

APPLICATION-AWARE TRAFFIC ENGINEERING IN

SOFTWARE DEFINED NETWORKING

MAY THU ZAR WIN

UNIVERSITY OF COMPUTER STUDIES, YANGON

November, 2019

Application-aware Traffic Engineering in Software Defined

Networking

May Thu Zar Win

University of Computer Studies, Yangon

A thesis submitted to the University of Computer Studies, Yangon in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy

November, 2019

Statement of Originality

I hereby certify that the work embodied in this thesis is the result of original

research and has not been submitted for a higher degree to any other University or

Institution.

…..…………………………… .…………........…………………………

Date May Thu Zar Win

i

ACKNOWLEDGEMENTS

I would like to thank Ministry of Education for giving me the opportunity to

study Ph. D. Course and allowing me to do the research in University of Computer

Studies, Yangon, Myanmar.

I would like to express very special thanks to Dr. Mie Mie Thet Thwin, Rector

of the University of Computer Studies, Yangon, for allowing me to develop this

research and giving me general support during period of my study.

It is a pleasure to thank my supervisor, Dr. Khin Than Mya, Professor, Head of

Faculty of Computer Systems and Technologies, University of Computer Studies

Yangon for her patience, motivation, constant encouragement and helpful guidance

throughout my research.

I would like to thankful my advisor, Dr. Yutaka Ishibashi, Professor, Nagoya

Institute of Technologies for his helpful contribution, invaluable guidance, practical

suggestions which inspired me to widen my research from various perspectives.

I would like to express my special appreciation and thanks to my external

examiner Dr. Aung Htein Maw, Professor, University of Information Technology, for

his insightful comments and suggestions which are invaluable to me.

 I need to express my gratitude and special thanks to Dr. Khine Moe Nwe,

Course-coordinator of Ph. D. 9th Batch, University of Computer Studies, Yangon, for

her support and encouragement throughout all stages of the research.

I would like to express special thanks to Daw Aye Aye Khine, Associate

Professor, Head of English Department, for her valuable supports from the language

point of view and suggestions which help to improve the thesis writing.

I further would like to thank Dr. Zin May Aye, Professor, Head of Cisco Lab,

University of Computer Studies, Yangon, and all my PhD 9th Batch colleagues,

especially from the Cisco Lab, and my beloved friends for their motivations, knowledge

sharing, constant caring, and unforgettable memories we have made in the last five

years.

Last but not least, a very special thanks and gratitude go to my parents, U Maung

Kyaw and Daw Cho Cho, my elder brother and sisters, my nephew and niece who gave

ii

me their love, kindness, patience, physically and mentally supports, and constant

encouragement along the way of my life. Without their efforts, nothing can be done.

Finally, I would like to thank every person who were directly or indirectly contributed

towards the success of this thesis.

iii

ABSTRACT

The integration of control and data planes into the same devices and lack the

global centralization control that made the traditional networks may not meet the

requirements of the emerging cloud computing, the tactile Internet, and the Internet of

Things (IoT) technology. Moreover, the traditional networks cannot provide the

complexity of control protocols, complex traffic engineering (TE) tasks, and

interconnecting of a huge number of smart devices. Software Defined Networking

(SDN) is an architecture that overcomes the above issues of the traditional networks by

taking advantage of global centralization control, decouples of the control and data

planes, and enabling innovation through the network programmability.

The shortest path-based routing cannot guarantee future traffic demands

because the routing only uses the minimum hop counts. The application-aware routing

is more efficient than the traditional shortest path-based routing; however, classification

of application traffic and estimation of QoS parameters like link utilization and link

delay are needed to perform such kind of routing. By taking the advantage of SDN,

application-aware traffic engineering can perform more effectively in SDN

environments.

This dissertation presents an application-aware traffic engineering (App-TE) in

SDN which generally involves three main modules: traffic classification, traffic

measurement, and traffic management. Application traffic flows classified into the

following two classes: prioritized application traffic and non-prioritized application

traffic by using port number and protocol number with the help of traffic analyzer

(sFlow-RT). The classified traffic flows are fed to the traffic measurement module to

calculate the link utilization, link delay, and Delay Weighted Capacity (DWC) values.

Finally, prioritized application traffic flows are routed by using the DWC-aware routing

and non-prioritized application traffic flows are routed by using shortest path routing

(or) minimum hop-count based routing. The experimental results demonstrated that the

average throughput results of the proposed App-TE outperformed the shortest path

routing and LU-aware routing.

iv

TABLES OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

TABLES OF CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF EQUATIONS x

1. INTRODUCTION 11

1.1 Motivations and Problems definition of the Research 12

1.2 Objectives of the Research ... 14

1.3 Contributions of the Research .. 14

1.4 Organization of the Research ... 15

2. LITERATURE REVIEW 16

2.1 The Issues of Traffic Engineering in Legacy Networks 16

2.1.1 IP-based Traffic Engineering ... 16

2.1.2 MPLS-based Traffic Engineering .. 18

2.2 Traffic Engineering in SDN ... 19

2.3 Application-aware Traffic Engineering ... 22

2.3.1 Traffic Classification .. 23

2.3.1.1 Port-based traffic classification ... 24

2.3.1.2 Payload-based traffic classification 24

2.3.1.3 Machine learning-based traffic classification 25

2.3.2 Traffic Measurement .. 26

2.3.3 Traffic Management ... 32

2.4 Summary of the Chapter .. 37

v

3. THEORETICAL BACKGROUND 39

3.1 Software Defined Networks Architecture .. 39

3.2 Infrastructure Layer (or) Data Plane Layer .. 42

3.2.1 Open vSwitch ... 43

3.2.2 OpenFlow Switch Specifications ... 44

3.2.3 Pipeline Processing of OpenFlow Switches 45

3.2.4 Matching Flow Table in OpenFlow Switches 46

3.3 Protocol Options for Southbound Interface .. 47

3.3.1 The Concept of OpenFlow Protocol... 47

3.4 Control Layer of SDN .. 49

3.4.1 ONOS Controller.. 50

3.5 Application Layer of SDN ... 51

3.6 Managements of Flow Entries in OpenFlow Networks 51

3.7 Innovation Through Routing based SDN Application 53

3.8 Chapter Summary ... 55

4. THE ARCHITECTURAL DESIGN OF THE PROPOSED SYSTEM 56

4.1 Problem Definitions and Motivations .. 56

4.2 Application-aware Traffic Engineering Architecture 59

4.3 Traffic Classification in App-TE.. 60

4.4 Traffic Measurement in App-TE .. 61

4.4.1 Estimating Available Bandwidth using OpenFlow messages 61

4.4.2 Estimating Link Delay ... 64

4.4.3 Estimating Delay-Weighted Capacity (DWC) 64

4.5 Traffic Management in App-TE ... 65

4.5.1 Minimum Hop-count-based Routing (MHR) 66

4.5.2 Delay Weighted Capacity-aware Routing 67

4.6 Chapter Summary ... 68

vi

5. IMPLEMENTATION AND EVALUATION OF THE PROPOSED

SYSTEM 69

5.1 Design and Implementation of Experimental Testbed 69

5.2 Experimental Methods ... 71

5.2.1 Application-aware TE (App-TE) ... 71

5.2.2 Link Utilization-aware Routing (LU-Routing) 71

5.2.3 Shortest Path Routing ... 71

5.3 Performance Assessment Parameters ... 71

5.4 Traffic Generators .. 72

5.5 Experiment Topology ... 76

5.6 Experimental Scenarios .. 77

5.6.1 Scenario I: Analyzing Methods with Iperf 77

5.6.2 Scenarios II: Testing with Larger Link Capacities....................... 81

5.6.3 Scenario III: Testing with Different Application Traffic Flows .. 85

5.6.4 Scenarios IV: Testing with and without Application-awareness . 88

5.6.5 Scenarios V: Testing with Different Topologies.......................... 90

5.7 Chapter Summary ... 92

6. CONCLUSION AND FUTURE WORK 94

6.1 Summary of Dissertation .. 94

6.3 Advantages and Limitations ... 96

6.3 Recommendations for Future Work ... 99

AUTHOR’S PUBLICATIONS 100

BIBLIOGRAPHY 101

LIST OF ACRONYMS 113

APPENDIX: SOFTTWARE FOR EXPERIMENTAL TESTBED 116

vii

LIST OF FIGURES

2. 1 The scope of traffic engineering approaches in current SDN 20

2. 2 The overall architecture of application-aware engineering 23

2. 3 Link discovery process in SDN ... 27

2. 4 ABW calculation for application-aware routing .. 30

3. 1 Traditional Network Architecture VS SDN Architecture………………………39

3. 2 Software Defined Networks Architecture ... 41

3. 3 The Main Components of an OpenFlow Switch... 44

3.4 An Architecture of OpenFlow Pipeline Process ... 46

3.5 Flow Matching Process of OpenFlow... 47

3.6 ONOS Architecture Tiers and Subsystem Structure ... 50

3.7 Reactive Flow Management ... 52

3.8 Proactive Flow Management .. 53

3. 9 Routing Algorithms in SDN and Traditional Networks 54

4.1 Sample Test Topology .. 57

4.2 Average Throughput Results of Test 1 ... 58

4.3 Average Throughput Results of Test 2 ... 58

4.4 The overall system design ... 59

4.5 The Architecture Design of Application-aware TE (App-TE) 60

4.6 Algorithm for Traffic Classification in App-TE ... 61

4.7 OpenFlow request/reply messages between switch and controller 62

4.8 The Flow Diagram for Traffic Management Module ... 65

4.9 Minimum Hop-count-based Routing Algorithm .. 66

4.10 DWC-aware Routing Algorithm ... 67

5.1 Logical Testbed Design .. 69

5.2 The Physical Testbed Design of Classical-Y Topology 70

5.3 Generating Iperf Traffic between H1 and H6 ... 73

5.4 Generating HTTP Traffic Between H1 and H3 .. 74

5.5 Generating FTP Traffic between H1 and H3 .. 75

5.6 Test Topology ... 76

5.7 Flow Table Entries in Switches S1, S2, S3, and S6 .. 78

5.8 Throughput Results for Shortest Path Routing by Test 1 in Scenario I 79

5.9 Throughput Results for Shortest Path Routing by Test 2 in Scenario I 79

viii

5.10 Throughput Results for LU Routing by Test 1 in Scenario I 80

5.11 Throughput Results for LU Routing by Test 2 in Scenario I 80

5.12 Throughput Results for App-TE by Test 1 in Scenario I 80

5.13 Throughput Results for App-TE by Test 2 in Scenario I 81

5.14 Sample Test Topology with Larger Link Capacities .. 81

5.15 Throughput and Time Results of Test 1 in Scenario II by Shortest Path Routing

.. 82

5.16 Throughput and Time Results of Test 2 in Scenario II by Shortest Path Routing

.. 82

5.17 Throughput and Time Results of Test 1 in Scenario II by LU-aware Routing. 83

5.18 Throughput and Time Results of Test 2 in Scenario II by LU-aware Routing. 83

5.19 Throughput and Time Results of Test 1 in Scenario II by App-TE.................. 84

5.20 Throughput and Time Results of Test 2 in Scenario II by App-TE.................. 84

5.21 Throughput and Time Results of Test 2 in Scenario II by the Three Methods 84

5.22 Video Streaming with Shortest Path Routing ... 86

5.23 Video Streaming with LU-aware Routing .. 86

5.24 Video Streaming with App-TE ... 87

5.25 Comparative Throughput Results by the Three Methods 87

5. 26 Throughput and Time Results of Scenario IV by Shortest Path Routing 88

5. 27 Throughput and Time Results of Scenario IV by LU-aware Routing 89

5. 28 Throughput and Time Results of Scenario IV by App-TE 89

5.29 Comparative Throughput Results for the Three Methods 90

5. 30 Leaf-n-Spine Topology ... 90

5. 31 Random Topology .. 91

5.32 Comparative Results of the Three Methods in Leaf-n-Spine Topology 92

5.33 Comparative Results of the Three Methods in Random Topology 92

ix

LIST OF TABLES

2. 1 Application-ware traffic engineering schemes in SDN. 36

3. 1 Example of Openflow-Complaint Switches .. 42

3. 2 Features Comparison of Popular SDN Controllers ... 49

4. 1 Available Paths Between S1 and S2. .. 57

4. 2 Classified Classes in App-TE ... 60

4. 3 The port statistics counter values .. 62

5.1 Hardware Requirements of Experimental Testbed .. 70

5.2 Software, and Tools that Used in this Research. ... 70

5.3 The Parameters Settings of Haptic Traffic ... 75

5.4 The Experimental Parameters Values for Scenario I 77

5.5 The Paths and Constraints between Hosts H1 and H6 77

5.6 The Experimental Parameters values for Scenario II 81

5.7 Experimental Parameters for Scenario III .. 85

5.8 Parameters Settings .. 85

5.9 The Experimental Parameters Values for Scenario IV 88

5.10 Topology Settings ... 91

x

LIST OF EQUATIONS

Equation 2.1 …………………………………………………….…………... 28

Equation 2.2 …………………………………………………………………... 29

Equation 4.1 …………………………………………………………………... 63

Equation 4.2 …………………………………………………………………... 63

Equation 4.3 ……………………………………………………………….…. 63

Equation 4.4………………………………………………………………….... 64

Equation 4.5 …………………………………………………………………... 64

Equation 4.6 …………………………………………………………………... 64

Equation 4.7 ………………………………………………………………… 65

Equation 5.1 …………………………………………………………………... 72

Equation 5.2 …………………………………………………………………... 72

11

CHAPTER 1

INTRODUCTION

The rapid growth of science and technology, computer networks have achieved

a great impact and transformed the way of connectivity, entertainment, study, and social

networks of human life. Short Message Service (SMS) over mobile networks, smart TVs

connected with Internet provider as an on-demand media, e-Learning systems which

permit everyone can gain knowledge and study from everywhere, and telemedicine are

great examples of technical revolution. Effective network management solutions are

required not only to harmonize the dramatic growth of transferring information and

requirements of applications but also to provide the best services to users and improve

network performance.

The legacy networks mostly implement in dedicated appliances and hardware

that lead to limited innovations for both management and configuration aspects. The

networks also create multi-vendor equipment. Therefore, network administrators need

to have a wide knowledge of all devices from different vendors because different

vendors have different syntaxes and commands. The concept of Software Defined

Networks (SDN) is to organize and manage networks with software. SDN decouples

control and data plane from networks through the control protocols such as OpenFlow

[55]. SDN also serves vendor neutrality with the abstraction of network devices such as

routers and switches, etc. Network administrators can easily manage the large-scale

network with the software when SDN is employed into large-scale, carrier-grade

networks. Therefore, SDN, an emerging architecture, has become a popular solution for

companies to control networks using a more cost-effective software solution, rather than

more expensive hardware methods.

A non-profit organization, Open Networking Foundation (ONF) develops the

adoption of SDN through open standards development. In the years since its inception,

SDN has obtained a lot of attention not only from academia but also from the Internet

industry and SDN has evolved into many networking technologies offered by many

vendors such as Cisco, Juniper, VMware, Pluribus, and Big Switch. Now, Google,

Amazon, Facebook, Microsoft, and other companies have invested heavily in SDN not

only for their data centers but also for their Wide Area Networks (WAN). Therefore, the

market size of SDN has been around $6.6 billion in 2017, for 2018 the market size has

12

reached $7.9 billion, and the global SDN market will expect to reach $20 billion by 2022

[92].

Although SDN has presented to enable network innovation, and to program new

applications according to the user requirements, there have still problems to encounter

in Traffic Engineering (TE), application-aware engineering, Quality of Service (QoS)

based routing, and security. This dissertation focuses on the problems, motivations,

methods, solutions, and results concerning traffic engineering with application-aware

routing in SDN.

1.1 Motivations and Problems definition of the Research

Application-aware engineering finds the optimal route for each application

traffic depending on the network resources requirements of each application such as

bandwidth, network delay, and jitter. For instance, in cloud data-center networks, the

equal treatment of all classes of applications is not the proper way to meet user’s

application-level requirements because the network resource requirements of

applications are varied [16]. Traditional networks that are integrated control and data

planes into the same devices and lack of global centralization control. Traditional

networks cannot also satisfy the requirements of the tactile Internet and the Internet of

things (IoT) technology.

Moreover, traditional networks cannot manage the complex traffic engineering,

control protocols, and interconnecting of a huge number of smart devices [80]. In an

SDN network, the complex route calculation and security are performed by the

controller. SDN is an architecture that overcomes the issues of the traditional networks

by taking the advantages of global centralization control, decouples of control and data

planes, and enabling innovation through the network programmability [82]. Therefore,

this dissertation considered the application-aware traffic engineering in SDN

environment.

Traditional shortest path-based routing cannot guarantee future traffic demands

because it only considers the minimum hop counts. The application-aware routing is

more efficient than the traditional shortest path-based routing, however, the QoS

parameters like link utilization, link delay, delay variation, and jitter are needed to

perform such kind of routing. There are mainly two techniques in traffic measurement:

active and passive techniques [61]. Active techniques estimated QoS parameters by

13

sending probe packets into the network and evaluating how the network traversal affects

the network status. This technique can cause a temporary network congestion. Passive

techniques estimate QoS parameters by setting multiple measurement points in the

network to monitor network statistics and this type of techniques are difficult to deploy

in traditional networks.

To deploy passive measurement in SDN architecture, the SDN controllers polled

the statistics information of the switches using the statistics request and reply of

OpenFlow message. These request/reply processes and querying statistics information

from all the switches in the network turns to increase the controller computational time

and load. It also increases the latency between the controller and switches.

To perform application-aware traffic engineering in SDN, the classification of

application traffic flows and selecting the optimal routes depending on the classified

traffic are the necessary tasks like the network QoS parameters estimation. There are

many techniques to classify application traffic flows such as port-based, DPI-based, and

ML-based techniques. All the techniques have their perspective advantages and

disadvantages; however, these techniques made the controller to perform some extra

tasks.

Routing plays an important role in traffic engineering. Therefore, managing

which application traffic flows route which path is a crucial task. Some application

traffic need bandwidth-guaranteed paths but some need delay-guaranteed path.

Application traffic flow should route the optimal path depending on their application

level requirements.

To address the above issues, this dissertation proposes the application-aware

traffic engineering (App-TE) in SDN environment in order to manage the best route for

the application traffic flows based on their requirements. App-TE involves three main

modules. The first one is to categorize application traffic flows into the following two

classes: prioritized and non-prioritized traffic flows based on their requirements. Then,

port and protocol number-based traffic classification is performed. As the second one,

App-TE estimate the network QoS parameters by using passive technique. The third one

is routing application traffic flows by using delay-weighted capacity (DWC) aware

routing and minimum hop count-based routing.

14

1.2 Objectives of the Research

The main objective for this research is the implementation of application-aware

traffic engineering in SDN environments and the others of this research area are as

follows:

• To meet the network requirements of all classes of applications in SDN

environment by considering of applications' QoS requirement such as available

bandwidth or link utilization and link delay

• To utilize network resources and to improve overall network performance by

steering the best path based on maximized delay weighted capacity values

• To reduce the controller’s work load by estimating the link utilization with the

help of sFlow-analyzer metrics via REST API, instead of using simultaneous

polling of port statistics information for all the switches in the network

• To route the classified application traffic flows through the optimal routes by

applying DWC-aware routing and minimum hop-count-based routing.

1.3 Contributions of the Research

The main contributions for this dissertation are as follows. A detailed analysis

of application-aware traffic engineering in SDN is described with the previous works of

traffic classification, traffic measurement, and traffic management methods.

For the traffic classification, to reduce the computational complexity of the

proposed App-TE task, firstly, application traffic flows categorized into two classes:

prioritized application traffic and non-prioritized traffic flows. For effective traffic

management, the mostly used application traffic in Internet such as video streaming, file

transferring, and haptic streaming (for next generation networks, Tactile Internet) are

defined as the prioritized application traffic. Others are defined as the non-prioritized

application traffic flows. Then, App-TE performed port and protocol number-based

traffic classification with the help of traffic analyzer (sFlow-RT).

In the traffic measurement module, App-TE used passive technique like statistics

monitoring. App-TE estimated available bandwidth (ABW) and delay-weighted

capacity values using port statistics information of OpenFlow messages. To reduce the

controller’s work load and avoid network congestion due to simultaneously querying

statistics information all the switches in the network, App-TE collected port statistics

15

information only from the selected switches according to the sFlow metrics (JSON

information via the REST API).

For the effective traffic management, App-TE used two main routing such as

DWC-aware routing and minimum hop-count-based routing (MHR). App-TE focused

on the prioritized application traffic flows. Since both bandwidth-sensitive and delay-

sensitive application traffic flows are included in prioritized application traffic classes,

App-TE routed the prioritized application traffic through the optimal path which has

maximum ABW and minimum delay. For non-prioritized application traffic, App-TE

simply forwarded through the minimum hop-count path by using MHR.

