao, Mei-Hwa Chen,”An
empirical study on object-oriented metrics”, Proceedings of the
Sixth IEEE International Symposium on Software Metrics, pp.
242-249, 1999.

[2] Mark Lorenz, Jeff Kidd, Object-Oriented Software Metrics,
Prentice Hall Object-Oriented Series, 1994.

[3] T. Kamiya, Kusumoto, S., K. Inoue, ”Prediction of fault-
proneness at early phase in object-oriented developmen”,
Proceedings of the Second IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, pp., 253-
258, 1999.

data. The learning rate and momentum are set to 0.1 and
initial weight is set to 0.3.

To measure of the goodness of fit of the model, we
use the coefficient of multiple determination (R-square),
the coefficient of correlation(r), r-square, mean square
error, mean absolute error, minimum absolute error and
maximum absolute error.

Coefficient of correlation (r) (Pearson’s Linear
Correlation Coefficient) is a statistical measure of the
strength of the relationship between the actual versus
predicted outputs. The r coefficient can range from -1 to
+l . The closer r is to 1, the stronger the positive linear
relationship, and the closer r is to -1, the stronger the
negative linear relationship. When r is near 0, there is no
linear relationship.

r=s,y
J G -

1 R-scluare

where n equals the number of pattems, x refers to the set
of actual outputs, and y refers to the predicted output.

Coefficient of multiple determination (R’) is a
statistical indicator. It compares the accuracy of the model
to the accuracy of a trivial benchmark model wherein the
prediction is just the mean of all of the samples. It can
range from 0 to 1, and a perfect fit would result in an R-
square value of 1, a very good fit near 1, and a very poor
fit less than 0. It is calculated as follows:

Regression Neural Network
0.806521172 0.943334217

where y is the actual value for the dependent variable,
is the predicted value of y and J is the mean of the y
values.

0.91861 r (correlation
coefficient) 0.93667

r- square
Mean square error

0.84384 0.877346
1.2627 1.0419

Mean absolute error
Min absolute error

1 Max absolute error I 2.57276 1 2.1703

0.854763 0.787345
0.10609 0.010182

Production Set Result - Prediction of no. of faults

Pattern no.

+Actual +regression --t neural network

Figure 1. Prediction results of neural network model and
regression model

Table 1 shows these values that are obtained from the
regression model and neural network model for the
production set. Figure 1 displays the comparison of
prediction result from these models.

5. CONCUSIONS

This empirical study presents the prediction of faults in
three industrial real-time systems using a multiple
regression model and a neural network model. From the
results presented above, object-oriented metrics appear to
be useful to predict the number of faults. Moreover,
neural network model can predict the number of faults
more exactly than multiple regression model for s o h a r e
engineering data.

6. ACKNOWLEDGMENTS

The authors would like to thank Associate Professor Dr.
Mei-Hwa Chen, Computer Science Department,
University at Albany, State University of New York, for
allowing us to test our model with data they had collected
from industrial real-time systems [l].

7. REFERENCES

[l] Mei-Huei Tang, Ming-Hung Kao, Mei-Hwa Chen.”An
empirical study on object-oriented metrics”, Proceedings of the
Sixth IEEE International Symposium on Sofhyare Metrics, pp.
242-249. 1999.

[2] Mark Lorenz, Jeff Kidd, Object-Oriented Sojhvare Metrics,
Prentice Hall Object-Oriented Series, 1994.

[3] T. Kamiya, Kusumoto, S., K. Inoue, ”Prediction of fault-
proneness at early phase in object-oriented development”,
Proceedings of the Second IEEE International Svmposium on
Object-Oriented Real-Time Distributed Computing, pp., 253-
258,1999.

[4] El Emam, W. Melo, ‘The Prediction of Faulty Classes Using
Object-Oriented Design Metrics”, Journal of Systems and
Software, Elsevier Science, 2001. (In press.). NRC 44178. Also
published as Technical Report, NRC/ERB-1064, November
1999. 24 pages. NRC 43609.

[5] S.R. Chidamber, and C.F, Kemerer, "A Metrics Suite for
Object Oriented Design", IEEE Transactions on Sofware
Engineering, vol. 20, pp. 476-493, 1994.

[6] Lionel Briand, Prem Devanbu and Walcelio Melo, “An
investigation into coupling measures for C++-”, Proceedings of
the 19th International Conference on Software Engineering, pp.
412-421, 1997.

[7] L. Briand, J. Wüst, John W. Daly and V. Porter, "Exploring
the Relationships between Design Measures and Software
Quality in Object-Oriented Systems", Journal of Systems and
Sofiware, 51(2000) p 245-273.

[8] L.C. Briand, J. Wüst, S. lkonomovski and H. Lounis,
"Investigating Quality Factors in Object-Oriented Designs: an
Industrial Case Study", Proceedings of the 21st IEEE
International Conference on Sofiware Engineering ICSE’99, pp.
345-354, 1999.