1.4 Organization of the Research

This dissertation organizes with six chapters.

Chapter 1 includes an introduction, the motivations, problem statements,

objectives, focuses and contributions of the research work. The remainder of this thesis

is organized as follows.

Chapter 2 summarizes some of the most significant previous works relating to

traffic engineering in IP-based and MPLS-based networks to highlight the advantages

of traffic engineering in SDN. Chapter 2 also surveys the various application-aware TE

methods of SDN by describing the main three components: traffic classifications, traffic

measurements, and traffic management.

Chapter 3 provides a background theory of SDN including data plane layer with

OpenFlow switches, the control plane layer with ONOS controller, northbound APIs

with the concept of OpenFlow protocols, southbound APIs, and the application layer

with various routing application methods.

Chapter 4 presents the architecture of the proposed application-aware traffic

engineering (App-TE) method. The detailed process of traffic classification, traffic

measurement, and traffic management modules are described in chapter 4.

Chapter 5 illustrates the design and implementation of the experimental testbed.

The chapter also discusses the experimental results of the proposed system compared

with other two methods.

Finally, chapter 6 of the thesis provides a conclusion, summary of the

dissertation, advantages and limitations. Chapter 6 also describes the directions for the

future work.

16

CHAPTER 2

LITERATURE REVIEW

Traditional shortest path routing or minimum hop count-based routing applied

shortest path to route packets from source to destination hosts, even this shortest route

did not satisfy the traffic demand or not the optimal one. Traffic Engineering (TE)

permits the network providers to omit the shortest path-based routing by using the longer

path but a less congested path and satisfy the traffic demand. TE helps network providers

to improve network resource utilization and offers more services to the end-user [3].

Typically, the objectives of TE include load balancing, alleviate network congestion,

minimize the bandwidth consumption in the network, optimize routing, fault tolerance,

network resiliency, and Quality of Service (QoS) guarantees.

2.1 The Issues of Traffic Engineering in Legacy Networks

In general, traditional TE technology is mainly classified into the following two

types: IP-based TE and MPLS-based TE [78]. Therefore, this section describes the

issues of TE in legacy networks related with IP-based and MPLS-based networks.

2.1.1 IP-based Traffic Engineering

Routing plays an important role in traffic engineering. IP-based TE generally

involves optimizing IP routing algorithm, solving the problems of multipath traffic load

balancing and alleviating network congestion [35]. Fortz et.al [29] proposed a routing

algorithm which used to adjust the link weights of Open Shortest Path First (OSPF) and

the proposed routing finally got multiple shortest paths to provide load balancing of the

traffic. IP-based TE technology has two clear weaknesses: first, when OSPF link

weights are used to control network routing, and traffic cannot be split in an arbitrary

proportion that lead to reduce the utilization of network resources.

Second, when connections lost or network topology changes have occurred, the

OSPF protocol will take some time to converge a new network topology, which may

lead to packet losses, delay, network congestion, and even routing loops. Besides, a

variety of new multimedia applications in today networks not only require bandwidth

guarantees but also need other QoS guarantees such as packet loss, jitter, end-to-end

17

delay, and energy efficiency. Therefore, QoS guarantees and network resilience schemes

also considered as important factors of IP-based TE. Efficient resilience schemes needed

to deal with different types of network failures such as network node and link failure

[40]. In this situation, the solutions for IP-based TE also need to consider how to

minimize the impact of failures on network performance and resources utilization.

Most of IP-based TE solutions [10, 30] proposed a routing method which is

based on the shortest path and load balancing schemes with equally split traffic into

equal cost multiple paths (ECMP). The fundamental concept of shortest path routing is

to set the link weights of interior gateway protocols (IGPs) concerning the network

topology and traffic demand to manage intra-domain traffic [22]. Large-scale IP

networks usually use IGPs such as Open Shortest Path First (OSPF) or Intermediate

System-Intermediate System (IS-IS) which select paths by taking account into static link

weights (cost value assigned at each link).

In ECMP, large networks are typically divided into multiple OSPF or IS-IS areas

[37]. In some cases, the network may have multiple equal-cost shortest paths between

the same pairs of source and destination. The specifications of the OSPF and IS-IS

protocols do not dictate how routers manage the presence of multiple shortest paths

because the IGP routing algorithm used the static link that did not has the flexibility to

divide the traffic between the shortest paths in arbitrary proportions. Therefore, routing

based on link weight is not enough to depict all possible solutions to the routing problem.

In practice, traffic volumes fluctuate over time due to the dynamic traffic requirements,

and unexpected failures can lead to the changes in the network topology. Moreover,

obtaining an exact traffic matrix estimation may be hard.

The practical OSPF [70] offers shortest-path-first routing with ECMP to get

simple load balancing and ECMP allows traffic uniformly divided between equal-cost

paths. Based on the Hash function, ECMP aims to divide the hash space into equal-size

partitions that correspond to the outbound paths and then forward packets based on their

endpoint information along the path whose boundaries envelop the hash value of the

packets. Although the ECMP routing provides better performance with static load

balancing, they are inappropriate for dynamic load balancing protocols [51] because the

static flow mapping to paths does not consider either the current network utilization or

flow size, which may lead to increase network congestion and degrade the overall

network utilization [34].

18

Due to their data plane, control plane, and management plane split and

distributed across the different network elements, today’s IP networks are far more

complex and harder to manage [14, 13]. To encounter the above problems, one of the

solutions is to separate the routing decision logic from the protocols between the

network elements [14]. This solution includes the decision plane for a network-wide

view of the network, the data plane for forwarding traffic, the discovery and

dissemination planes for direct control. The other solution [13] introduced Routing

Control Platform (RCP), which is a logically centralized platform that separates the IP

forwarding plane to bring the scalability to avoid the complexity in the internal Border

Gateway Protocol (BGP) architecture. These ideas motivate the SDN researchers and

system developers to logically separate the controller network from OpenFlow-enabled

switches.

2.1.2 MPLS-based Traffic Engineering

To avoid the issues of IP-based TE, researchers proposed another solution, so-

called Multi-Protocol Label Switching (MPLS) which forwarded the network packets

by using MPLS labels instead of IP headers [8]. The authors [8, 9] introduced MPLS as

an efficient solution to address the constraints of IP networks. In MPLS-based TE, the

routing uses the MPLS label switching mechanism where labels assigned and distributed

between routers using Label Distribution Protocol (LDP). When a packet enters the

network, LDP assigned with the label by the ingress router and then forwarded across

the network through a pre-established path called the Label Switched Path (LSP).

Finally, the label removed at the egress router and forwarded as the IP packet. MPLS-

based TE is used LSP tunnels by a signaling protocol such as the Resource Reservation

Protocol (RSVP) which used for Differentiated Services (DiffServ).

Multiple LSP tunnels can be generated between two nodes which allocate the

network resources. The traffic between the nodes are spilled among the tunnels by some

local policy. The total number of LSPs in an intra-domain network be O(N2), where N

be the number of egress and ingress routers in a single domain [10], which may be

considered as non-scalable concerning network protocols [83]. Therefore, scalability

and robustness has become problems in MPLS-based TE [1] as aggregate traffic are

provided through the dedicated LSPs. If there any link failure occurs in active LSPs, the

MPLS-based TE need to consider path protection mechanism such as backup paths, as

19

otherwise traffic cannot be forwarded through the alternative paths. Moreover, network

management over MPLS is an important factor in traffic engineering. Eventually, the

success of the MPLS-based TE depends on how easy it observes and controls over the

network.

However, MPLS have the excessively complex protocols mechanism that can

lead to a high-performance overhead and difficult to satisfy the requirements of network

traffic demands, network utilization, and energy saving in data centers networks. The

simplicity of the SDN can mitigate the complexities of the MPLS control plane with

scalability and efficiency at the same time [75]. The OpenFlow extension with MPLS

provides much easier and more efficient in network management. The solutions [75,52]

simply match and process the MPLS flows with OpenFlow extension and these solutions

did not require the MPLS per packet processing operations. Therefore, an emerging

architecture, software defined networking (SDN) has become a popular solution for

companies to control their networks using a more cost-effective software solution, rather

than with more expensive hardware methods.

2.2 Traffic Engineering in SDN

Although traffic engineering methods have widely exploited in the past and

current traditional data networks, such as IP and MPLS networks, SDN still needs new

traffic engineering methods to adapt its decoupling of control and data plane layer

architecture [2]. SDN allows decoupling control functions from data plane devices as

well as provides global centralization views including network statistics information.

Network programmability can perform at the data plane devices by SDN controller with

the help of OpenFlow protocol. Therefore, network operators can easily reprogram and

dynamically manage through the network programming interface.

OpenFlow switches can support flow management more effective and efficient

because of their multiple flow table pipelines. By taking these advantages of SDN, many

researchers pay attention to the following four main sections of TE in SDN. These are

flow management, fault tolerance, topology update, and traffic analysis or

characterization. Figure 2.1 presents four main sections of TE in SDN environment.

When a first new flow enters the OpenFlow-enabled switches and the flow does not

match any rules in the switch’s flow table, the switch encapsulates and forwards the flow

to the controller. The controller computes a forwarding path and installs the appropriate

20

flow entries to the switch. When a high number of new flows enter the switch, there may

be substantially overloaded on both control and data planes. Therefore, reducing

communication latency and balancing the workload between the controller and the

OpenFlow-enabled devices becomes important factors. The authors in [14, 25]

considered the flow management solutions for switch level, controller level, and

multiple flow tables usage to a trade-off between the load balance and latency.

Figure 2.1 The Scope of Traffic Engineering Approaches in Current SDN

Hash table based ECMP solution [37] which separated flows through the

available paths by using the flow hashing mechanism. Flow hashing mechanism

forwards a path over multiple candidate paths depending on the hash value of selected

fields of the packet’s headers modulo with the number of paths and then split the load

to each path. To address the long live flow collision problems of ECMP, Hedera [25] is

one of the solutions that scalable and dynamic flow scheduling schemes to utilize the

aggregated network resources efficiently. By taking advantage of the global view of

SDN, Hedera gathers flow statistics information from switches, calculates available

paths for flows, and steers switches to reroute traffic. Hedera conducted with 8,192 hosts

data center and their experiment results outperform the static load balancing methods.

One of the distributed control planes for OpenFlow enabled switches in SDN is

a HyperFlow [85]. To address the scalability issue and reduce the flow setup time of

control and data planes responds and requests, HyperFlow not physically distributed but

21

logically centralized by applying global network-wide views. HyperFlow is also an

application which implemented in Network Operating System (NOS) called NOX with

minor modifications.

To gain network reliability, SDN network infrastructure (controllers, switches,

and links) should have an ability to support failure recovery [15]. The authors in [49,

74] proposed solutions for fault tolerance in the data plane layer and the authors in [76,

28] discussed solutions for fault tolerance in the control plane layer. When the link or

switch failure is detected, CORONET [49] recovered failures during a sub-second time

by applying for multipath support. Sgambelluri et.al [74] mentioned the data plane

protection path solution which used pre-computed paths as protection paths and installed

together with the normal working path into the switch’s flow table. When the failure is

detected, the switch will be used the protection path. Sharma et al. [76] proposed a

control plane restoration mechanism, in which the controller computed alterative paths,

after detection of failure. Then, the controller updated and installed packet forwarding

rules urgently without caring whether the old rules are expired or not.

For the centralized nature of SDN architecture, the reliability of the controller is

important. Configuring backup controllers with the help of OpenFlow protocol but

OpenFlow does not have coordination schemes between the backup and primary

controllers. CPRecovery [28] provided a primary-backup mechanism that focused on

the replication process between the switch component running on the primary and

secondary controllers. The switch can check whether the controller is active or not by

sending an inactivity probe to the controller. If the controller is down, the switch may

not receive a reply within the waiting time. Then, the CPRecovery component started

searching for the active backup controller.

The centralized SDN controller needs to manage dynamically global network

policies and rules which instruct OpenFlow-enabled data plane devices through the

network. While updating policies and rules, the affected flows may be delayed or

dropped, which can cause network performance degradations. The general topology

update operation implemented as follows: whenever updating to new policies from old

policies over multiple switches, each individual packet or flow follows the new or old

policies, not both. By considering per-packet consistency (each packet follows through

a single network configuration) and per-flow consistency (all packets in the same flow

will be followed the same policies), the authors in [67, 68] solved the problems of topo-

22

logy updating in SDNs environment. The authors in [19, 86] described the traffic

analysis solutions to acquire timely statistics on network resources at different

aggregation levels (such as flow, packet and port). PayLess [19] and OpenTM [86] are

query-based monitoring techniques for SDN. PayLess supported a flexible RESTful API

for flow statistics collection at different aggregation levels and OpenTM periodically

polled the statistics of the switches by tracking all the active flows in the network.

Traffic managing is a crucial task of TE in SDN. Although the traditional

Shortest Path First (SPF) algorithm routes the traffic efficiently, however, the congestion

may occur. SPF also produces the bottleneck for future traffic demands [48]. SPF only

takes account of the minimum hop-count and does not achieve QoS-aware TE and load

balancing. Therefore, QoS-aware TE algorithms are still important for the future

Internet. There are many TE algorithms which tried to solve the problem of setting up

the bandwidth guarantee tunnels in networks [50, 90, 53].

For a wider range of Internet applications, the routing algorithm based on the

delay and link utilization has become more important to fulfill the user requirements. A

simple solution proposed in [90], where firstly they prune all the links with insufficient

bandwidth then this solution chose a path with the smallest delay path. Among the

bandwidth and delay constrained routing, the Maximum Delay Weighted Capacity

Routing algorithm (MDWCRA) tries to minimize the interference between ingress and

egress pairs [53]. It also calculates the shortest disjoint paths, defines critical links for

bottleneck traffic, and avoids the links for future demands.

As the rapid growth of cloud computing and Internet of Things (IoT) technology,

the traditional network architecture cannot handle the complexity of control protocols

and the internetworking of a large number of smart devices [80]. In cloud data-center

networks, the equal treatment of all classes of applications is not the proper way to meet

user’s application-level requirements because the resource requirements of network

applications are varied [16]. By taking the advantages of SDN, application-aware

engineering effectively performs traffic engineering mechanism based on the network

requirements of applications.

2.3 Application-aware Traffic Engineering

Application-aware engineering is a computation of path or route based on each

application requirements such as network delay, link utilization or available bandwidth,

23

and jitter. For instance, FTP traffic may better perform with higher bandwidth path and

video traffic needs less delay path to maintain its best quality. Therefore, each

application needs their own best path to meet their application level requirements. The

application-aware engineering mainly contributes the following steps:

• Identify types of applications based on the QoS requirements and classify

application by using different mechanisms.

• Estimate the QoS parameters such as link utilization or available bandwidth, link

delay, and jitter by monitoring the switch ports statistics, and sending probe

packets to the whole path to measure the end-to-end delay.

• Calculate the optimal routes and reroute the traffic through the optimal routes.

Figure 2. 2 The Overall Architecture of Application-aware Engineering

The following sections describe the above three steps which are related with the

application-aware engineering under the name of traffic classification, traffic

measurement, and traffic management. These related works include not only in SDN

environments but also in SDN-based cloud computing, SDN-based IoT networks and

datacenters environments. Figure 2.2 depicts the overall architecture of the application-

aware engineering in software defined networking.

2.3.1 Traffic Classification

Traffic classification is an intelligent process that classifies traffic into different

categories [96]. Nowadays, in the computer science field, traffic classification is an

essential task for Internet Service Providers (ISPs) to recognize which types of

application traffic through the network. Network traffic classification is also an

important pre-calculation step for network measurement, network monitoring, network

management, network security, and network design. By using network traffic

classifications techniques, ISPs and network administrators can steer each type of

24

network application traffic to route the optimal path through the network and can control

the overall network performance. The following classification techniques are mainly

used in traditional networks and even used in SDN environments [23].

2.3.1.1 Port-based traffic classification

In the earliest days of the Internet, most of the Internet protocols are assigned to

well-known port numbers by Internet Assigned Number Authority (IANA) [96]. At that

times, port-based classifications are an effective one for traffic classification tasks. It

classifies the application traffic by extracting port numbers from the packet header and

then checks it out with the registered port numbers in IANA. On the other hand, there

are increasing numbers of protocols and applications that used dynamic port or random

port numbers tried to hide from network security tools. Therefore, port-based techniques

give less than 85% accuracy and it cannot recognize over 50% of traffic flows that it is

investigated [64].

2.3.1.2 Payload-based traffic classification

To eliminate the limitations of port-based classification techniques, many

researchers proposed payload-based classifiers [27]. Payload-based techniques are also

called Deep Packet Inspection (DPI). DPI is also a form of packet filtering to identify,

classify, reroute, and block packet by checking the content of packet beyond the packet

header and matching payloads with the known signature of protocols [32]. DPI inspects

the contents of packets at a specified checkpoint and controls the packets according to

the rules given by enterprise networks, ISP, or network manager.

The authors [26,103] proposed SDN based DPI scheme set up in the network

application layer, controller layer, and infrastructure layer respectively. DPI inspects the

packets at the three layers and sends them back to rules and policies. In network

application layer, DPI correspondence a network application analogy and it may delay

the packet processing time [26]. DPI in SDN controller performs as the network services

and sends network statistics information and intelligence to the network application

layer via the northbound Application Programming Interface (API). When DPI is

running in the network nodes, it simply applied the predefined policies [103].

L.E. Li et.al [56] proposed an idea to extend the OpenFlow protocol with

eliminating and adding regular expression rules. In their work, the controller can control

25

the rules tables of DPI and flow tables instead of passing through all packets to DPI. By

using pattern matching algorithms and splay tree filtering of enhanced DPI and Intrusion

Detection System (IDS), the authors applied network traffic statistics and aimed to

optimize the ruled orders. They also demonstrated their algorithm through the string set

of Snort [87]. Renukadevi et.al [69] analyzed the application signature data with DPI

that placed on the north interface of SDN.

They can dynamically allow or block the provision flows and can enhance the

bandwidth. SDN architecture decouples control plane from data plane completely,

however, traffic monitoring and control in SDN only depend on network states, not the

traffic behaviors. To improve fast packet forwarding and to guarantee QoS demands,

they [57] proposed an application-aware traffic control scheme with DPI. The scheme

collaborated both network states and traffic behaviors to perform packet classification

and behaviors matching respectively. They also designed a publish/subscribe

middleware as the exchanger of information between the application layer and network

services (topology management and devices monitoring).

2.3.1.3 Machine learning-based traffic classification

Today, most of the internet traffic are encrypted and applications are used

dynamically assigned port numbers, therefore, DPI and port-based classification face

difficulty to classify the application traffic [77]. To overcome the above difficulties,

many researchers have been proposed the Machine Learning (ML) based techniques,

which used the statistical features of network traffic flows.

By using the extracted statistical information from network flows, they [4, 5, 31,

65, 23] used ML algorithms to identify the application by applying useful variables.

Alshammari et.al [4] used five ML algorithms such as C4.5, RIPPER, Naive Bayes,

AdaBoost, and DVM to address the encrypted traffic classification. They used SSH and

Skype as the encrypted traffic and they also showed that C4.5 and RIPPER outperform

the other three algorithms.

In another work [5], the authors mentioned three different ML algorithms which

are C4.5, Genetic Programming, and AdaBoost to identify the encrypted VoIP traffic.

Their experiment results proved that C4.5 got better performance results than the others.

The authors of [31] identify real-time traffic in virtualized networks according to the

26

QoS classes by using Naive Bayes and other ML classification algorithms. Among them,

Navies Bayes got 95% accuracy and gave the minimum classification time.

The authors in [65] identified application traffic flows in SDN with the help of

four Neural Networks methods such as feedforward, Multilayer Perceptron, NARX

(Levenberg-Marquardt) and Naïve Bayes. They used the collected data set that contains

instant messaging, video streaming, FTP, HTTP and peer to peer protocols. The four

ML classification gain accuracy of 95.6%, 97%. 97%, and 97.6%, respectively.

Dias et.al [23] proposed the Naive Bayes algorithm-based video traffic

classification module to support QoS requirements. To increase the accuracy of traffic

classification, their approach used the relaxation of the hypothesis of independence

between the attributes of a class. They tested with three different traffic classes (one file

download and two different video services) which assigned QoS priorities. The reason

why they classified traffic classes is to get better network performance by giving an

effective treatment for requested traffic.

Most of the researchers and network operators have used port-based, payload-

based, and machine learning-based techniques not only to identify anomaly traffic for

security perspective but also to give effective traffic treatments for different QoS

demands. Therefore, traffic classifications techniques used as a preprocessing step for

traffic measurement and management.

2.3.2 Traffic Measurement

Traffic measurement is a crucial task for TE. Traffic measurement in SDN

covers the following tasks: monitoring networks, defining and measuring networks QoS

parameters, analyzing and predicting traffic patterns. This section describes defining

network QoS parameters and measuring techniques for those parameters in SDN.

Network QoS parameters represent the current situation of networks.

For effective network management, a reasonable network parameter design is

required. In SDN network measurement, there are generally three types of network

parameters: network topology, traffic, and performance parameters. The network

topology parameters are the number of network nodes, link bandwidth, and port

statistics. In SDN, the controller detects and maintains the current topology information

by using Link Layer Discovery Protocol (LLDP) that specifies in OpenFlow. Figure 2.3

depicts the link discovery process in SDN by using LLDP. The controller sends

27

Packet_out messages with LLDP to all switches in the network and the switch sends

these messages to all switches connected it directly.

Figure 2. 3 Link Discovery Process in SDN

When a switch receives an LLDP packet from other switches, it sends Packet_in

with LLDP to the controller because of no relevant rules in switch flow tables. Then, the

SDN controller knows which switches connected to and constructs the current network

topology by applying these Packet_in message with LLDP. The number of packets that

transmitted or received that passed through the network nodes or ports, the total number

of packets count, and the total number of bytes count referred to as the network traffic

parameters.

Current network status and network users’ behaviors are detected and analyzed

by applying these network traffic parameters. There are mainly two types of traffic in

an SDN network: control traffic and data traffic. A data flow that transmitted between

the SDN controller and switches refers to control traffic. A data flow that transmitted

between switches called data traffic. The collecting of statistical information on each

switch port (number of packets, number of transmitted packets sizes, number of received

packet sizes) and traffic matrix are required to characterize flows. To characterized

flows and measure the performance of the networks, the following factors are used as

the network QoS parameters.

(1) Delay

The end-to-end delay means the requirement of the time when the destination

host gets the packet sent by the source host. This network delay can be further separated

 into the following four parts through the Equation (2.1):

28

𝐷𝑒𝑙𝑎𝑦𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 = 𝑑𝑒𝑙𝑎𝑦𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑑𝑒𝑙𝑎𝑦𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑑𝑒𝑙𝑎𝑦𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 +

 𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑢𝑖𝑛𝑔 (2.1)

Transmission delay

In the wired network, the transmission delay is the time taken that transmits all

the packets into the wire [11]. The transmission delay of a link is directly proportional

to the data rate of the link.

Processing delay

Processing delay is the time taken to process a packet at a network device. In

high-speed routers, processing delays may be a microsecond or less [102].

Propagation delay

Propagation delay is the time taken to transmit the first bit from source to

destination through the network and propagation delay depends on the propagation

speed and distance.

Queuing delay

Queuing delay is the time taken to wait in a queue before it took for execution.

It is also the time difference between when the arrival of the packet at the destination

and when the packet was executed.

(2) Delay Variation (or) Jitter

The amount of delay variation in the end-to-end packet transmission is called

 jitter. Depend on the variation of delays, bits arrive either late or early at the destination.

The bits may be overflowed in a buffer when they arrive too early and getting poor

quality results when the bits arrive too late. Therefore, jitter is a special problematic

factor in a real-time application such as live video streaming, video conferencing, and

IP telephony [33].

(3) Packet Loss Ratio

The packet loss ratio represents the percentage of packet loss during the end-to-

29

end packet transmission. Packet loss can cause because the congestion occurs in the

network or when the packet buffer overflow occurs at the network devices [6]. Different

applications have different levels to tolerate the packet loss ratio. Video traffic is mostly

sensitive to packet loss ratio.

(4) Available Bandwidth (or) Link Utilization

 Bandwidth is a continuous resource value and it is also the data transfer rate for

a fixed period [42]. Available bandwidth (ABW) is an important dynamic characteristic

of a network path, being equivalent to the amount of traffic that can be added to the path

without affecting the other flows that traverse part of it, and independently from their

bandwidth-sharing properties. For instance: a link with XX Mbps maximum capacity,

but YY Mbps is already used. The available bandwidth for a link is obtained through the

Equation (2.2),

 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝑋𝑋 − 𝑌𝑌 (2.2)

In QoS parameter measurement, there are generally classified into two types:

active and passive techniques. Active measurements deployed between two points in the

network, and the injected traffic attempts to bring to the surface the unidirectional or

bidirectional performance properties of end-to-end paths. These techniques usually

implemented within an active measurement infrastructure framework and offered the

flexibility of running at commodity hardware/software end-hosts at different Internet

sites. Active techniques send probe packets into the network and evaluate how the

network traversal affects the network status [71]. This technique can cause temporary

network congestion.

Passive techniques estimate QoS parameters by setting multiple measurement

 points in the network to monitor network statistics. These passive techniques are too

complex to deploy in traditional networks [42]. By taking the advantages of SDN’s

global centralized control, there are some papers to estimate ABW by using passive

techniques. Megyesi et al. [60, 61] proposed the ABW estimation in SDN by using

OpenFlow messages to track the bandwidth utilization of every link in the network and

calculated the ABW on each path in the network based on the statistics information.

 In [60], they used the FloodLight controller to estimate end-to-end ABW and

they also explained a proper trade-off is required between accuracy, polling rate, and

30

network delay constraints. In [61], they focused on the source of errors for the estimation

of ABW measurement and highlighted that these errors are due to the lack of a local

timestamping mechanism in OpenFlow. Singh et al. [79] estimated end-to-end ABW on

any given path not only by composing link-wise ABW but also validating with a

bandwidth measurement tool called Yaz [81]. The ABW measurement is worked well

by taking the traffic statistics from the SDN controller [58, 92, 79], but the controller

keeps querying statistics from all the switches in the network that may lead to overload

network traffic. They [79] explored many algorithms for selecting which OpenFlow-

enabled switches to query and they also mentioned there is a trade-off between the

querying on every switches and measurement accuracy.

Figure 2. 4 ABW Calculation Algorithm for Application-Aware Routing

To address these issues, they proposed a solution [88] that used OpenFlow

statistics to estimate the end-to-end ABW and reduced excessive network traffic by

querying only the selected switches statistics that are provided by the sFlow-RT

analyzer. The main tasks of their work are as follows: (i) port-based application traffic

classification is performed by using sFlow-RT analyzer, (ii) dynamically collects ports

statistics of source and destination switches according to the JSON information that is

31

sent by sFlow-RT, and (iii) reroutes to the best available path based on calculated end-

to-end ABW.

Figure 2.4 shows the algorithm for ABW calculation of their work as an example

of FTP traffic. This algorithm is written with Java in the application layer of the ONOS

controller. After calculating the best path, the new flow entries are added to respective

devices along with the path by using FlowRuleService which is supported by the ONOS

controller. Their experimental results demonstrated that the total throughput of their

method outperformed the reactive forwarding (i.e. ONOS’s forwarding application)

when the traffic volume is larger than the link capacity and their method also reduced

packet loss than reactive forwarding.

End-to-end delay is also one of the important networks QoS parameters like

ABW. End-to-end delay takes a vital part for sending and receiving of data between the

end to end devices. To perform efficient network traffic forwarding, needed to select the

minimum end-to-end delay paths. Therefore, many works [41, 36, 20] focused on

defining delay models, minimizing delay, and estimating end-to-end delay techniques.

Although the OpenFlow protocol can effectively manage implementation and

configuration changes of several networks such as core and data center networks, the

control plane instructions must reach data plane elements in a timely manner [41]. The

delay may increase according to the increasement of propagation delay between control

and data plane, the time increasement for finding matching flow table entries and update

flow entries, and the execution speed of the controller.

The authors in [36] proposed querying theory-based delay model by assuming

packets are arriving as Poisson distribution but ethernet traffic is not accurately modeled

as a Poisson distribution process. Ciucu et.al [20] measured latency concerning with

execution and generation of control messages in SDN hardware switches. They also

discussed the effect of rule position number in the OpenFlow table and the insertion

delay. The authors in [44] proposed a delay model used by network calculus which is

also a new alternative approach of querying theory. Their network calculus only

supported worst-case bounds on performance metrics analysis and a little hard for

practical usage.

Their approaches [41, 12] have some unrealistic assumptions for practical

analysis. Iqbal et.al [41] developed end-to-end delay measurement by using a stochastic

model and they experimented this delay measurement by using the following three

32

different platforms such as Mininet network simulation environment, GENI, and

OF@TEIN testbeds for real traffic scenarios. Their proposed model, a log-normal

mixture model for end-to-end delay in SDN fitted to the empirical measurements. They

also proved that an M/G/1 model with a log-normal mixture model estimate end-to-end

delay in OpenFlow-enabled networks more accurately than the others.

Traditional ‘PING’ or Internet Control Message Protocol (ICMP) is a basic

approach to examine the delay within the networks. The authors in [91, 18] estimated

end-to-end delay by applying ICMP nature. The authors in [91] presented delay-aware

traffic rerouting method in SDN by conducting ONOS controller and Mininet emulator.

They estimate the end-to-end delay by sending ICMP probe packets from source switch

to the controller through the destination switch.

The authors in [19] proposed a time-stamp based shortest path selection

framework for end-to-end applications. This framework measured end-to-end delay by

using ICMP nature and probing approach. To overcome the issues of ICMP and packet

probing, they applied time-stamp recording which records the arrival and departure time

of per-packet flow at Open vSwitch and calculated delay based on the recorded sending

and receiving time.

After defining and measuring network QoS parameters, the next important task

is the managing traffic depends on the QoS requirements.

2.3.3 Traffic Management

Traffic management is the key player in the TE task. Traffic management is

responsible for steering traffic based on the QoS requirements and performs an optimal

rerouting scheme to meet the application-level requirements. The following works have

applied QoS aware routing schemes and application-aware routing management

schemes in SDN environments and SDN-based cloud, IoT and datacenters

environments.

Deng et.al [21] mentioned AQRA as one of the Application-aware QoS Routing

Algorithms that guaranteed multiple QoS requirements of high-priority IoT applications

and selected the better routing paths by adapting the current network status. First, each

of the IoT applications needed to send their app_profile to AQRA. App-profile

contained IP address of an IoT application server and QoS classifier. When

communication is started, IoT application sends Packet_In message to the controller’s

33

AQRA. AQRA started to classify flow into different priorities classes: high-priority

application (non-real-time critical mission and delay-sensitive), medium-priority

application (real-time services with a stringent delay bound), and low-priority

application (no critical mission and no stringent delay bound) according to app-profile

that supported from IoT application providers. Then, AQRA searched routed by

applying SA (Simulated Annealing) based algorithm and installed flow entries by

Flow_Mod messages into the network and edge layer. AQRA got better performance

results than MINA in terms of delay, jitter, and packet loss rate.

App-RS [16] proposed as one of the solutions for application-aware routing

scheme for SDN-based cloud datacenters. First, App-RS classified applications

according to the following assumptions: class 1 for real-time application depend on end-

to-end delay and link load to alleviate network congestion, class 2 for streaming

application based on delay variation and link load to get smooth playback, class 3

application for miscellaneous application took into account link load to reduce packet

loss rate. Second, App-RS identified applications by using application ID that store in

the options of IPv4 header as a 24-bit label. Third, they determined the routes by using

the LARAC (Lagrange Relaxation based Aggregated Cost) routing algorithm as well as

considering of minimum link load and delay for class 1 and 2 applications. For the class

3 application, App-RS used the Dijkstra algorithm to find the least congested path. And

then, App-RS added a determined flow entry to each switch along the path. By using the

FloodLight controller and Estinet emulator, the simulation results of App-RS

outperformed CORouting [63] related to the average bandwidth ratio, end-to-end delay,

and delay variation. However, App-RS needed to consider the flow aggregation

approach to overcome the limited flow tables size of switch’s Ternary Content

Accessible Memory (TCAM).

The authors [54] proposed one of the solutions for application-aware bandwidth

allocation mechanism in data centers networks. When predefined user requirement is

available, FlowSch, their first approach can allocate available bandwidth and prioritize

the user demands as per flows. However, when the application requires multiple flows

to complete their task, FlowSch cannot provide such task. To accomplish this work, they

then proposed AppSch that can allocate available bandwidth to satisfy the application

requirements. Their evaluation results showed that when the total demanded bandwidth

is close enough, FlowSch has been improved the average throughput and increased link

34

utilization. When multiple flows or aggregated flows are required, AppSh has been

improved link utilization more efficiently and decreased application completion time.

Jarschel et al. [45] proposed a DPI-based application-aware path selection

method for YouTube video streaming. Firstly, they defined the threshold for a YouTube

streaming application and then monitored buffered playtime and stalling. When

currently buffered playtime reaches below the threshold, their method calculated the

least load path and reroute the flow through the least congested path. Their method only

applied YouTube streaming and required an addition machine to continuously monitor

the buffered playtime.

 Jeong et al. [46] performed application-aware TE by using the port number and

DPI-based traffic classifier to identify application or service flows and distributed the

identified flows to multiple queues with different priorities in each switch port. The

multiple queues with different priorities forwarded by different treatments according to

the maximum bandwidth and assigned priority of the queue. Matching with identified

flows and its queue priorities defined by a network admin. This TE searched a routing

path for identified flow by considering the current capacity of each queue in the egress

ports. Their evaluation results demonstrated that the initial flow treatment delay for DPI

of the first flow rule increases but decreases the propagation delays in the congestion

scenario. Moreover, the results of their experiments concluded the identified application

traffic got increased throughput and reduced packet delay.

Schweissguth et.al [73] mentioned application-aware Industrial Ethernet (IE)

based extended TDMA (Time Division Multiple Access) approach which configured

both routing and scheduling algorithms that took application requirements into account.

They aimed to overcome the drawbacks of the original heuristic algorithm in switched

networks by applying a TDMA approach. Cheng et.al [17] proposed application-aware

routing big data processing scheme for Hadoop to accelerate its MapReduce data

shuffling over a network. They applied the Floodlight controller and their approach

outperformed the ECMP-RR and Spanning Tree schemes.

Although the application identification is beyond the knowledge of the

combination of port number and protocol type, AMPF [66] used Machine Learning

(ML) techniques (C4.5 decision tree) to perform an application-aware multipath packet

forwarding for SDN. When the first packet of the flows entered the switch, if the flow

rules existed, the switch forwarded packets by the flow rule. If the flow rules did not

35

exist, the switch informed AMPF about the packet, and AMPF sent the received packet

of collected feature vectors to ML classifier, then AMPF computed the assigned route

to flows according to their priority of class they belong to. AMPF achieved the

awareness of application in SDN by using ML techniques instead of using DPI.

Jeong et.al [47] mentioned an integrated DPI with an application-aware traffic

management method in the SDN controller. They analyzed application traffic using off-

platform DPI instances and sent the classified result to the controller to determine the

corresponding flow rules for the incoming application traffic. They further applied

Firewall and Bandwidth Manager application on their traffic management application to

specify a list of application that may forward or block, and limit the rate of bandwidth.

To the performance evaluation, they used the ONOS controller to implement the above

traffic management and used FTP as a tested application.

OpenQoS [24] dynamically rerouted the QoS flows such as video streaming

application which consisted of a base layer and one or more enhancement layers.

OpenQoS was a per-flow based traffic prioritization scheme based on different layers.

They categorized QoS flows as two levels: level-I QoS flows are used to send base layer

packets, and enhancement layers packet are transmitted as level-II QoS flows.

OpenQoS applied only video streaming applications and considered level-I QoS flows

are a higher priority than level-II QoS flows. Packets information of each flow needed

to periodically collect in OpenQoS. When there are large number of flows needed to

collect, OpenQoS may be overtired.

Momin et al. [63] proposed Content Oriented Routing (CORouting). CORouting

dealt with all types of application traffic and classified these applications into the

following three main classes by taking account of their tolerance of packet loss and

delay. Then, different routing methods are applied to handle each class of application.

CORouting controlled real time application by Dijkstra's routing algorithm to find the

minimum hop count path. CORouting managed streaming and miscellaneous

applications by applying weighted Dijkstra’s algorithm to select the least congested

path. Network congestion may happen as well as the number of real-time applications

may increase because CORouting always selects the shortest path for real-time

applications.

Mekky et.al [62] considered application-aware processing in the SDN data plane

which aimed to support fast packet handling without restricted to Level 2 to Level 4

36

information. They kept some application logic at the physical switches instead of

limiting application logic at the controller. They installed application-specific packet

processing actions at the switches tables that are similar the OpenFlow’s flow table. If

the new flow that does not match with switch’s flow rules in the flow tables, the

controller decides the forwarding rules for this new incoming flow. Their results proved

that their approach has low overhead and good performance results.

Table 2. 1 Application-Ware Traffic Engineering Schemes in SDN

Approaches QoS

Constraints

Application

Classification

Traffic Management

Methodology

AQRA [21] Delay, jitter,

packet loss

rate.

High-priority,

medium-priority and

low-priority

applications.

SA-based routing with

adaptive weights.

App-RS [16]. Link delay,

link load,

delay

variation.

class 1: real-time

application, class 2:

streaming application,

class 3: miscellaneous

application

LARAC routing

algorithm for class 1 and

class 2 applications.

Dijkstra algorithm for

class 3 application.

Application-

aware BW

allocation [54]

Link

utilization.

Not categorized

applications.

FlowSh for single flow

required application and

AppSh for multiple flow

required application.

Application-

aware path

selection [45]

Bandwidth Only applying to

YouTube traffic.

Based on buffered

playtime.

Application-

aware TE in

SDN [46]

Link

utilization

and delay.

Classify application

with DPI and assign

different priorities and

queues.

Frwarded through the

predefined priorities

queues according to their

requirements.

IE based

Application-

aware [73]

Bandwidth,

latency

Not categorized

application.

Enhanced TDMA

approach with

scheduling and routing.

37

AMPF [66] Delay,

minimum

bandwidth.

Class 1: Skype, Class

2: YouTube, Google

Docs, Class 3: Gmail,

Facebook, Class 4:

Dropbox, FileZilla

Prioritized flow and

identified application by

using MLT. Routed the

application based on

flows priorities.

Application-

aware traffic

management

with ONOS [47]

Bandwidth Not categorized

application. Only

tested with FTP.

Classified by DPI.

Feed the classified

results into the controller

and determines whether

it may forward or block

with the help of Firewall

application.

Open QoS [24] Bandwidth video streaming.

Level-I QoS for base

layer. Level-II QoS for

enhancement layer.

LARAC routing

algorithm.

CORouting [63] Packet loss,

delay, delay

variation.

Real-time applications.

Streaming and

miscellaneous

applications.

Rerouted real-time

application with Dijkstra

algorithm, streaming and

miscellaneous

applications with extend-

ed Dijkstra algorithm

2.4 Summary of the Chapter

In today’s networks, the equal treatment of all classes of applications is not the

proper way to meet user’s application-level requirements because the resource

requirements of network applications are varied. Application-aware routing means such

a kind of ‘routing’ that takes account into the application requirements such as available

bandwidth, delay, jitter, and so on. Traditional shortest path routing cannot provide to

satisfy the requirements of applications. The traditional IP-based TE and MPLS-based

TE also struggle to perform this complex application-aware engineering task. By taking

the advantages of SDN’s decoupling of control and data plane, global centralized

control, and enabling innovation through the network programmability, application-

38

aware engineering can support more efficiently and effectively than the traditional

networks.

In SDN, SDN-based cloud, IoT, and data center networks, various methods and

approaches for application-aware engineering have been proposed in literature review.

Port-based approaches, DPI or payload-based approach, machine learning-based

approaches are used to classify application traffic. As the network QoS parameters

measurements, estimation techniques for available bandwidth, end-to-end delay, and

link weight parameters have been proposed so far. Table 2.1 surveys the various the

application-aware TE in SDN. According to the Table 2.1 and literature reviews of this

chapter, the efficient application-aware engineering techniques are still required to

satisfy the user application level requirement.

39

CHAPTER 3

THEORETICAL BACKGROUND

Since the main goal of the dissertation is to design the application-aware traffic

engineering in Software Defined Networking (SDN), this chapter describes the several

related background fields. Firstly, this chapter explains the theoretical background of

SDN by describing each layer of SDN architecture. As OpenFlow is one of the main

building blocks of SDN, this chapter also describes the structure and functions of one of

the OpenFlow switches such as Open vSwitch and OpenFlow protocol. Finally, this

chapter presents a short overview of the traffic forwarding and QoS routing methods

which have been used in conventional IP and SDN networks.