[9] Lionel C. Briand, Walcelio Melo and Juergen Wuest,
“Assessing the Applicability of Fault-Proneness Models Across
Object-Oriented Software Projects”, International Software
Egineering Research Network (ISERN), 2000, SERN-00-06
Version 2. Accepted for publication in IEEE Tansactions on
Sofiware Engineering.

[10] D. Glasberg, K. El Emam, W. Melo, and N. Madhavji,
"Validating Object-oriented Design Metrics on a Commercial
Java Application". Technical Report, NRC/ERB-1080, NRC
44146, 2000.

[11] Yida Mao, Н.А. Sahraoui, and H. Lounis, “Reusability
hypothesis verification using machine learning techniques: a
case study”, Proceedings of the 13th IEEE International
Conference on Automated Software Engineering, pp. 84-93,
1998.

[12] Quinlan, J. R., C4.5 : programs for machine
learning, Morgan Kaufinann Publishers, San Mateo,
Calif., 1993.

[13] T. М. Khoshgofiaar, A.S. Pandya, and Н.В. More, “A
neural network approach for predicting sofiware development
faults”, Proceedings of Third International Symposium on
Software Reliability Engineering, pp. 83-89,1992.

[14] N. Karunanithi et al., “Prediction of software reliability
using neural networks”, Proceedings IEEE International Sym.
Sofiware Reliability Engineering, pp 124-130, 1991.

[15] [T.M. Khoshgoftaar, Е.В. Allen, J.P. Hudepohl, and S.].
Aud, “Application of neural networks to soflware quality
modeling of a very large telecommunications system”, IEEE
Transactions on Neural Network, vol. 8, pp. 902-909, 1997.

[16] T.M. Khoshgofiaar, R.M. Szabo and P.]. Guasti, “Exploring
the behaviour of neural network software quality models”,
Software Engineering Journal, vol. 10 , pp. 89-96, 1995.

[17] NeuroShell 2 Help, Ward Systms Group, Inc.

[4] El Emam, W. Melo, “‘The Prediction of Faulty Classes Using
Object-Oriented Design Metrics”, Journal of Systems and
Software, Elsevier Science, 2001. (In press.). NRC 44178. Also
published as Technical Report, NRCERB-1064, November
1999.24 pages. NRC 43609.

[5] S.R Chidamber, and C.F, Kemerer, “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on Software
Engineering, vol. 20, pp. 476-493, 1994.

[6] Lionel Briand, Prem Devanbu and Walcelio Melo, “An
investigation into coupling measures for CW”, Proceedings of
the 19th International Conference on SopYare Engineering, pp.
412-421.1997.

[7] L. Briand, J. Wiist, John W. Daly and V. Porter, “Exploring
the Relationships between Design Measures and Software
Quality in Object-Oriented Systems”, Joumal of Systems and
Software, 51(2000) p 245-273.

[SI L.C. Brimd, J. Wiist, S. Ikonomovski and I€ Lounis,
“Investigating Quality Factors in Object-Oriented Designs: an
Industrial Case Study“, Proceedings of the 21st IEEE
International Conference on Software Engineering ICSE’99, pp.
345-354,1999.

[9] Lionel C. Briand, Walcelio Melo and Juergen Wuest,
“Assessing the Applicability of Fault-Proneness Models Across
Object-Oriented Software Projects”, International Software
Egineering Research Network (ISERN), 2000, SERN-00-06
Version 2. Accepted for publication in IEEE Tansactions on
Software Engineering.

[lo] D. Glasberg, K. El Emam, W. Melo, and N. Madhavji,
“Validating Object-oriented Design Metrics on a Commercial
Java Application”. Technical Report, NRCBRB-1080, NRC
44146,2000.

[ll] Yida Mao, HA. Sahraoui, and H. Lounis, “Reusability
hypothesis verification using machine learning techniques: a
case study”, Proceedings of the 13th IEEE International
Conference on Automated Software Engineering, pp. 84-93,
1998.

[12] Quinlan, J. R, C4.5 : programs f o r machine
Zeuming, Morgan Kaufmann Publishers, San Mateo,
Calif., 1993.

1131 T. M. Khoshgoftaar, A.S. Pandya, and H.B. More, “A
neural network approach for predicting software development
faults”, Proceedings of Third International Symposium on
Software Reliability Engineering, pp. 8349,1992.

[14] N. Karunanithi et al., “Prediction of software reliability
using neural networks”, Proceedings IEEE International Sym.
Software Reliability Engineering, pp 124130,1991.

[15] P.M. Khoshgoftaar, E.B. Allen, J.P. Hudepohl, and S.J.
Aud, “Application of neural networks to software quality
modeling of a very large telecommunications system”, IEEE
Transactions on Neural Network, vol. 8, pp. 902-909, 1997.

[161 T.M. Khoshgoftaar, RM. Szabo and P. J. Guasti, “Exploring
the behaviour of neural network software quality models”,
SopYare Engineering Joumal, vol. 10 , pp. 89-96,1995.

[171 NeuroShell2 Help, Ward Systms Group, Inc.