3.1 Software Defined Networks Architecture

The Open Networking Foundation (ONF), a non-profit organization that is

funded by many companies such as Deutsche Telekom, Google, Microsoft, Facebook,

Verizon, and Yahoo, focus on the development of SDN and standardizing the OpenFlow

protocol aims to promote networking [104]. Software-Defined Networking has

concerned a great deal of attention from enterprises, service providers, and industry

associations. An emerging architecture, SDN is also an ideal solution for high bandwidth

and dynamic nature of today’s application because SDN is an adaptive, cost-effective,

dynamic, and manageable architecture.

Figure 3. 1 Traditional Network Architecture VS SDN Architecture

40

SDN architecture decouples control and data function from the network devices

such as switches and routers. This architecture also has global centralization control and

enabling innovation through the network programmability. In contrast, in most large

enterprise networks, network devices are coupled with control and data functions, which

may face difficulties for network operators to adjust network infrastructure and

configure large numbers of end devices, virtual machines, and virtual networks [58].

The difference between the traditional internets and SDN architecture is

presented in Figure 3.1. This figure shows clearly how the data plane layer (network

devices) is simplified into simple forwarding elements and the control layer(controller)

is logically managed. The data plane layer comprised of network devices

(programmable switches) which can either be implemented in hardware or software and

these switches also support the OpenFlow protocol for communication and

configuration with the controller. The following are some of the advantages of the

decoupling of control and data plane function architecture, SDN:

• Centralized Provision: In traditional networks, the network administrator

needs to manage each device individually and difficult to monitor lots of

disparate systems. In SDN networks, network administrators do not need to

update or configure each device manually because of the centralized approach

of network management. The network administrator can also manage the entire

network as a single unit.

• Reduced operating costs: SDN reduces operating costs by eliminating the

requirements for configuration updates from network administrators and

reduces hardware expenses by using virtualized control planes for each unique

device.

• Scalability: SDN gives the user more scalability because of centralized

provisioning but the SDN controller can practically manage a limited number

of devices. Therefore, a practically large-scale network may need to deploy

multiple SDN controllers.

• Security: The movements toward virtualization technology have challenged the

network administrators to secure their networks. SDN controller supports a

centralized location, therefore, network administrators can manage the entire

security of the network.

• Directly programmable: Network managers can directly program network

41

operation with abstracts control of forwarding elements and dynamically adjust

network traffic flows when the changing is needed. Therefore, network

administrators can manage, configure, secure, and optimize network resources

by using their application which was written based on their requirements and

the application do not rely on proprietary software.

• Openness: There is no depended vendors because every data plane element

(i.e., OpenFlow-enabled switches or routers) has a unified data plane

programming interface for the OpenFlow controller to collect network status.

The SDN architecture mainly consists of the following three layers: the

application layer, control layer, and data plane layer as shown in Figure 3.2.

Figure 3. 2 Software Defined Networks Architecture

The SDN applications are programmed to support all kinds of network services

such as traffic engineering, load balancing, firewall, routing, and monitoring. The

control layer is a core layer of the SDN architecture that extracts the data plane layer

information and communicates to the application layer with an abstract view of the

network topology, including statistics and events.

The application and control layers communicate by using northbound APIs. The

data plane layer consists of network nodes which can forward and processing of the data

path. Communications between the data plane and control layers use a standardized

42

protocol called OpenFlow. The SDN Controller defines the data flows that take place in

the SDN Data Plane. When the flow is entered to the network, the flow must first take

permission from the controller [104]. The controller decides whether the communication

is permissible or not according to the network policy. If the flow is permitted, the

controller decides an appropriate route for the permitted flow and adds flow entry for

the permitted flow in each switch along the path. The SDN controller is responsible for

these complex tasks and switches simply manage flow tables and focus on forwarding

function.

3.2 Infrastructure Layer (or) Data Plane Layer

The data plane layer would be the physical layer over which network

virtualization lay down through the controller. This layer consists of various networking

equipment which may be OpenFlow-enabled or OpenFlow-complaint network devices

(routers or switches).

Table 3. 1 Example of OpenFlow-Complaint Switches

Vendor Series

Arista Arista extensible modular Operating System (EOS), Arista

7124FX application switch.

Cisco Cisco cat6k, catalyst 3750, 6500 series

Cinea Cinea Core director running firmware version 6.1.1

HP HP procurve series-5400 xzl, 8200 zl, 6200yl, 3500yl

Juniper Juniper MX-240, T-640

NEC NEC IP8800

Toroki Toroki Lightswitch 4810

Dell Dell z9000 and S4810

Quanta Quanta LB4G4

Open vSwitch Software switch, Latest version 1.10.0

The OpenFlow enabled switches are either based on the OpenFlow protocol or

compatible with it. In the data plane layer, traffic may enter or exit through logical or

physical ports by forwarding or processing functions. Management of forwarding

functions performed by an SDN controller or other mechanisms that orchestrated in

43

conjunction with the SDN controller. An OpenFlow enabled switch may be a hardware

device or software program which are capable of processing and forwarding of the data

path. The examples of OpenFlow-complaint switches are shown in Table 3.1.

3.2.1 Open vSwitch

Open vSwitch (OVS) is a multilayer software switch which aims to implement

the software switch platform that provides standard management interfaces and opens

the forwarding functions to programmatic extension and control. Open vSwitch is well

suited to function as a virtual switch in Virtual Machine (VM) environments and

exposed standard control and visibility interfaces to the virtual networking layer, it was

designed to provide distribution across multiple physical servers. Open vSwitch also

supports multiple Linux-based virtualization technologies including virtual box and

Xen/ XenServer. It writes by using in platform-independent C and is easily ported to

other environments. OVS can also work entirely in user-space without support from a

kernel module and the user-space implementation is easier to port than the kernel-based

switch. OVS in user space can access Linux or DPDK devices. OVS contains the

following distributions:

▪ ovsdb-server (database server): ovsdb-server provides remote procedure

called (RPC) interfaces to one or more OVS databases and supports JSON-RPC

client connections over Unix domain sockets and TCP/IP. It is a lightweight

configuration database server that holds information for bridges, interfaces,

tunnel definitions, OVSDB managers, and an OpenFlow controller address. It

also allows ovs-vswitchd to query its configuration

▪ ovs-vswitchd (daemon): It is the core part of the OVS and it manages any

number of OVS switches on the local machine. The daemon communicates with

SDN controllers, ovsdb-server, kernel module, and hosting system by using

OpenFlow, OVSDB protocol, netlink, and netdev interface, respectively

▪ ovs-dpctl: ovs-dpctl is a tool for configuring the switch kernel module

▪ ovs-vsctl: ovs-vsctl is a utility for updating and querying the configuration of

ovs-vswitchd

▪ ovs-appctl: ovs-appctl is a utility which sends commands to running OVS

daemons

44

3.2.2 OpenFlow Switch Specifications

There are generally two types in OpenFlow-complaint switches: OpenFlow-only

and OpenFlow-hybrid. The first one only processed by OpenFlow pipeline, and cannot

support otherwise. OpenFlow-hybrid switches provide both OpenFlow and

conventional network operations [101]. An OpenFlow switch logically involves one or

more flow tables, one or more OpenFlow channels to external controllers, a group table,

a meter table, and shown in Figure 3.3.

• Ports: Packets are passed through the network interface called OpenFlow ports

between OpenFlow processing and the rest of the network. OpenFlow switches

connect each other via OpenFlow ports. There are generally three types of

OpenFlow ports: physical, logical, and reserved ports.

Figure 3. 3 The Main Components of an OpenFlow Switch

• Flow Table: Flow table is a standard table which is used to forward the packet via

a single port. A flow table consists of flow entries and each flow entry consists of:

▪ Match fields: consists of ingress port, packet header, and metadata to match

against packets.

▪ Priority: matching precedence of the flow entry.

▪ Counters: to update for matching packets.

▪ Instructions: modify the pipeline processing or action set.

▪ Timeouts: maximum amount of time before the flow is expired.

45

▪ Cookie: Used to provide flow modification, deletion, and statistics by the

controller.

• Group Table: Group table consists of group entries and uses for multicast,

broadcast, and load balancing purposes. Each group entry contains group identifier,

group type, counters, and action buckets.

• Meter Table: Meter table contains meter entries that define per-flow meters which

use for various QoS operations such as rate-limiting and DiffServ. A meter

measures and controls the rate of packets assigned to it and meter also attaches

directly to flow entries. Multiple meters can be used in the same table, but in an

exclusive way. Each meter entry is identified by its meter identifier, meter bands,

and counters.

• OpenFlow Channel: The interface between OpenFlow switches and controller is

called OpenFlow channel. The controller configures the switch, receives the events

of the switch, and sends packets to switch via this interface. These OpenFlow

channel messages must be configured by the OpenFlow protocol and this

OpenFlow channel encrypted using TLS (Transport Layer Security) but may run

directly over TCP.

The controller can add, delete, and update the flow tables entries in an OpenFlow

switch via OpenFlow protocol.

3.2.3 Pipeline Processing of OpenFlow Switches

In OpenFlow switches, packets are processed in OpenFlow pipeline. OpenFlow

packets are received on an ingress port and processed by the OpenFlow pipeline which

may forward them to an output port. There are two stages in pipeline processing: ingress

and egress processing as shown in Figure 3.4. For the flow tables numbered from 0 to

n, the pipeline processing always begins at the ingress processing of flow table 0. The

numbers assigned in ingress flow tables must be less than the numbers assigned in egress

flow tables.

Firstly, the packet first matches with the first ingress table and other tables may

be used depending on the result of the first flow table matched. If the ingress processing

outcome is to forward the packet to an output port, OpenFlow switches will start to

perform in egress processing in the context of that output port. Egress processing is

arbitrary; therefore, a switch may not provide or configure any egress tables to use. If

46

there is no valid configured table at the first egress table, the packet may be executed by

the output port or forwarded out of the switch.

Figure 3.4 An Architecture of OpenFlow Pipeline Process

If there is a valid configured table at the first egress table then the packet must

match against the flow entries of that flow table and other tables may be used depending

on the result of first flow table matched.

3.2.4 Matching Flow Table in OpenFlow Switches

A flow table entry is identified by its match fields and priority. These match

fields and priority is taken together identify a unique flow entry in the flow table. Each

flow entries contains match fields (ingress ports + packet header + metadata), counters,

and instructions. Figure 3.4 depicts the flow matching structure of OpenFlow.

When handled by a flow table, the packet is matched against with flow entries

of a flow table to choose a flow entry. The flow entry instruction set involves actions to

be executed at some point of the pipeline. If flow entry is matched, the set of instructions

(i.e. Apply-actions, Clear-actions, Write-actions, Write-metadata, and GoTo-table) of

this flow entry is operated. When the instruction is GoTo-Table, it may direct the packet

to another flow table, where the same process is executed again. When a matched flow

entry does not have an instruction that direct to another flow table, the flow table pipeline

processing stops at this table then the packet is executed according to this associated

47

 action set. If a flow entry is not matched, OpenFlow switch perform table miss function.

Table miss performs based on the table configuration

Figure 3.5 Flow Matching Process of OpenFlow

The instruction set for table miss flow table may specify how to execute

unmatched packet. The instructions include dropping packets, passing another flow

table, and sending back packet-in messages to the OpenFlow Controller via the control

channel.

3.3 Protocol Options for Southbound Interface

The control layer communicates the data plane layer by using Southbound APIs

(Application Programming Interfaces). The controller uses these APIs to dynamically

change forwarding rules that installed in the data plane devices such as switches and

routers [72]. There are some examples of southbound APIs that are used for managing

network devices in SDN deployment: NETCONF (standardized by IETF), Opflex

(supported by Cisco), OF-Config (supported by the Open Network Foundation (ONF)),

OpenFlow and so on. To support hybrid networks or to utilize traditional networks with

software-defined manner, some routing protocols (i.e. OSPF, ISIS, and BGP) have been

developed as southbound interfaces in some OpenFlow controller. Currently, the most

popular southbound API is OpenFlow.

3.3.1 The Concept of OpenFlow Protocol

OpenFlow is a standardized communication protocol which defines the

communication between an OpenFlow switches and OpenFlow controller. It is also a

programmable network protocol that supports an open standard-based programming

interface for multiple vendors to manage and supports network traffic. For instance, the

48

SDN controller can configure and manage (i.e. installing packet forwarding rules) data

plane devices (i.e. OpenFlow switches) through the OpenFlow protocol. The switches

can send notification messages (i.e. different kinds of events) to the controller via

OpenFlow.

At initialization, switches configure the IP address and TCP port number of their

SDN controller, then switches contact with controller by using these IP and TCP port.

Switches establish secure connection by using Transport Layer Security (TLS) session.

Afterwards, the controller requests configuration information (for example: port number

and mac address) from each switch by sending OpenFlow OFPT FEATURES

REQUEST message to know about the existence of the switches in the network. There

are mainly three types of OpenFlow messages:

• Controller to switch messages: These types of messages are used to directly

control or check the state of the switch and initiated by the controller. These are

▪ Features: To establish the OpenFlow channel, controller sends a feature

request message to switch for requesting the capabilities of a switch and the

switch reply a feature reply message.

▪ Configuration: The switch only responds to the controller’s set and query

configuration messages.

▪ Modify-State: These types of messages are also called ‘FLOW_MOD’

message which are used to modify, add, and delete flow or group entries and

sent by the controller.

▪ Read-State: These messages are used by controller to get numerous

information (i.e. current configuration and port statistics) from switches.

▪ Packet-Out: Packet-out message consists either full or buffers ID sent by the

controller.

▪ Barrier: Barrier request or reply messages are applied by controller to ensure

message dependencies have been met and get notifications for completed

operations [101].

▪ Role-Request: Set the role of its OpenFlow channel used by the controller.

▪ Asynchronous-Configuration: These messages are used by the controller to

define an additional filter on an asynchronous message of OpenFlow channel.

• Asynchronous: These types of messages are applied to change the switch state

 and update the controller with the network events changes. These messages are

49

initiated by switches. These messages are:

▪ Packet-in: Transfer the control of a packet to the controller. It may be table-

miss flow entry, TTL checking or packet-in events.

▪ Flow-Removed: Inform the controller about the flow has been removed

because of the controller’s flow delete request or the switch’s flow expiry

process.

▪ Port-Status: Inform the controller about the status of the port.

▪ Error: The switch enables to notify the problems to controllers using error

messages.

• Symmetric: These types of messages are initiated by either the controller or the

switch and sent without solicitation. Five symmetric messages have been

represented as a part of the OpenFlow protocol:

▪ Hello: Hello messages or keep-alive messages exchanged between switch

and controller upon connection startup.

▪ Echo: To verify the liveness of connection, the controller and switch used

echo request/reply messages.

▪ Experimenter: To supports additional functionality within OpenFlow

message type space or an area for the features of future OpenFlow versions.

3.4 Control Layer of SDN

The control layer is a core layer of the SDN architecture that extracts the data

plane layer information and communicates to the application layer with an abstract view

of the network topology, consisting of statistics and event [84].

Table 3. 2 Features Comparison of Popular SDN Controllers

Controller Implementation Developers Application Domain

NOX Python Nicira Networks Campus

POX Python Nicira Networks Campus

Ryu Python NTT Campus

FloodLight Java Big Switch Networks Campus

OpenDayLight Java The Linux Foundation Datacenter

ONOS Java Open Networks

Foundation

Datacenter, WAN

and transport

50

3.4.1 ONOS Controller

ONOS (Open Network Operating System) supports the control plane for an SDN

architecture, manages network components, such as switches and links. ONOS also runs

software programs or modules to provide communication services to end hosts and

neighboring networks. ONOS designs to help network service providers build carrier-

grade software-defined networks architected for high availability, scalability, and

performance. Moreover, it can run as a distributed system across multiple servers and

its applications and use cases consist of customized communication routing,

management, or monitoring services for software defined networks [100].

Figure 3.6 ONOS Architecture Tiers and Subsystem Structure

The ONOS kernel, core services, and applications are written in Java as bundles

that are loaded into the Karaf OSGi container. OSGi is a component system for Java that

permits modules to be installed and run dynamically in a single JVM. Moreover, ONOS

can run on several underlying OS platforms because it runs in JVM. Figure 2.3 shows

the architecture tiers of ONOS and its subsystem structure. A service is a unit of

functionality that consisted of multiple components that produce a vertical slice through

the tiers as a software stack. ONOS defines many primary services such as Device, Link,

Host, Topology, PathService, FlowRule, Packet services and so on. There are three main

tiers in ONOS stack: Apps, Core, and Providers. The Providers interconnect with the

51

network elements using several control and configuration protocols and supplying

service-specific sensory data to the core.

The core tire which consists of Manager component and it is managed to accept

and transmit information with the Provider via southbound APIs (Provider Service,

Provider Registry) and with the Apps via northbound APIs (Admin Service, Service).

The Apps interconnect with the core Manager to obtain the data. For instance, if an App

needs information from network elements or if an App needs to know the current state

of network elements, it can request information by using synchronous call or starts

listening to asynchronous events. Then, the Manager will apply the correct Provider

Services to retrieve the data from the network elements via protocols and serve it back

to synchronous request or trigger an asynchronous event notification. When multiple

ONOS instances are applied, the consistency of requested or changed information across

ONOS instances is responsible for a Store component.

3.5 Application Layer of SDN

The application layer is an open area for developing as many innovative

applications as possible by taking the advantage of the global view of network

information, such as all network topology information, network statistic, network status,

etc. The SDN applications are programmed to support all kinds of network services such

as traffic engineering, load balancing, routing, network monitoring, network setup and

management, network troubleshooting, network policy, and security. Such SDN

applications can contribute various end-to-end solutions for data center and real-world

enterprise networks [38]. SDN applications are directly and programmatically

communicated SDN controller via northbound APIs. Besides, the applications can build

an abstracted view of the network by gathering information from the SDN controller for

decision-making purposes.

3.6 Managements of Flow Entries in OpenFlow Networks

In SDN architecture, the controller must install flow table entries in the

forwarding tables of the switches. The wildcard, match fields of flow entries are

classically installed in TCAM for fast packet matching and forwarding. TCAMs are

relatively small, expensive and limited number of flow entries can be placed in the flow

52

table. The flow entry management system of OpenFlow switches can basically be

categorized into two approaches: proactive and reactive.

In proactive flow management, controller pre-calculates and populates flow

entries into the flow tables of the switch. This type of installation does not incur

additional flow setup time and latency because every flow does not consult with the

controller. However, there is no flexibility for real-time network traffic engineering and

a large number of entries that hold in flow table might not fit with TCAM. To address

the issues of large flow tables management, flow entries can be installed reactively. The

basic operations for reactive flow management are depicted in Figure 3.8:

1) Packets arrive at the switch and there are no corresponding flow entries in

switch’s flow table.

2) Therefore, the switch informs the controller about the packet.

3) The controller determines the path for the packet and puts in suitable rules in

each switch along the path.

4) Packets are forwarded to the destination.

Figure 3.7 Reactive Flow Management

The reactive mechanism is a timeout-base flow management mechanism and the

default expiry timer is one second set by the controller. The switch tracks and removes

every expiry flow. When more packets of expired flows arrived, the switch requests the

flow entries and the controller must calculate for appropriate paths again.

Both reactive and proactive mechanisms have different pros and cons. In a

reactive approach, if a new flow arrives or if a switch’s flow table has no appropriate

flow entry, the controller interaction is needed. This instantiation efficiently uses flow

table but every flow suffers additional flow setup time which relies on the control

channel and the current load of the controller. Therefore, reactive flow management may

53

diminish the states and number of large flow tables in the switches, but it may rise the

delay and reliability requirements of the control channel and control plane software.

Especially, the failures of the control plane software and control channel will have a

great effect on the overall network performance, if flow entries cannot be settled in a

timely manner.

Figure 3.8 Proactive Flow Management

In a proactive approach, all the required flow entries are installed in the flow

tables of the switches. Therefore, this approach reduces the controller workload and it

is more robust to control layer failure because the required flow entries are already

installed into data plane layer switches. However, this approach needs to install a huge

amount of flow tables when the network is bigger and this may be caused TCAM

limitation problem.

To overcome the limitations of proactive and reactive approaches, the

combination of both proactive and reactive mechanism, called a hybrid flow

management mechanism becomes popular. Hybrid flow management approach gets

more flexibility. Before communication is started, flows rules are installed like

proactive, and when communication is started, it treats the flows reactively.

3.7 Innovation Through Routing based SDN Application

In an SDN architecture, Network managers can innovate their application

according to their requirements. Therefore, many researchers pay attention to the

following applications: traffic engineering application, routing, load balancing, and

security applications. In SDN based networks or not, routing generally involves two

entities: network state information and routing algorithms. The network state

54

information is the network resources at nodes and links including link utilization,

available bandwidth, delay, and packet loss rate.

Figure 3.9 Routing Algorithms in SDN and Traditional Networks

Routing algorithms apply this network state information to find routes with

satisfying resources or demand. However, network state information can dynamically

change because of links up and down states, fluctuations of load, and connection in and

out states. In legacy networks, network state information is gathered by using distributed

routing protocols and legacy networks also gain and distributes this network state

information from and to routing devices. In SDN, the controller collects and updates the

network states information from routing devices via direct connection of OpenFlow.

A routing algorithm in which a router computes the shortest path between each

pair of nodes in the network. The Open Shortest Path First (OSPF) Protocol is based on

the Shortest Path First (SPF) algorithm. The most critical interests all the time in

networks are traffic management or routing which focus how to decide paths depending

on required constraints such as network QoS parameters. This type of routing is also

called constraint-based routing. Figure 3. 9 depicts the various routing algorithms that

are widely used in SDN, SDN based IoT networks, SDN based cloud data centers

Shortest-path Routing

Constrained-based Routing

 Routing

Widest shortest path

Bandwidth guaranteed paths

Delay guaranteed paths

Delay-Constrained

multipaths

Maximum ABW paths

Bandwidth-delay-constrained

least cost path

Bandwidth-Constrained

multipaths

55

networks, and conventional networks. According to Figure 3. 9, there are two main types

of routing: shortest path routing and constrained based routing.

3.8 Chapter Summary

This chapter briefly explains the background theory of layer taxonomy of

software defined networks. This chapter also describes the primary SDN protocol and

how it works. Moreover, the architecture and functions of Open vSwitch (popular

OpenFlow switches) are presented in this chapter. The traffic management applications

such as routing is the most critical task for TE. Therefore, this chapter also presents

various routing methods that are widely used in SDN and conventional networks.

56

CHAPTER 4

THE ARCHITECTURAL DESIGN OF THE PROPOSED

SYSTEM

The purposes of the chapter are identifying the problems of traffic engineering

without awareness of application, and describing the proposed application-aware

engineering architecture with step by step explanation.

4.1 Problem Definitions and Motivations

The traditional Shortest Path First (SPF) algorithm routes the traffic efficiently,

but the congestion may occur. SPF also produces bottlenecks for future traffic demands.

SPF only takes account of the minimum hop-count and does not achieve QoS-aware TE

and load balancing. Different applications need different routing depending on their own

application preferences. Therefore, this dissertation has implemented an application-

aware traffic engineering in SDN environment.

In this work, ONOS is used controller as the control plane and Mininet network

emulator as the data plane network. The detailed requirements and implementations of

software and hardware will be explained in section 5.1. In ONOS, there are many

applications such as segment routing, SDN-IP, default forwarding (or) reactive

forwarding and so on. Reactive forwarding (denoted as onos-app-fwd) is one of the

shortest path computation mechanism on discovered topology by using Dijkstra

algorithm. This forwarding worked are as follows: when a new packet enters a switch,

firstly the switch lookup flow entries in its flow tables. If there have no matched flow

entries, the switch asks the controller’s decision to manage the packet. The controller

processes the packet and defines a flow entry based on the end-to-end paths then installs

flow entry into the network switches through the path. Therefore, reactive forwarding is

assumed as a shortest path routing and analyzed by multiple testing scenarios.

Figure 4.1 is a sample test topology that has tested to explain the issues of

shortest path routing. There are 4 switches and 6 hosts that involved in sample test

topology. To easily and simply analyzed, the specified bandwidth of each link in the

57

network is defined as 20 Mbps. Table 4.1 describes the available paths information

between source hosts (H1, H2) and destination hosts (H5, H6).

Figure 4.1 Sample Test Topology

This experiment generated different bit rates of UDP traffic flows between

switches S1 and S4 and carried out the following two tests called test 1 and 2 here.

1. Test 1: H1 sends 15 Mbps of UDP traffic to H5 and H2 parallel sending 5 Mbps

to H6.

2. Test 2: H1 sends 15 Mbps to H5 and H2 parallel sending 10 Mbps to H6.

Table 4.1 Available Paths Between S1 and S2

Source Destination Available Paths Available Bandwidth

H1, H2 H5, H6 P1= {S1, S3, S4}

P2= {S1, S2, S4}

P3 = {S1, S3, S2, S4}

P3 = {S1, S2, S3, S4}

20 Mbps

According to Figure 4.1 and Table 4.1, it is seen that there are two equal cost

paths between switches S1 and S4 {p1= {S1, S2, S4}, p2= {S1, S3, S4}}. The idea of the

shortest path routing (reactive forwarding or default forwarding) is to select a single

shortest path. In test 1, if the traffic volume is equal to the current link capacity, the

packet loss rate is nearly % and the average throughput result can be seen in Figure 4.2.

In test 2, if the traffic volume is greater than the link capacity, the average

throughput results of 15 Mbps and 10 Mbps for the reactive forwarding (shortest path

routing) are shown in Figure 4.3. In this case, the default forwarding selects path p1 and

58

that path p1 already consumed 15 Mbps and left 5 Mbps. Parallel to this, when H2 sends

10 Mbps to H6, the default forwarding selects again the path p1 even the alternative path

p2 provides a better ABW (20 Mbps) because the flow entries for source switch S1 and

S2 already exists. Therefore, nearly 23% of packet loss occurred in default forwarding.

Figure 4.2 Average Throughput Results of Test 1

By analyzing these tests, it can be concluded the shortest path routing (default

forwarding) is a simple and fast packet forwarding, however, it always routes every

traffic via shortest path, lacks the sense of load balancing and decreases link and path

utilization.

Figure 4.3 Average Throughput Results of Test 2

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h
ro

u
g
h
p
u
t

[M
b
p
s]

Time [s]

15 Mbps H1 to H5 5 Mbps H2 to H6

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13

T
h
ro

u
g
h
p
u
t

[M
 b

p
s]

Time [s]

15 Mbps H1 to H5 10 Mbps H2 to H6

59

4.2 Application-aware Traffic Engineering Architecture

The Application-aware TE (App-TE) generally involves three main modules:

traffic classification, traffic measurement, and traffic management. When the incoming

traffic enters the network, App-TE first classified whether the priorities traffic or not,

then performed the other modules (i.e. measurement and management). The overall

system design is shown in Figure 4.4.

Figure 4.4 The overall system design

The SDN applications are programmed to support all kinds of network services

such as traffic engineering, load balancing, routing, and monitoring. As illustrated in

Figure 4.5, an App-TE is an application which implemented on the SDN application

layer and written in Java. Topology Manager, Device Manager, Port, Link, and Path

services are Application Programming Interface (APIs) of the ONOS, SDN controller.

The control layer extracts the data plane layer information and communicates to the

application layer with an abstract view of the network topology, including statistics and

events. Communications between the data plane and control layers use a standardized

protocol called OpenFlow.

Moreover, the traffic analyzer (sFlow-RT) is used to help the traffic

classification and reduce the controller’s work load. The detailed explanation for each

traffic module will be described in the next sections.

60

Figure 4.5 The Architecture Design of Application-aware TE (App-TE)

4.3 Traffic Classification in App-TE

In traffic classification module, App-TE used sFlow-RT as a prerequisite for

traffic monitoring and classified application traffic by port-number. The sFlow analytics

engine obtains a continuous telemetry stream from sFlow Agents embedded in network

devices and converts them into actionable metrics, accessible through the REST flow

API [89].

Table 4.2 Classified Classes in App-TE

Classes Traffic

Prioritized Video streaming, file transferring, and

haptic stream

Non-Prioritized Other traffic

The idea of using sFlow-RT in traffic classification is to reduce the controller

work load for monitoring. When the application traffic is entered the network, the sFlow

61

agent accessed this traffic and sent to sFlow collector. sFlow collector analyzed and sent

back to controller as the accessible metrics via the REST API.

 This section chose application traffic which not only widely used in current

networks but also work well in Mininet network emulator. To reduce computational

complexity of controller, App-TE simply classified application traffic flows into the

following two classes: prioritized and non-prioritized classes. The detailed information

of these two classes are shown in Table 4.2. The detailed step by step process for the

traffic classification module is written as the Algorithm 4.1 as shown in Figure 4.6.

Algorithm 4.1: Traffic Classification in App-TE

1: #previous_timestamp = 0

2: #flows = [srcIP, dstIP, srcMac, dstMac, srcPort, dstPort, timestamp]

3: #priorities_flows = [RTP, FTP, HTTP, Haptics], non-priorities_flows = other flows

4: function: Flows_Detecting(flows):

5: if (timestamp > previous_timestamp)

6: check priorities or non-priorities flows by Port numbers

7: if flows = priorities_flows

8: then DWC-aware Routing(flows)

9: end if

10: if flows = non_priorities_flows

11: then MHR(flows)

12: end if

13: end if

14: end function

Figure 4.6 Algorithm for Traffic Classification in App-TE

4.4 Traffic Measurement in App-TE

Collecting traffic statistics, calculating available bandwidth, link delay, and

Delay-weighted Capacity (DWC) are the responsibility of traffic measurement module.

4.4.1 Estimating Available Bandwidth using OpenFlow messages

According to the literature reviews of section 2.3.2, many researchers estimated

the QoS parameters such as ABW and link delay by using OpenFlow protocol. They

estimate these parameters by active technique (sending probe packets to the switches

62

which need to estimate QoS parameters) and passive technique (monitoring at the

specified period). For ABW estimation in SDN, passive techniques are more popular

and widely used because of the centralized view of SDN.

 By taking advantage of SDN’s global centralized control, this dissertation also

uses OpenFlow messages to calculate the ABW. OpenFlow has many statistics

messages such as flow stats, meter stats, aggregate stats, queue stats, port stats, and table

stats. OpenFlow permits the controller to query the statistics information of the switches.

Therefore, the controller can request the current statistics information from the switches

by sending OpenFlow Statistics_REQUEST message to the switches. After the time, Ts,

the execution time of the switch, the switch reply OpenFlow Statistics_REPLY message

to the controller with its current statistics information. Figure 4.7 depicts the process of

OpenFlow request/reply messages.

Figure 4.7 OpenFlow request/reply messages between switch and controller

However, OpenFlow does not implement a way to gather the network QoS

parameters, for instance, link utilization or available bandwidth from the switch directly.

Therefore, the controller uses to make sense of the raw statistics values to determine the

available bandwidth of the switches.

Table 4.3 The port statistics counter values

Type Metrics Unit Counter Unit

Port

Statistics

pktRx n/s Received Packets n

pktTx n/s Transmitted Packets n

byteRx Bytes/s Received Bytes Bytes

byteTx Bytes/s Transmitted Bytes Bytes

pktRxDrp n/s Packet Received Drop Rate n

pktTxDrp n/s Packet Transmitted Drop Rate n

63

There are many types of traffic statistics related with switch or router’s port such

as packets Received (pktRx), packet Transmitted (pktTx), bytes Received (bytesRx),

bytes Transmitted (bytesTx), packet Drop Rate (pktRxDrp) and packet Transmitted

Drop (pktTxDrp) as shown in Table 4.3. The received bytes of one switch were more

than the bytes transmitted by other switch at the ports through which they are connected.

Therefore, this dissertation only used the transmitted bytes counter values and it

also used northbound API (DeviceService.getDeltaStatisticsForPort) to extract the port

statistics of each switch port. The link capacity is the defined link capacity and the link-

load can be obtained by applying the calculated some byte counter values. The link load,

L of ith link at time t can be obtained through the Equation (4.1):

𝐿𝑖(𝑡) = 𝑠𝑟𝑐𝑃𝑜𝑟𝑡_𝑏𝑦𝑡𝑒𝑠𝑇𝑥 (𝑡) + 𝑑𝑠𝑡𝑃𝑜𝑟𝑡_𝑏𝑦𝑡𝑒𝑠𝑇𝑥 (𝑡) (4.1)

where, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡_𝑏𝑦𝑡𝑒𝑠𝑇𝑥 (𝑡) is the source port statistics of transmitted bytes count at

time t and 𝑑𝑠𝑡𝑃𝑜𝑟𝑡_𝑏𝑦𝑡𝑒𝑠𝑇𝑥 (𝑡) is the destination port statistics of transmitted bytes

count at time t. After calculating each link load along a given path, the available

bandwidth (ABW) of ith link at time t can be derived as Equation (4.2):

 𝐴𝐵𝑊𝑙𝑖𝑛𝑘𝑖
(𝑡) = 𝐶𝑖(𝑡) − 𝐿𝑖(𝑡) (4.2)

where, 𝐴𝐵𝑊𝑙𝑖𝑛𝑘𝑖
(𝑡) is the available bandwidth for the 𝑖𝑡ℎ link at time t, 𝐶𝑖(𝑡) is the

capacity of the 𝑖𝑡ℎ link and 𝐿𝑖(𝑡) is the link load for 𝑖𝑡ℎ link at time t. We can obtain

the ABW of a link by subtracting the link load from the defined link capacity. Then,

ABW of a given path is obtained through the following equation Equation (4.3):

 𝐴𝐵𝑊𝑝𝑎𝑡ℎ(𝑡) = 𝐴𝐵𝑊𝑙𝑖𝑛𝑘𝑖
(𝑡)𝑙𝑖𝑛𝑘𝑖𝜖𝑃𝑎𝑡ℎ

min (4.3)

where, 𝐴𝐵𝑊𝑝𝑎𝑡ℎ(𝑡) is the ABW of a path at time t, which is the minimum ABW of

links along a given path, and 𝑙𝑖𝑛𝑘𝑖𝜖𝑃𝑎𝑡ℎ.

However, querying port statistics from all the switches in the network may

increase the controller’s load and computation time. Therefore, the traffic measurement

module in App-TE only queried statistics from the source and destination switches of

incoming traffic and then calculated the link utilization.

64

4.4.2 Estimating Link Delay

 There has been numerous research handling estimation of link delay. One of the

solutions [100] is to estimate the end-to-end link delay and it is as follows:

𝑇𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑−𝑑𝑒𝑙𝑎𝑦 = 𝑇𝑡𝑜𝑡𝑎𝑙 − (𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑡𝑜𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑤𝑖𝑡𝑐ℎ +

 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑡𝑜𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠𝑤𝑖𝑡𝑐ℎ) (4.4)

where 𝑇𝑡𝑜𝑡𝑎𝑙 is the time duration to send a probe packet from the controller to source

switch plus source switch to destination switch plus destination switch to the controller.

𝑇𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑−𝑑𝑒𝑙𝑎𝑦 is the delay time form source switch to destination switch. The

solution got one-way delay by subtracting the delay time of the controller to source

switch, and controller to destination switch from the total time, 𝑇𝑡𝑜𝑡𝑎𝑙. This work

assumed that the link delays are already known according to the global view of SDN.

Therefore, the link delay of each link is specified delay of the link when the network is

started. The total end-to-end delay for the path is the sum of each link delay along the

path through the network as in Equation (4.5):

 𝐷𝑒𝑙𝑎𝑦𝑝𝑎𝑡ℎ = ∑ 𝑙𝑖𝑛𝑘𝑖 𝑙𝑖𝑛𝑘 𝜖 𝑃𝑎𝑡ℎ (4.5)

where, 𝐷𝑒𝑙𝑎𝑦𝑝𝑎𝑡ℎ is the total end-to-end delay for a path and 𝑙𝑖𝑛𝑘𝑖 is the 𝑖𝑡ℎ link delay

and that link include in that path, 𝑙𝑖𝑛𝑘 ∈ 𝑃𝑎𝑡ℎ.

4.4.3 Estimating Delay-Weighted Capacity (DWC)

In the prioritized application traffic, some are delay-sensitive applications such

as haptic and video streaming but the other are non-delay-sensitive applications which

required more bandwidth. The non-delay-sensitive applications are file transferring and

so on. Therefore, App-TE further considered the weighted value of delay and available

bandwidth for prioritized applications. The DWC is obtained dividing the available

bandwidth by the total path delay (Delay) as in Equation (4.6).

 𝐷𝑊𝐶 =
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝐷𝑒𝑙𝑎𝑦
 (4.6)

The source switch (s) to the destination switch (d), the DWC is obtained through the

Equation (4.7):

65

 𝐷𝑊𝐶𝑠,𝑑 = ∑
𝐴𝐵𝑊𝑠,𝑑

𝑖

𝐷𝑒𝑙𝑎𝑦𝑠,𝑑
𝑖𝑝𝑠,𝑑

𝑖 𝜖𝑝𝑠,𝑑
 (4.7)

where, 𝐷𝑊𝐶𝑠,𝑑 is the DWC value of source (s) and destination (d), 𝐴𝐵𝑊𝑠,𝑑
𝑖 is the

available bandwidth of s and d for ith link, and 𝐷𝑒𝑙𝑎𝑦𝑠,𝑑
𝑖 is the delay value of s and d

for ith link. App-TE defined the optimal path with the maximum weighted sum of DWC

value between source and destination.

4.5 Traffic Management in App-TE

The traffic management module in App-TE performed the following four main

tasks. First, App-TE extracted all possible paths between the source and destination

switches. Then, App-TE queried port statistics from the selected switches and calculated

ABW, delay, and DWC. After that, App-TE selected maximum DWC path (DWC-

aware routing) for prioritized traffic and minimum hop-count path (minimum hop-count

based routing) for non-prioritized traffic. Finally, App-TE installed flow rules for

calculated paths into the intermediate switches along the path.

Figure 4.8 The Flow Diagram for Traffic Management Module

66

As illustrated in Figure 4.8, when the classified traffic is entered the network,

the App-TE first checked whether the prioritized traffic or not. If the classified traffic is

prioritized traffic, the App-TE calculated the ABW, delay, and DWC. Then, it

performed the DWC-aware routing. If the classified traffic is non-prioritized traffic, the

App-TE calculated minimum hop-count path and performed the minimum hop-count

based routing.

4.5.1 Minimum Hop-count-based Routing (MHR)

When the non-prioritized application traffic is entered the network, App-TE

routed this application traffic through the minimum hop-count path. Figure 4.9 shows

step by step process of MHR algorithm.

Algorithm 4.2: MHR Algorithm

1: #srcIP = source host IP address, dstIP = destination host IP address

2: #srcMac = source Host MAC Address, dstMac = destination Host MAC

Address

3: #srcPort = source Port number, dstPort = destination Port number

4: #srcDeviceId = deviceID of switch that source host connected

5: #dstDeviceId = deviceID of switch that destination host connected

6: function: Minimum_hop_count_based_Routing (srcIp, dstIp, srcMac,

dstMac, srcPort, dstPort):

7: get srcDeviceId and dstDeviceId from srcMac and dstMac

8: all_shortest_paths = getPaths (srcDeviceId, dstDeviceId)

9: select one path from all_shortest_paths

10: install flow rules through the selected path

11: forward the packets

12: end function

Figure 4.9 Minimum Hop-count-based Routing Algorithm

Firstly, MHR extracts the DeviceIDs of source and destination switches. Then,

MHR finds the all possible shortest paths between the source and destination switches

by using the ONOS’s northbound APIs (PathService). Finally, selects one path from all

shortest path and installs flow entries of selected path to the intermediate switches

through that path.

67

4.5.2 Delay Weighted Capacity-aware Routing (DWC-aware Routing)

When the prioritized-application traffic is entered the network, this application

traffic is routed by using DWC-aware routing. Figure 4.10 describes how DWC-aware

routing is worked.

Algorithm 4.3: DWC-aware Routing Algorithm

1: #srcIP=source host IP address, dstIP=destination host IP address,

2: # srcMac=source Host Mac, dstMac=destination Host Mac

3: #srcPort=source Port number, dstPort=destination Port number,

srcDeviceId=deviceID of switch that source host connected

4: function: DWC-aware-Routing (srcIp, dstIp, srcMac, dstMac, srcPort, dstPort):

5: get srcDeviceId and dstDeviceId from srcMac and dstMac

6: construct Depth first search graph

7: all_possible_paths = getDFSpaths (srcDeviceId, dstDeviceId)

8: for path in all_possible_paths do:

9: for link in path. links () do:

10: ABW = link. Capacity () - link. load ()

11: total_delay += link_delay

12: end for

13: ABW_path = min (ABW)

14: DWC = ABW_path / total_delay

16: optimal_path = max (Delay_weighted_capacity)

17: end for

18: install flow rules through the maximum DWC path

19: forward the packets

20: end function

Figure 4.10 DWC-aware Routing Algorithm

DWC-aware routing works as follows:

• extracts the DeviceIDs of source and destination switches.

• constructs the Depth First Search graph for source and destination switches.

When ONOS needed to extract the paths between source and destination

switches, it used the PathService API. PathService can support shortest paths

68

and disjoint paths between the source and destination switches. However, one of

the objectives of App-TE is to improve network utilization and choose the best

path for application traffic. Therefore, App-TE needs all possible paths to

perform DWC-aware routing.

• calculates ABW, delay, and DWC for each link and path. Then, selects

maximum DWC path.

• Finally, DWC-aware routing installs flow entries of selected path to the

intermediate switches through that path.

4.6 Chapter Summary

This chapter describes the architecture of App-TE with its three modules. Firstly,

it discusses the issues of shortest path routing and demonstrates with average throughput

results. Then, this chapter explains the three main modules of App-TE with system

diagram and algorithms.

69

CHAPTER 5

IMPLEMENTATION AND EVALUATION OF THE

PROPOSED SYSTEM

The implementation of experimental testbed and evaluation of the proposed

system are discussed in chapter 5. Firstly, the hardware and software requirements of

experimental testbed are described. Then, the experiments are carried out by using the

following methods: App-TE, link-utilization aware routing, and shortest path routing.

Finally, the chapter discussed the experimental results of each method by conducting

different scenarios.

5.1 Design and Implementation of Experimental Testbed

In order to assess the performance of the App-TE, the experimental testbed has

to be designed. As the App-TE is implemented using ONOS controller, it runs in tested

topologies in order to compare and evaluate the results with or without the App-TE. In

order to have deterministic and low-cost environments to test, a virtual testbed was

created that can run on two machines and do not require additional effort to be

maintained and operated. This dissertation applied ONOS controller as the SDN

controller and Mininet [94] as the network emulator. Moreover, the analytic engine

sFlow-RT analyzer [98] is also used. The Figure 5.1 illustrates the logical testbed design

of this dissertation.

Figure 5.1 Logical Testbed Design

In Figure 5.1, the ONOS controller is connected to Mininet network emulator

via OpenFlow protocol. The sFlow agent is run on each switch of Mininet topology by

sFlow-RT analyzer. These agents sent sFlow metrics to sFlow collector by using sFlow

70

datagram connection. App-TE got the active flows events from sFlow analyzer by REST

API calling.

Figure 5.2 The Physical Testbed Design of Classical-Y Topology

According to the literature reviews of application-aware engineering in SDN, the

classical-Y topology is widely used and depicted as Figure 5.2. All the switches/routers

are connected to SDN controller (ONOS) and traffic analyzer (sFlow-RT). The

hardware requirements of the experimental testbed are depicted as Table 5.1. Table 5.2

depicts the software tools that are used in this dissertation.

Table 5.1 Hardware Requirements of Experimental Testbed

Name Specifications

CPU Core TM i5-42100U CPU @2.40GHz

RAM & HDD 8.00GB & 500GB

Operating System Linux 16.04 LTS

Number of PCs 1

Table 5.2 Software and Tools that Used in this Research.

Software Versions Used in

ONOS (SDN Controller) 1.10.0 (Kingfisher) Implementation and Evaluation

Mininet Emulator 2.2.1 Testbed (Evaluation)

sFlow-RT 2.0-r1121 Implementation and Evaluation

Open vSwitch 2.9.2 Testbed (Evaluation)

OpenFlow Protocol Version 1.3 Testbed (Evaluation)

71

5.2 Experimental Methods

The experimental results of the proposed App-TE and other traffic management

methods which are conducting with multiple scenarios are presented in this section. To

highlight the outcome of the proposed App-TE, the following three methods are

compared with different scenarios.

5.2.1 Application-aware TE (App-TE)

The proposed App-TE considered two routing methods. When prioritized

application traffic is entered the network, App-TE routed the traffic by using Delay

weighted Capacity-aware Routing (DWC-aware Routing). If the incoming traffic is non-

prioritized application traffic, App-TE routed the application traffic by using shortest

path routing (or) minimum hop-count based routing. To perform such kinds of routing

mechanism, App-TE needs to estimate Available Bandwidth (ABW), total path delay,

and DWC values.

5.2.2 Link Utilization-aware Routing (LU-Routing)

 LU-Routing is one of the types of constrained-aware routing. Its interested

constraint or weight value is the link utilization. In this dissertation, Link utilization

(LU) is defined as the ABW. When the incoming traffic is entered the network, first,

LU-Routing estimated the LU, then calculated maximum LU path. Finally, the traffic is

routed through the maximum LU path.

5.2.3 Shortest Path Routing

As explained in chapter 2, this dissertation defined one of the applications of

ONOS controller, default forwarding, so called reactive forwarding as the shortest path

routing. Shortest path routing is fast and simple. It simply forwarded the traffic through

the minimum hop-count path.

5.3 Performance Assessment Parameters

The performance assessment parameters that have used in this dissertation are

as follows:

72

(i) Throughput

The throughput refers to the data rate of successful data that delivered over a

communication link. Throughput is measured in bits per second (bps) or sometimes in

megabyte per second (MB/s). Alternatively, the throughput is the rate at which data is

traversing a link and it can be obtained dividing the total payload over the entire session

by the total time (or) time taken that transmitted that data [99]. The throughput can be

derived as the Equation (5.1):

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑇ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛

(ii) Packet Loss Rate

Packet loss rate refers to the ratio of number of loss packets to the total number

of sent packets. Packet loss rate can be obtained through the following Equation (5.2):

𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑒 =
(𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐿𝑜𝑠𝑠𝑃𝑎𝑐𝑘𝑒𝑡𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑃𝑎𝑐𝑘𝑒𝑡𝑠

5.4 Traffic Generators

The App-TE used different kinds of application traffic flows such as file

transferring, video streaming, haptic stream. To generate these application traffic flows,

the following traffic generators are used in this dissertation.

(i) Iperf Traffic Measurement Tool

Iperf works as a client-server architecture. By default, Iperf client connects to

the Iperf server on the TCP port 5001 and the bandwidth displayed by Iperf is the

bandwidth from the client to the server. To generate Iperf TCP traffic, first Iperf server

need to run with the following command:

$ iperf - s - i 1 - p 5001

where, the arguments for -s denotes the server mode, - i denotes the interval in seconds

between periodic bandwidth reports, and - p specifies port number [97]. The iperf client

connects to the server by using the following command:

(5.1)

(5.2)

73

$ iperf - c [server’s IP Address] - p 5001 - t 20

where, the arguments for - c indicates client mode and - t specifies the test duration time

in seconds. In Figure 5.3, there are two Xterm windows in Mininet emulator. The left

one is host H1 and the right one is host H6. Host H1 is used as a server and host H6 is

used as a client.

Figure 5.3 Generating Iperf Traffic between H1 and H6

(ii) Web-based Video Streaming by HTTP

Cisco experts predict 80% of Internet traffic will be video traffic by 2022 [95].

Therefore, App-TE defined video traffic as prioritized-application traffic. In this work,

App-TE used web-based video streaming. The Hyper Text Transfer Protocol (HTTP) is

a stateless application-level request/response protocol. HTTP follows a classical client-

server model. A client opens a connection to make a request, then waits until it receives

a response [105]. To perform this, the python SimpleHTTP module is applied as a web

server and web clients. The following command is used to implement SimpleHTTP

server on port 80:

$ python –m SimpleHTTPServer 80

To get the contents (e.g. videos, images, documents, files, folders) from the

server, the client used the following command:

$ wget http://[server IP Address]:80/[file name]

https://en.wikipedia.org/wiki/Client–server_model
https://en.wikipedia.org/wiki/Client–server_model

74

The clients must specify the server’s IP address, port number, and file name for

this downloading process. Figure 5.4 shows the client (H3) downloading a file from the

SimpleHTTP server (H1).

Figure 5.4 Generating HTTP Traffic Between H1 and H3

(iii) File Transferring with FTP

The File Transfer Protocol (FTP) is a standard network protocol used for file

transferring between a server and clients on a computer network [93]. The following

commands are used to apply FTP server and clients:

$ inetd &

$ ftp [server IP Address]

FTP also protects the username and password, therefore after accessing the

correct username and password, ftp prompt will appear and can get any file from the

server directory. Figure 5.5 shows the file downloading process of FTP client (H1) from

the FTP server (H3).

$ ftp> get [filename]

75

Figure 5.5 Generating FTP Traffic between H1 and H3

(iv) Haptic Stream by D-ITG

There has been a recent concern in the transmission of multi-modal information

over the Internet, and especially the transmission of haptic information [39]. The

characteristics and QoS requirements of haptic traffic are outlined in Table 5.3.

Table 5.3 The Parameters Settings of Haptic Traffic

Traffic Characteristics QoS requirements

Haptic Constant packet rate.

Transmission rate of 1000 packet/sec.

Sensitive to delay and jitter.

Packet loss <∼ 10% and Jitter <∼ 2ms.

Delay <∼ 50ms.

Throughput ∼ 500 kbps to 1

Mbps. Packet loss <∼ 10%

and Jitter <∼ 2ms.

Distributed Internet Traffic Generator (D-ITG) is a platform that can produce

traffic at packet level accurately replicating appropriate stochastic processes for both inter

departure time with random variable packet sizes (exponential, uniform, normal, etc.).

Moreover, D-ITG can analyze network by generating network traffic on a packet by packet

basis. There are five main modules in D-ITG: ITGSend (Sending Process), ITGRecv

(Receiving processes), ITGLog (Storage server), ITGManager (Remote control manager),

ITGDec (Analyzing results) [7].

76

This work generated the traffic which has a constant packet rate and transmission

rate of 1000 packet/sec by using the D-ITG. The transmission rate of haptic media is

1000 MU/s and video is 30 MU/s. The maximum allowable delay for haptic media is 30

to 60 ms and the average bit rate of haptic media is 320 kbps [59]. Then, this scenario

generated TCP traffic which average bit rate is 320 kbps as the haptic media stream. To

generate such kind of traffic, D-ITG used the following command lines:

$./ITGSend -T TCP -a <Ip-address> -c 100 -C 10 -t 15000

$./ITGRecv

$./ITGDec sender.log

where, parameters -T specifies protocol such as TCP or UDP. -a denotes destination IP

address. -c defines the constant payload size which measure by bytes. -C specified

constant packet rate (pps) and -t defined the duration (ms).

5.5 Experiment Topology

The experimental test topology is depicted in Figure 5.6. This Figure includes

six switches and six hosts that connected to each switch.

Figure 5.6 Test Topology

The number (1 2, 3, and 4) written at each switch denotes the port numbers for

the switch. The two numbers (e.g. (14, 10)) on each link represent the link capacity

(Mbps) and the link delay (ms), respectively.

77

5.6 Experimental Scenarios

Five different experimental scenarios have been carried out in this work. The

scenarios are chosen based on the ideas that highlighted the advantage of App-TE. These

scenarios are conducted according to Tables 5.1 and 5.2 and tested with Figure 5.6, test

topology. The experimental results are calculated based on the average results of five

running time.

5.6.1 Scenario I: Analyzing Methods with Iperf

In scenario I, experiments are carried out according to the parameter settings that

described in Table 5.4 and testing with test topology, Figure 5.6. This scenario aimed to

discuss which methods choose which paths based on its constraints and analyze their

performance results.

Table 5.4 The Experimental Parameters Values for Scenario I

Scenario I Traffic

Generator

Iperf Server Iperf Client Number of

Flows

Run time

duration

Test 1 Iperf H1 H2, H3, H4,

H5, H6

5 20 s

(one by one)

Test 2 Iperf H1 H2, H3, H4,

H5, H6

5 Parallel

In test 1, host H1 sends Iperf TCP traffic to hosts H2, H3, H4, H5, and H6 for

20s. Then, host H1 parallel sends 5 numbers of Iperf TCP flows to hosts H2, H3, H4,

H5, and H6 in test 2. As the sample path calculation, Table 5.5 describes the possible

available paths between hosts H1 and H6. There are three shortest available paths for

shortest path routing with hop counts constraints.

The LU-aware routing and App-TE extract paths from Depth First Search (DFS)

graph. The four possible available paths with LU and DWC constraints for LU-aware

and App-TE are also presented in Table 5.5. The constrained values are calculated when

generating Iperf traffic between hosts H1 and H6. When host H1 sent Iperf TCP traffic

to host H6 by using shortest path routing, H1 forwards the Iperf TCP traffic to H6

through the path p1 = S1–S2–S3-S6. This forwarded path is known by checking flow

tables on each switch.

78

Table 5.5 The Paths and Constraints between Hosts H1 and H6

Source Destination Possible Paths Constraints Value Methods

H1

H6

S1-S2-S3-S6

Hop-count

3 hops

Shortest

Path

Routing

S1-S4-S3-S6

S1-S4-S5-S6

S1-S2-S3-S6

Link

Utilization

9.9995

LU-aware

Routing

S1-S4-S5-S6 19.995

S1-S4-S3-S6 14.9995

S1-S2-S3-S4-S5-S6 9.9995

S1-S2-S3-S6

Delay

Weighted

Capacity

0.3887

App-TE S1-S4-S5-S6 1.240

S1-S4-S3-S6 0.7261

S1-S2-S3-S4-S5-S6 0.2429

The flow table information for the switches are shown in Figure 5.7, where only

shows the flow table information of switches S1, S2, S3, and S6 because there is no flow

table information in switches S4 and S5.

Figure 5.7 Flow Table Entries in Switches S1, S2, S3, and S6

79

Shortest path routing only took account minimum hop counts paths, therefore,

when the path p1 does not satisfy the flow demands, the throughput results of shortest

path routing may decrease According to the Figure 5.8, when the traffic is sent one by

one, the throughput results of shortest path routing may increase and outperform the

other two methods. However, when the traffic is sent in parallel, which means all the

traffic are parallel using only shortest paths, the throughput results of shortest path has

been decreased as shown in Figure 5.9.

Figure 5.8 Throughput Results for Shortest Path Routing by Test 1 in Scenario I

Figure 5.9 Throughput Results for Shortest Path Routing by Test 2 in Scenario I

The throughput results for tests 1 and 2 in scenario I by conducting the LU-aware

routing, and App-TE are shown in the Figures 5.10, 5.11, 5.12, and 5.13, respectively.

LU-aware routing used the calculated maximum link utilization path and App-TE used

the calculated maximum DWC path. The throughput results of LU-aware routing for

sending one by one Iperf traffic outperformed the App-TE, however, when the traffic is

80

sent in parallel, the throughput results of App-TE outperformed the other two methods.

Figure 5.10 Throughput Results for LU Routing by Test 1 in Scenario I

Figure 5.11 Throughput Results for LU Routing by Test 2 in Scenario I

Figure 5.12 Throughput Results for App-TE by Test 1 in Scenario I

81

Figure 5.13 Throughput Results for App-TE by Test 2 in Scenario I

5.6.2 Scenarios II: Testing with Larger Link Capacities

In scenario II, experiments are carried out according to the Table 5.6 parameters

settings by using test topology, Figure 5.14.

Table 5.6 The Experimental Parameters values for Scenario II

Scenario

II

Traffic

Generator

FTP

Server

FTP Client Number

of Flows

File

Size

Run time

Duration

Test 1 FTP H1 H2, H3,

H4, H5, H6

25 1G (one by

one)

20s

Test 2 FTP H1 H6

10

1G

Parallel H2 H5

Figure 5.14 Sample Test Topology with Larger Link Capacities

82

There are 6 hosts and 6 switches in Figure 5.14. The two numbers on each link

denote link capacity (Mbps) and link delay (ms). Therefore, the configured link

bandwidth for each link ranges from 100 Mbps to 250 Mbps. The configured link delay

for each link ranges from 15 ms to 20 ms.

In scenario II, host H1 served as an FTP server and other hosts are served as the

clients. Clients have downloaded a file whose size is 1G (1024Bytes). This scenario

aims to present how the three methods are handled the FTP traffic, to prove App-ware

TE can handle the FTP traffic, and to be conducted with the larger amount of configured

link bandwidth.

Figure 5.15 Throughput and Time Results of Test 1 in Scenario II by Shortest Path

Routing

Figure 5.16 Throughput and Time Results of Test 2 in Scenario II by Shortest Path

Routing

83

Figures 5.15 and 5.16 depict the throughput and time results for accessing FTP

servers by shortest path routing. These Figures show the analysis results of when FTP

clients downloading a file (1G) from an FTP server.

 In these experimental results of the figures, the throughput bar shows which

Mbps are used to download the file from the server. The time bar represents the duration

to accomplish the file downloading process.

Figure 5.17 Throughput and Time Results of Test 1 in Scenario II by LU-aware

Routing

To parallel accessing, this scenario generated cross traffic between hosts H1, H2,

H5, and H6. For this test, hosts H1 and H2 served as the FTP servers and hosts H5 and

H6 performed as the clients. The Figures 5.17, 5.18, 5.19, and 5.20 depict the throughput

and time results for accessing FTP servers in tests 1 and 2 by using LU-aware routing

and App-TE.

Figure 5.18 Throughput and Time Results of Test 2 in Scenario II by LU-aware

Routing

84

Figure 5.19 Throughput and Time Results of Test 1 in Scenario II by App-TE

Figure 5.20 Throughput and Time Results of Test 2 in Scenario II by App-TE

Figure 5.21 Throughput and Time Results of Test 2 in Scenario II by the Three

Methods

85

Figure 5.21 summarized the throughput and time results for parallel accessing

FTP servers (H1 and H2) from the clients (H5 and H6). According to this Figure 5.21,

shortest path routing has downloaded a file with lower throughput but taken highest

amount of time. LU-aware routing has gotten higher throughput than the shortest path

routing. The proposed App-TE and LU-aware routing got nearly the same throughput

results and their significant difference is 1.146. The throughput results of App-TE is

higher than LU-aware routing. Moreover, App-TE took less time to accomplish this FTP

file downloading.

5.6.3 Scenario III: Testing with Different Application Traffic Flows

Scenario III conducted different application traffic flows by using three different

methods. This scenario is running in sample test topology as shown in Figure 5.14. This

scenario also used different application traffic flows such as, video streaming and haptic

stream.

Table 5.7 Experimental Parameters for Scenario III

Application traffic flows Options

Video streaming VLC Server (H1), VLC Client (H6)

Haptic stream Generated by using D-ITG

The main goal of this test is analyzing how the three methods perform to conduct

these application traffic flows. The experimental parameters are as shown in Table 5.7.

Table 5.8 Parameters Settings

Video File Settings VLC Streaming Settings

Parameters Values Parameters Values

Video file type MPEG-4 (mp4) Video Codec H.264+MP3 (MP4)

Size 101.1MB

(101,123,423 bytes)

Bit Rate 128Kbps

Duration 11 minutes 25 seconds Sample Rate 44100KHz

Dimension 1280×720 Encapsulation MP4/MOV

Codec H.264 Protocol Type HTTP

86

To apply video streaming, this test used VLC server and client. Host H1 served

as the VLC server which stream the video to the VLC client host H6. Table 5.8 depicted

as the parameter setting of the VLC software and streamed video file.

The streamed video file size is 101.1 MB and the duration for this video is 11

minutes and 25 seconds. VLC server streamed this video by using HTTP protocol. This

scenario also analyzed packet loss rate of video streaming by applying the three methods

(shortest path routing, LU-aware routing, App-TE). To analyze packet loss rate of video

streaming, this scenario checked packet retransmission of TCP connection.

Figure 5.22 Video Streaming with Shortest Path Routing

Figure 5.23 Video Streaming with LU-aware Routing

Figures 5.22, 5.23, and 5.24 showed the occurrence of packet retransmission,

alternatively, the occurrence of packet loss when the VLC server H1 was streaming video

file to VLC client H6. According to the packet retransmission analytical results, the shortest

87

path routing got the highest number of retransmitted packets (nearly 1000 packets) and the

packet loss rate is nearly 20% as shown in Figure 5.22.

Figure 5.24 Video Streaming with App-TE

When video streaming is conducted by LU-aware and App-TE, the highest

number of retransmitted packets are nearly 500 packets and less than 450 packets,

respectively. APP-TE not only got a smaller number of retransmitted packets than the

others but also got less time duration to transmit the video file.

To conducted the haptic stream, scenario III used D-ITG. Figure 5.25 showed

the throughput versus elapsed time of haptic streams by applying the three methods.

According to the Figure 5.25, the average throughput result of App-ware TE

outperformed the others two methods.

Figure 5.25 Comparative Throughput Results by the Three Methods

88

5.6.4 Scenarios IV: Testing with and without Application-awareness

In scenario IV, experiments are carried out according to the parameter settings

of Table 5.9 by testing with Figure 5.14. This scenario aims to present the effectiveness

of with and without application awareness.

Table 5.9 The Experimental Parameters Values for Scenario IV

Application traffic flows Server Clients Number of

flows

Prioritized-application traffic:

file transferring, video streaming,

haptic stream

H1

H2

H6

 H5

6

Non prioritized-application traffic:

Iperf

H1

H2

H6

H5

6

In scenario IV, 4 types of 12 traffic flows are parallelly generated and conducted

by using the following three methods: shortest path routing, LU-aware routing, and App-

ware TE. For file transferring, sending a huge file whose size is 1G. For video streaming,

a video file whose size is 101.1 MB. Moreover, this scenario also generated haptic

stream and Iperf traffic. Whenever the prioritized- or non prioritized-application traffic

flows are entered the network, the shortest path routing always forwarded the traffic

flow through the shortest path. LU-aware routing forwarded through the maximum link

utilization path.

Figure 5. 26 Throughput and Time Results of Scenario IV by Shortest Path Routing

89

Figure 5. 27 Throughput and Time Results of Scenario IV by LU-aware Routing

Figure 5. 28 Throughput and Time Results of Scenario IV by App-TE

The goal of App-TE is to find the optimal path for prioritized-traffic to maintain

the quality of this traffic. In App-TE, the prioritized-traffic flows are forwarded through

the maximum DWC path and non-prioritized traffic flows are simply forwarded through

the minimum hop-count paths. Figures 5.26, 5.27, and 5.28 described the throughput

and time results of prioritized and non-prioritized application traffic flows conducted by

the shortest-path routing, LU-aware routing, and App-TE, respectively.

In Figure 5.29, App-TE has been decreased throughput results for non-priorities

traffic (Iperf) than the other two methods. The LU-aware routing got better throughput

results for non-priorities traffic (Iperf) than the shortest path routing and App-TE. The

shortest path routing got the least throughput results than the other two methods. As the

experiment results in Figure 5.29, the throughput results of prioritized-application traffic

90

flows (file transferring, video streaming, haptic streaming) conducted by the App-TE

outperformed the other two methods.

Figure 5.29 Comparative Throughput Results for the Three Methods

5.6.5 Scenarios V: Testing with Different Topologies

In scenario V, experiments are carried out according to the parameter settings of

Table 5.10 by testing with different topologies such as leaf-n-spine topology (Figure

5.30) and random topology (Figure 5.31). The main objectives of this scenario are to

analyze the performance of the three methods in different topologies and present the

effectiveness of with and without application awareness in different topologies.

Figure 5. 30 Leaf-n-Spine Topology

91

Moreover, scenario V compared the topologies that contained multiple equal cost

paths and less equal-cost paths. In this scenario, different types and sizes of the

application traffic flows are simultaneously generated in random order. These analytical

results are calculated by using the average results of six running times.

Figure 5. 31 Random Topology

Table 5.10 Topology Settings

Parameters Settings Leaf-n-Spine Topology Random Topology

Number of switches 6 9

Number of hosts 6 13

Links bandwidth 150 ~ 350 Mbps 200 ~ 450 Mbps

Links delay 10ms 10ms

Application traffic

flows

File transferring, video streaming, haptic stream, iperf

Figures 5.32 and 5.33 depict the comparative throughputs results by the three

methods in leaf -n-spine topology and random topology, respectively. App-TE used DFS

to construct the network topology graph.

92

Figure 5.32 Comparative Results of the Three Methods in Leaf-n-Spine Topology

The available paths between source and destination hosts contained all the

possible paths rather than disjoint paths and shortest path. That is why, App-TE can

perform efficiently in the random topology which involve less equal-cost paths as shown

in the experimental results of Figures 5.32 and 5.33.

Figure 5.33 Comparative Results of the Three Methods in Random Topology

5.7 Chapter Summary

In this chapter, the experiments are carried out by using different scenarios and

analyzed by using different methods. First, to analyze which methods used which paths

depending on which constraints, this chapter carried out the testing with scenario I. To

analyze how to handle FTP and larger link capacities, the chapter carried out the testing

93

with scenario II. Scenario III tested with different application traffic flows. In scenario

IV, two classes of traffic are handled for testing with and without application-awareness

of the following three methods: shortest path routing, LU-aware routing, and App-TE.

To prove App-TE can apply in different topologies, scenario V tested with App-TE by

conducting leaf and spine and random topologies. By analyzing the experimental result

of scenarios I, II, III, IV, and V, App-TE got the increased throughput results than the

others dealing with prioritized application traffic flows.

94

CHAPTER 6

CONCLUSION AND FUTURE WORK

The final chapter concluded the proposed work, App-TE by describing the

summary of the dissertation, advantages and limitations, and future work.

6.1 Summary of Dissertation

Effective traffic management solution is required not only to harmonize the

dramatic growth of networks but also to improve network performance and to support

the best services to the user. The equal treatment of all classes of applications is not the

proper way to meet user’s application-level requirements because the resource

requirements of network applications are varied. Different applications have different

application requirements. Application-aware engineering is one of the effective traffic

management solutions which computed paths based on the application requirements

such as bandwidth, network delay, jitter, and so on.

The legacy networks struggle to perform such complex application-aware

engineering tasks. It cannot provide complex the complexity of control protocols and

interconnecting of a large number of smart devices and it also leads to limited

innovations for both management and configuration aspects. Software Defined

Networking (SDN) provides an effective traffic management solution by separating

control and data planes, global centralization control, and being programmable.

And, the traditional shortest path routing cannot provide effective traffic

engineering because it only aware the shortest path. The constraint-aware routing is

more efficient than the traditional shortest path routing, however, it needed to estimate

constraints such as link capacity, delay, jitter, and so on. This constraint-aware routing

cannot guarantee future traffic demands and the prioritized traffic flows.

 To overcome such kinds of issues, this dissertation proposed effective

application-aware traffic engineering in SDN which contributes the following three

main modules: traffic classification, measurement, and management. And, the

dissertation described the proposed work with six chapters. In chapter 1, this dissertation

was starting to introduce what is application-aware engineering and how important it is.

After that, the chapter also presented the motivations and the problem definitions that

95

faced in the three main modules. App-TE aimed to overcome these problems by

fulfilling its objectives such as selecting the optimal path for the prioritized application

traffic flows. Then, the chapter also mentioned the overall contributions of this work

related in three different modules.

To highlight the problems of application-aware traffic engineering in SDN, the

dissertation firstly surveyed the issues of traditional IP-based and MPLS-based traffic

engineering in chapter 2. Chapter 2 also mentioned some of the surveyed works of traffic

engineering in SDN under the scope of flow management, fault tolerance, topology

update, and traffic analysis. After that, it presented separately the brief review of

previous work for each type of three main modules. In traffic classification, the chapter

briefly mentioned the related works of port-based approach, DPI or payload-based

approach, and machine learning-based approaches. And, it also mentioned the issues of

these approaches. In traffic measurement, the chapter firstly explained the definition of

network QoS parameters which represent the current situation of networks, then it also

discussed the surveyed of estimation techniques for these parameters especially

available bandwidth, end-to-end delay, and link weight. For traffic management, the

various methods and approaches of application-aware traffic management in SDN,

SDN-based cloud, IoT, and data center networks have been proposed so far. Finally, the

chapter concluded by describing the various application-aware traffic engineering in

SDN as in Table 2.1 and showed that efficient application-aware engineering techniques

are still required to satisfy the user application level requirement.

The background theory for the proposed App-TE was detailed described in

chapter 3. Since App-TE implemented in the SDN environment, chapter 3 included the

description of the layer taxonomy of SDN architecture which involving infrastructure

layer, controller layer, data plane layer, northbound, and southbound protocols. To

describe these layers, the chapter also gave examples of each layer for instance; Open

vSwitch, its specifications, and processing structure are described in the data plane layer.

The ONOS controller for the control layer and the OpenFlow protocol for southbound

protocols. Finally, this chapter presented a short overview of flow management

approaches (proactive, reactive, and hybrid) and QoS routing methods which have been

used in conventional IP and SDN networks.

The overall system architecture of the proposed App-TE is well described in

chapter 4. App-TE routed the traffic according to the prioritized classes. Firstly, chapter

96

4 defined the application traffic as two classes: prioritized and non-prioritized classes.

The main objective of App-TE is to route the prioritized traffic through the optimal path.

Both bandwidth and delay-sensitive application traffic are included in the prioritized

traffic class. Therefore, App-TE considered two different routing methods. When the

incoming traffic is entered the network, App-TE classified the traffic by using port and

protocol number with the help of a traffic analyzer (sFlow-RT). If the classified traffic

is prioritized application traffic, App-TE routed it by using DWC-aware routing. If the

non-prioritized traffic is entered the network, App-TE simply routed the traffic through

the shortest path. Therefore, step by step process for estimation of available bandwidth,

link delay and delay weighted capacity values are also described in chapter 4. Finally,

this chapter explained with the detailed process of two different routing methods by

using flow diagrams and algorithms.

The experimental design, implementation and evaluation of the App-TE in SDN

are presented in chapter 5 with the various types of experimental results. Firstly, the

requirements of hardware, software, and tools that are in designing of experimental

testbed are described in chapter 5. To highlight the outcome of App-TE, chapter 5

comparatively discussed and analyzed App-TE with other two methods such as Link

Utilization aware routing and shortest path routing and it also evaluated and analyzed

with five different scenarios. This dissertation used different types of application flows

such as video streaming, file transferring, and haptic stream. To conducted this traffic

in Mininet network emulator, this chapter also described different traffic generating

tools (Iperf, FTP, HTTP, and D-ITG) to generate the traffic as in the real network traffic.

The evaluation results are measured by the following parameters: throughput and packet

loss. According to the experimental results that conducted with various scenarios in

chapter 5, the throughput and packets loss results of App-TE outperformed the other two

methods and improved the network utilization.

6.3 Advantages and Limitations

To reroute the non-prioritized applications through the optimal path can occur a

lack of network resources for prioritized-applications. The flow management method

proposed in this dissertation is so-called App-TE. Consequently, App-TE focused on the

prioritized traffic to reroute through the best path. The delay-sensitive and non-delay-

sensitive application traffic are involved in the prioritized application traffic class. For

97

this reason, App-TE used the weighted parameters’ values of ABW and link delay to

choose the best path. For the non-prioritized application traffic, App-TE simply

forwarded through the shortest path.

To perform this kind of flow management, first App-TE estimates QoS

parameters such as Available Bandwidth (ABW) and link delay. To estimate these QoS

parameters, querying statistics information from the switches is needed to perform and

this may increase the latency between controller and switches. Moreover, this may

increase the controller workload. To overcome this, App-TE queried port statistics from

the selected switches that information is provided by the sFlow-RT analyzer via REST

API calling instead of querying all the switches in the network.

According to the preliminary experiments of App-TE, the throughput and packet

loss rate of App-TE outperformed the other two methods by conducting five different

scenarios. To analyze which methods choose which paths based on their constraints, this

work used scenario I (section 5.6.1). From this experiment, we observed that all three

methods work well and correctly choose their constrained paths. We also know that,

when the traffic volume is smaller than the link capacity, the fast and simple shortest

path routing got better throughput results than the others because of the other two (App-

TE, LU-aware routing) methods incurred the delay time for estimating QoS parameters

and installing flow table entries. However, when the traffic is sent in parallel and the

traffic volume is larger than the link capacity, the App-TE and LU-aware routing got

better throughput results than the shortest path routing.

Not only to present how the three methods handled different application traffic

but also to prove App-TE work well with larger link capacity and different application

traffic flows (file transferring, video streaming and haptic stream), the performance

results of three methods are demonstrated in scenario II and III (5.6.2 and 5.6.3).

According to the experimental results of scenario II, the shortest path routing has

downloaded a file with lower throughput but taken highest amount of time. LU-aware

routing has gotten higher throughput than the shortest path routing. The proposed App-

TE and LU-aware routing got nearly the same throughput results and their significant

difference is 1.146. The throughput results of App-TE is higher than LU-aware routing.

Moreover, App-TE took less time to accomplish the file downloading process.

According to the analytical results of packet retransmission, the shortest path

routing got the highest number of retransmitted packets (nearly 1000 packets) and the

98

packet loss rate is nearly 20% when video streaming is conducted in scenario III. When

video streaming is conducted by LU-aware and App-TE, the highest number of

retransmitted packets are nearly 500 packets and less than 450 packets, respectively.

APP-TE not only got a smaller number of retransmitted packets than the others but also

got less time duration to transmit the video file.

The performance results of scenario IV analyzed how the three methods are

conducted with prioritized and non-prioritized application traffic flows and showed the

effectiveness of with and without application awareness. According to these

experimental results, App-TE has been decreased throughput results for non-priorities

traffic (Iperf) than the other two methods. The LU-aware routing got better throughput

results for non-priorities traffic (Iperf) than the shortest path routing and App-TE. The

shortest path routing got the least throughput results than the other two methods. When

the prioritized application traffic is conducted, the throughput results of App-TE

outperformed the other two methods.

To analyze the performance of App-TE with different topologies, scenario V

(section 5.6.5) is conducted. This scenario compared the topologies which contained

multiple equal-cost paths and less equal-cost paths. According to the experimental

results, the average throughput results of App-TE outperformed the others when the

random topology (less equal-cost path) is conducted.

As a summarization, App-TE not only got better throughput results but also

obtain less packet loss rate. The estimation of QoS parameters and installing flow entries

took a significant amount of time. When the traffic volume is smaller than the link

capacity, the shortest path routing can get better results than the constraints-aware

routing. And, App-TE can apply every topology, however, App-TE got better

performance results in topology which has less equal-cost paths.

For the limitations, App-TE mainly focused on two modules: measurement and

management in this work. To perform traffic classification and measurement, App-TE

does not consider the previous flows which are already classified and it already has

assigned flow rules. Therefore, App-TE can avoid unnecessary flow classifications,

estimation parameters, and installing flow rules. Moreover, the purpose of using a

sFlow-RT analyzer in traffic classification is to reduce controller workload. However,

port and protocol number-based application traffic classification cannot exactly

categorize application traffic flows; therefore, the effective traffic classification schemes

99

are needed to perform by applying Deep Packet Inspection (DPI) or Machine Learning

techniques.

6.3 Recommendations for Future Work

Although App-TE is implemented to fulfill its objectives. There has still left

some works for future extension.

App-TE took account of the network QoS constraints such as available

bandwidth and delay. Not only to study other network QoS constraints such as jitter and

delay variation but also consider application QoS constraints such as buffer playtime for

YouTube video.

App-TE aims to guarantee the prioritized application traffic flows, therefore, the

traffic management method of App-TE considers two routings. One for prioritized and

other for non-prioritized application traffic flows. App-TE does not consider future

traffic demands. Therefore, the traffic management solution still need to consider to

adapt to future demands.

100

AUTHOR’S PUBLICATIONS

[p1] M. T. Z. Win, K. T. Mya, and A. H. Maw, “Study on Segment Routing on

SDN”, In the Proceedings of the 15th International Conference on Computer

Applications (ICCA), Yangon, Myanmar, pp. 385-390, February 2017.

[p2] M. T. Z. Win, K. T. Mya, and Y. Ishibashi, “Traffic Engineering with

Segment Routing in ONOS Controller”, In the Proceedings of the 16th

International Conference on Computer Applications (ICCA), Yangon,

Myanmar, pp. 380-384, February 2018.

[p3] M. T. Z. Win, Y. Ishibashi, and K. T. Mya, “Available Bandwidth Based

Application-aware Engineering in SDN”, In the Proceedings of 2019 the 9th

International Workshop on Computer Science and Engineering (WCSE),

WCSE_2019_SPRING, Yangon, Myanmar, pp. 142-147, February 2019.

ISBN 978-981-14-1455-8, [doi:10.18178/wcse.2019.03.024]

[p4] M. T. Z. Win, Y. Ishibashi, and K. T. Mya, “QoS-aware Traffic Engineering

in Software Defined Networks”, The 25th International Asia-Pacific

Conference on Communication (APCC), Ho Chi Minh, Vietnam, pp. 171-

176, November 2019.

[p5] M. T. Z. Win and K. T. Mya, “QoS-aware Traffic Management in Software

Defined Networking”, International Journal of Sciences: Basic and Applied

Research Journals (IJSBAR), ISSN:2307-4531 [Online], January 2020. (To

be appeared).

101

BIBLIOGRAPHY

[1] I. F. Akyildiz, T. Anjali, L. Chen, J. C. D. Oliveira, C. Scoglio, A. Sciuto,

J. A. Smith, and G. Uhl, “A New Traffic Engineering Manager for

Diffserv/MPLS Networks: Design and Implementation on an IP QoS

Testbed”, In the Journal of Computers on Communications, Elsevier, vol.

26, no. 4, pp. 388-403, March 2003.

[2] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A Roadmap for

Traffic Engineering in SDN-OpenFlow Networks”, In the Journal of

Computer Networks, Elsevier, vol. 71, pp.1-30, October 2014.

[3] C. Alaettinoglu, “Overcoming Traffic Engineering Challenges with SDN”,

APNIC, Tech matters, May 2017, [Online] Available:

https://blog.apnic.net/overcoming-traffic-engineering-challenges-sdn.

[4] R. Alshammari and A. N. Z. Heywood, “Machine Learning based

Encrypted Traffic Classification: Identifying SSH and Skype”, In the

Proceedings of 2009 IEEE Symposium on Computational Intelligence for

Security and Defense Applications (CISDA), IEEE, pp. 1-8, July 2009.

[5] R. Alshammari and A. N. Z. Heywood, “Identification of VoIP Encrypted

Traffic Using Machine Learning Approach”, In the Journal of King Saud

University of Computer and Information Sciences, Elsevier, vol. 27, no. 1,

pp. 77-92, January 2015.

[6] C. Arsenault, “Understanding Network Bandwidth vs Latency”, August

2017, [Online] Available: https://www.keycdn.com/blog/network-

bandwidth.

[7] S. Avallone, S. Guadagno, D. Emma, A. Pescapè, and G. Ventre, “D-ITG

Distributed Internet Traffic Generator”, In the Proceedings of First

International Conference on the Quantitative Evaluation of Systems,

(QEST), IEEE, pp. 316-317, September 2004.

[8] D. O. Awduche and J. Agogbua, “Requirements for Traffic Engineering

over MPLS”, RFC 2702, Tech. Rep., September 1999.

[9] D. O. Awduche, “MPLS and Traffic Engineering in IP Networks”, In the

Journal of IEEE Communications Magazine, IEEE, vol. 37, no. 12, pp. 42-

47, December 1999.

102

[10] D. O. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview

and Principles of Internet Traffic Engineering”, RFC 3272, Tech. Rep.,

May 2002.

[11] M. Azizi, R. Benaini, and M. B. Mamoun, “Delay Measurement in

Openflow-Enabled MPLS-TP Network”, In the Journal of Modern

Applied Science, Canadian Center of Science and Education, vol. 9, no. 3,

pp. 90, March 2015.

[12] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and

D. Simeonidou, “An Analytical Model for Software Defined Networking:

A Network Calculus-based Approach”, In the Proceedings of 2013 IEEE

Global Communications Conference (GLOBECOM), IEEE, pp. 1397-

1402, December 2013.

[13] R. Boutaba, W. Szeto, and Y. Iraqi, “DORA: Efficient Routing for MPLS

Traffic Engineering”, In the Journal of Network and Systems

Management, Springer, vol. 10, no. 3, pp. 309-325, September 2002.

[14] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. V.

Merwe, “Design and Implementation of a Routing Control Platform”, In

the Proceedings of the 2nd Conference on Symposium on Networked

Systems Design & Implementation, USENIX Association, vol. 2, pp. 15-

28, May 2005.

[15] J. Chen, J. Ling, J. Zhou, and W. Zhang, “Link Failure Recovery in SDN:

High Efficiency, Strong Scalability and Wide Applicability”, In the

Journal of Circuits, Systems and Computers, World Scientific, vol. 27, no.

06, pp.1850087-1850117, June 2018.

[16] L. C. Cheng, K. Wang, and Y. H. Hsu, “Application-aware Routing

Scheme for SDN-based Cloud Datacenters”, In the Proceedings of 2015

7th International Conference on Ubiquitous and Future Networks, IEEE,

pp. 820-825, July 2015.

[17] L. W. Cheng and S. Y. Wang, “Application-aware SDN Routing for Big

Data Networking”, In 2015 IEEE Global Communications Conference

(GLOBECOM), IEEE, pp. 1-6, December 2015.

[18] T. Chin, M. Rahouti, and K. Xiong, “Applying Software Defined

Networking to Minimize the End-to-End Delay of Network Services”, In

103

the Journal of ACM SIGAPP Applied Computing Review, ACM, vol. 18,

no. 1, pp. 30-40, March 2018.

[19] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A

Low-Cost Network Monitoring Framework for Software Defined

Networks”, In the Proceedings of 2014 IEEE Network Operations and

Management Symposium (NOMS), IEEE, pp. 1-9, May 2014.

[20] F. Ciucu and J. Schmitt, “Perspectives on Network Calculus: No Free

Lunch, But Still Good Value”, In the Journal of ACM SIGCOMM

Computer Communications Review, ACM, vol. 42, no. 4, pp. 311–322,

September 2012.

[21] G. C. Deng and K. Wang, “An Application-aware QoS Routing Algorithm

for SDN-based IoT Networking”, In the Proceedings of 2018 IEEE

Symposium on Computers and Communications (ISCC), IEEE, pp. 186-

191, 2018.

[22] N. Deo and C. Y. Pang, “Shortest-path Algorithms: Taxonomy and

Annotation”, In the Journal of Networks, Wiley Online Library, vol. 14,

no. 2, pp. 275-323, June 1984.

[23] K. L. Dias, M. A. Pongelupe, W. M. Caminhas, and L. Errico, “An

Innovative Approach for Real-time Network Traffic Classification”, In the

Journal of Computer Networks, Elsevier, vol. 158, pp. 143-157, July 2019.

[24] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS: An

OpenFlow Controller Design for Multimedia Delivery with End-to-End

Quality of Service over Software-Defined Networks”, In the Proceedings

of 2012 Asia Pacific Signal and Information Processing Association

Annual Summit and Conference, IEEE, pp. 1-8, December 2012.

[25] M. A. Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat,

“Hedera: Dynamic Flow Scheduling for Data Center Networks”, In the

Proceedings of Networked Systems Design and Implementation

Symposium (NSDI), vol. 10, no. 2010, April 2010.

[26] G. Finnie, “The Role of DPI in an SDN World”, White paper, Heavy

Reading, December 2012.

[27] M. Finsterbusch, C. Richter, E. Rocha, J. A. Muller, and H. Klaus, “A

Survey of Payload-based Traffic Classification Approaches”, In the

104

Journal of IEEE Communications Surveys & Tutorials, IEEE, vol.16, no.

2, pp.1135-1156, October 2013.

[28] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A Replication

Component for Resilient OpenFlow-based Networking”, In the

Proceedings of 2012 IEEE Network Operations and Management

Symposium (NOMS), IEEE, pp. 933–939, April 2012.

[29] B. Fortz and M. Thoup, “Internet Traffic Engineering by Optimizing OSPF

Weights”, In Proceedings of the Nineteenth Annual Joint Conference of

the IEEE Computer and Communications Societies (INFOCOM), IEEE,

vol. 2, pp. 519–528, March 2000.

[30] B. Fortz, J. Rexford, and M. Thorup, “Traffic Engineering with Traditional

IP Routing Protocols”, In the Journal of IEEE Communications Magazine,

IEEE, vol. 40, no. 10, pp. 118-124, December 2002.

[31] R. L. Gomes and E. R. M. Madeira, “A Traffic Classification Agent for

Virtual Networks based on QoS Classes”, In the Journal of IEEE Latin

America Transactions, IEEE, vol. 10, no.3, pp. 1734-1741, June 2012.

[32] Y. Goo, K. Shim, S. Lee and M. Kim, “Payload Signature Structure for

Accurate Application Traffic Classification”, In the Proceedings of 2016

18th Asia Pacific Network Operations and Management Symposium

(APNOMS), IEEE, pp. 1-4, October 2016.

[33] W. Goralski, “The Illustrated Network: How TCP/IP Works In A Modern

Network”, Morgan Kaufmann, April 2017.

[34] A. Greenberg, G. Hjalmtysson, D.A. Maltz, A. Myers, J. Rexford, G. Xie,

H. Yan, J. Zhan, and H. Zhang, “A Clean Slate 4D Approach to Network

Control and Management”, In the Journal of ACM SIGCOMM Computer

Communication Review, vol. 35, no. 5, pp. 41-45, October 2005.

[35] G. Han, J. Jiang, N. Bao, L. Wan, and M. Guizani, “Routing Protocols for

Underwater Wireless Sensor Networks”, In the Journal of IEEE

Communications Magazine, IEEE, vol. 53, no. 11, pp. 72-78, November

2015.

[36] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella, L.

E. Li, and M. Thottan, “Measuring Control Plane Latency in SDN-enabled

105

Switches”, In the Proceedings of the 1st ACM SIGCOMM Symposium on

Software Defined Networking Research, ACM, pp. 25, June 2015.

[37] C.E. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm”, RFC

2992, Tech. Rep., November 2000.

[38] Fei Hu, “Network Innovation Through OpenFlow and SDN: Principles and

Design”, CRC Press, February 2014.

[39] P. Huang and Y. Ishibashi, “QoE Assessment of Will Transmission Using

Vision and Haptics in Networked Virtual Environment”, In the Journal of

Communications, Network and System Sciences, Citeseer, vol. 7, no. 08,

pp. 265-278, July 2014.

[40] G. Iannaccone, C. N. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,

“Analysis of Link Failures in an IP Backbone”, In the Proceedings of the

2nd ACM SIGCOMM Workshop on Internet Measurement, ACM, pp. 237-

242, November 2002.

[41] A. Iqbal, U. Javed, S. Saleh, J. W. Kim, J. S. Alowibdi, and M. U. Ilyas,

“Analytical Modeling of End-to-End Delay in OpenFlow Based

Networks”, In the Journal of IEEE Access, Special Section on Future

Networks: Architectures, Protocols, and Applications, IEEE, vol. 5, pp.

6859-6871, December 2016.

[42] M. Jain and C. Dovrolis, “End-to-End Available Bandwidth: Measurement

Methodology, Dynamics, and Relation with TCP Throughput”, In the

Journal of IEEE/ACM Transactions on Networking (TON), IEEE Press,

vol. 11, no. 4, pp. 537-549, August 2003.

[43] Y. Jarraya, T. Madi, and M. Debbabi, “A Survey and A Layered Taxonomy

of Software Defined Networking”, In the Journal of IEEE

Communications Surveys & Tutorials, IEEE, vol. 16, no. 4, pp. 1955-

1980, April 2014.

[44] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,

“Modeling and Performance Evaluation of An OpenFlow Architecture”,

In the Proceedings of 23rd International Teletraffic Congress, International

Teletraffic Congress, pp. 1-7, September 2011.

[45] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-based

Application-aware Networking on the Example of YouTube Video

106

Streaming”, In the Proceedings of 2013 2nd European Workshop on

Software Defined Networks (EWSDN), IEEE, pp. 87-92, October 2013.

[46] S. Jeong, D. Lee, J. Hyun, J. Li, and J.W.K. Hong, “Application-aware

Traffic Engineering in Software Defined Network”, In the Proceedings of

2017 19th Asia-Pacific Network Operations and Management Symposium

(APNOMS), IEEE, pp. 315-318, September 2017.

[47] S. Jeong, D. Lee, J. Choi, J. Li, and J. W. K. Hong, “Application-aware

Traffic Management for OpenFlow Networks”, In the Proceedings of 2016

18th Asia-Pacific Network Operations and Management Symposium

(APNOMS), IEEE, pp. 1-5, October 2016.

[48] R. Jmal and L. C. Fourati, “Implementing Shortest Path Routing

Mechanism Using OpenFlow POX Controller”, In the Proceedings of 2014

International Symposium on Networks, Computers and Communications,

IEEE, pp. 1-6, June 2014.

[49] K. H. Joon, M. Chlansker, J. R. Santos, J. Tourrilhes, Y. Turner, and N.

Feamster, “Coronet: Fault Tolerance for Software Defined Networks”, In

the Proceedings of 2012 20th IEEE International Conference on Network

Protocols (ICNP), pp. 1-2, October 2012.

[50] S. Kamat, R. Guerin, A. Orda, and T. Przygienda, “QoS Routing

Mechanisms and OSPF Extensions”, In the Proceedings of GLOBECOM’

97, Citeseer, 1997.

[51] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic Load Balancing

Without Packet Reordering”, In the Journal of ACM SIGCOMM

Computer Communication Review, vol. 37, no. 2, pp. 51-62, March 2007.

[52] J. Kempf, S. Whyte, J. Ellithorpe, P. Kazemian, M. Haitjema, N. Beheshti,

S. Stuart, and H. Green, “OpenFlow MPLS and the Open Source Label

Switched Router”, In the Proceedings of the 23rd International Tele Traffic

Congress, International Tele Traffic Congress, pp. 8-14, September 2011.

[53] M. Kodialam and T. V. Lakshman, “Minimum Interference Routing with

Applications to MPLS Traffic Engineering”, In the Proceedings of IEEE

INFOCOM 2000 and 19th Annual Joint Conference of the IEEE Computer

and Communications Societies, IEEE, vol. 2, pp. 884 - 893, 2000.

107

[54] A. Lester, Y. Tang, and T. Gyires, “Application-aware Bandwidth

Scheduling for Data Center Networks”, In the Journal on Advances in

Networks and Services, Citeseer, vol. 7, 2014.

[55] Y. Li and M. Chen, “Software Defined Network Function Virtualization:

A Survey”, In the Journal of IEEE Access, IEEE, vol. 3, pp. 2542-2553,

December 2015.

[56] L. E. Li, Z. M. Mao, and J. Rexford, “CellSDN: Software-Defined Cellular

Networks”, Technical Report, Princeton University Computer Science,

Citeseer, 2012.

[57] G. Li, M. Dong, K. Ota, J. Wu, J. Li, and T. Ye, “Deep Packet Inspection-

based Application-aware Traffic Control for Software Defined Networks”,

In the Proceedings of IEEE Global Communications Conference

(GLOBECOM), IEEE, pp. 1-6, December 2016.

[58] G. Liang and W. Li, “A Novel Industrial Control Architecture Based on

Software Defined Network”, In the Journal of Measurement and Control,

SAGE Publications Sage UK: London, England, vol. 51, no. 7-8, pp. 360-

367, September 2018.

[59] A. Marshall, K. M. Yap, and W. Yu, “Providing QoS for Networked Peers

in Distributed Haptic Virtual Environments”, In the Journal of Advances

in Multimedia, Hindawi, vol. 2008, pp. 1-14, June 2008.

[60] P. Megyesi, A. Botta, G. Aceto, A. Pescape, and S. Molnár. “Available

Bandwidth Measurement in Software Defined Networks”, In the

Proceedings of the 31st Annual ACM Symposium on Applied Computing,

ACM, pp. 651-657, April 2016.

[61] P. Megyesi, A. Botta, G. Aceto, A. Pescapé, and S. Molnár, “Challenges

and Solution for Measuring Available Bandwidth in Software Defined

Networks”, In the Journal of Computer Communications, Elsevier, vol. 99,

pp.48-61, February 2017.

[62] H. Mekky, F. Hao, S. Mukherjee, Z. L. Zhang, and T. V. Lakshman,

“Application-aware Data Plane Processing in SDN”, In the Proceedings of

the 3rd Workshop on Hot Topics in Software Defined Networking, ACM,

pp. 13-18, August 2014.

108

[63] M. A. Momin and J. Cosmas, “The Impact of Content Oriented Routing

on OpenFlow Burst Switched Optical Networks”, In the Proceedings of

2013 27th International Conference on Advanced Information Networking

and Applications Workshops, IEEE, pp. 965-970, March 2013.

[64] A. Moore and K. Papagiannaki, “Toward the Accurate Identification of

Network Applications”, In the Proceedings of International Workshop on

Passive and Active Network Measurement, Springer, Berlin, Heidelberg,

pp. 41-54, March 2005.

[65] M. R. Parsaei, M. J. Sobouti, S. R. Khayamin, and R. Javidan, “Network

Traffic Classification Using Machine Learning Techniques Over Software

Defined Networks”, In the International Journal of Advanced Science and

Applications, vol. 8, no. 7, pp. 220-225, July 2017.

[66] T.V.S. Pasca, S. S. Prasad, and K. Kataoka, “AMPF: Application-aware

Multipath Packet Forwarding Using Machine Learning and SDN”, June

2016, [Online] Available: https://arxiv.org/abs/1606.05743.

[67] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent Updates

for Software Defined Networks: Change You Can Believe In!”, In the

Proceedings of the 10th ACM Workshop on Hot Topics in Networks, HOT,

ACM, pp. 7, November 2011.

[68] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,

“Abstractions for Network Update”, In the Journal of the ACM

SIGCOMM Computer Communication Review, ACM, vol. 42, no. 4, pp.

323–334, September 2012.

[69] B. Renukadevi and B. D. M. Raja, “Deep Packet Inspection Management

Application in SDN”, In the Proceedings of 2017 2nd International

Conference on Computing and Communications Technologies (ICCCT),

IEEE, pp. 256-259, February 2017.

[70] G. Retvari and T. Cinkler, “Practical OSPF Traffic Engineering”, In the

Journal of IEEE Communications Letters, IEEE, vol. 8, no. 11, pp. 689-

691, November 2004.

[71] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell, “Pathchirp:

Efficient Available Bandwidth Estimation for Network Paths”, In the

Proceedings of Passive and Active Measurements Workshop, April 2003.

109

[72] O. Salman, I. H. Elhajj, A. Kayssi, and A. Chehab, “SDN Controllers: A

Comparative Study”, In the Proceedings of 2016 18th Mediterranean

Electrotechnical Conference (MELECON), IEEE, pp. 1-6, April 2016.

[73] E. Schweissguth, P. Danielis, C. Niemann, and D. Timmermann,

“Application-aware Industrial Ethernet Based on an SDN-supported

TDMA Approach”, In the Proceedings of 2016 IEEE World Conference

on Factory Communication Systems (WFCS), IEEE, pp. 1-8, May 2016.

[74] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,

“OpenFlow-based Segment Protection in Ethernet Networks”, In the

Journal of Optical Communications and Networking, Optical Society of

America, vol. 5, no. 9, pp. 1066–1075, September 2013.

[75] A. R. Sharafat, S. Das, G. Parulkar, and N. M. Keown, “MPLS-TE and

MPLS VPNS with OpenFlow”, In the Proceedings of ACM SIGCOMM

Computer on Communication Review, ACM, vol. 41, no. 4, pp. 452-453,

August 2011.

[76] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,

“Enabling Fast Failure Recovery in OpenFlow Networks”, In the

Proceedings of 2011 8th International Workshop on the Design of

Communication Networks (DRCN), IEEE, pp. 164–171, 2011.

[77] H. Shi, H. Li, D. Zhang, C. Cheng, and W. Wu, “Efficient and Robust

Feature Extraction and Selection for Traffic Classification”, In the Journal

of Computer Networks, Elsevier, vol. 119, pp. 1-16, June 2017.

[78] Z. Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho, and C. Yang, “Traffic

Engineering in Software Defined Networking: Measurement and

Management”, In the Journal of IEEE access, vol. 4, pp. 3246-3256, June

2016.

[79] M. Singh, N. Varyani, J. Singh, and K. Haribabu, “Estimation of End-to-

End Available Bandwidth and Link Capacity in SDN”, In the Proceedings

of International Conference on Ubiquitous Communications and Network

Computing, Springer, pp. 130-141, August 2017.

[80] D. Sinh, L. V. Le, B. S. P. Lin, and L. P. Tung, “SDN/NFV-A New

Approach of Deploying Network Infrastructure for IoT”, In the

110

Proceedings of 2018 27th Wireless and Optical Communication

Conference (WOCC), IEEE, pp. 1-5, June 2018.

[81] J. Sommers, P. Barford, and W. Willinger, “A Proposed Framework for

Calibration of Available Bandwidth Estimation Tools”, In the Proceedings

of the 11th IEEE Symposium on Computers and Communications (ISCC),

IEEE, pp. 709-718, June 2006.

[82] W. Stalling, “Software-Defined Networks and OpenFlow”, In the Journal

of Internet Protocol, Citeseer, vol.16, no. 1, pp. 2-14, March 2013.

[83] G. Swallow, “MPLS advantages for Traffic Engineering”, In the Journal

of IEEE Communications Magazine, IEEE, vol. 37, no. 12, pp. 54-57,

December 1999.

[84] R. Thenmozhi and B. Amudha, “Efficient Video Delivery Over a Software

Defined Network”, In International Conference on Communications and

Cyber Physical Engineering, Springer, Singapore, pp. 27-37, January

2019.

[85] A. Tootoonchian and Y. Ganjali, “Hyperflow: A Distributed Control Plane

for OpenFlow”, In the Proceedings of the 2010 Internet Network

Management Conference on Research on Enterprise Networking, vol. 3,

April 2010.

[86] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic Matrix

Estimator for OpenFlow Networks”, In the Proceedings of International

Conference on Passive and Active Network Measurement, Springer,

Berlin, Heidelberg. pp. 201-210, April 2010.

[87] Z. Trabelsi, S. Zeidan, and M. M. Mohammad, “Network Packet Filtering

and Deep Packet Inspection Hybrid Mechanism for IDS Early Packet

Matching”, In the Proceedings of 2016 IEEE 30th International Conference

on Advanced Information Networking and Applications (AINA), IEEE,

pp. 808-815, March 2016.

[88] M. T. Z. Win, Y. Ishibashi, and K. T. Mya, “Available Bandwidth Based

Application-aware Engineering in SDN”, In the Proceedings of 2019 the

9th International Workshop on Computer Science and Engineering

(WCSE), WCSE_2019_SPRING, Yangon, Myanmar, pp. 142-147,

February 2019, [Online], Available [doi:10.18178/wcse.2019.03.024]

111

[89] J. Yan and J. Yuan, “A Survey of Traffic Classification in Software

Defined Networks”, In the Proceedings of 2018 1st IEEE International

Conference on Hot Information-Centric Networking (HotICN), IEEE, pp.

200-206, August 2018.

[90] Y. Yang, J. K. Muppala, and S. T. Chanson, “Quality of Service Routing

Algorithms for Bandwidth-Delay Constrained Applications”, In the

Proceedings of 9th International Conference on Network Protocols (ICNP),

IEEE, pp. 62-70, November 2001.

[91] H. T. Zaw and A. H. Maw, " Elephant Flow Detection and Delay-aware

Flow Rerouting in Software Defined Network”, In the Proceedings of 2017

9th International Conference on Information Technology and Electrical

Engineering (ICITEE), IEEE, pp. 1-6, October 2017.

[92] S. Liu, “Software Defined Networking Market Revenue Worldwide 2013-

2021”, Technology & Communication, IT Services, March 2019, [Online]

Available: https://www.statista.com/statistics/468636/global-sdn-market-

size.

[93] J. Martindale, “What is FTP?”, Digital Trends, August 2019, [Online]

Available: https://www.digitaltrends.com/computing/what-is-ftp-and-

how-do-i-use-it/

[94] “An Instant Virtual Network on your Laptop (or other PC)”, Mininet,

October 2018, [Online], Available: http://mininet.org.

[95] “Cisco Visual Networking Index: Forecast and Trends”, White Paper, pp.

2017–2022, February 2019, [Document ID: 1551296909190103].

[96] “IANA, Internet Assigned Numbers Authority.” [Online], Available:

https://www.iana.org/numbers

[97] Iperf, [Online] Available: https://iperf.fr.

[98] “Making the Network Visible”, sFlow, 2019, [Online] Available:

http://www.sflow.org.

[99] “Network Throughput -What is It, How to Measure & Optimize!”, PC &

Network Download, April 2019, [Online], Available:

https://www.pcwdld. com/network-throughput.

[100] ONOS, [Online] Available: https://wiki.onosproject.org /display/

ONOS/ONOS.

112

[101] “OpenFlow Switch Specification Version 1.5.1 (Protocol version 0x06)”,

Open Networking Foundation, March 2015, [Online] Available:

https://www.opennetworking.org/wp-content/uploads/2014/10/ openflow-

switch-v1.5.1.pdf

[102] “Packet Switching and Delays in Computer Network”, [Online] Available:

https://www.geeksforgeeks.org/packet-switching-and-delays-in-

computer-network/

[103] “Service-aware Network Architecture based on SDN, NFV, and Network

Intelligence”, White paper, Intel Architecture Processors QoSmos DPI

Technology, Networking and Communications, 2014.

[104] “Software-Defined Networking: The New Norm for Networks”, Open

Networking Foundation, ONF White Paper, pp. 1-12, April 2012.

113

LIST OF ACRONYMS

ABW Available Bandwidth

APIs Application Programming Interfaces

App-TE Application-aware Traffic Engineering

BGPs Border Gateway Protocols

DFS Depth First Search

DiffServ Differentiated Services

D-ITG Distributed Internet Traffic Generator

DPI Deep Packet Inspection

DWC Delay Weighted Capacity

ECMP Equal-cost Multipath

FTP File Transfer Protocol

HTTP Hyper Text Transfer Protocol

IANA Internet Assigned Number Authority

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IE Industrial Ethernet

IGP Interior Gateway Protocol

IoTs Internet of Things

IP Internet Protocol

ISPs Internet Service Providers

IS-IS Intermediate System – Intermediate System

JSON JavaScript Object Notation

JVM Java Virtual Machine

LARAC Lagrange Relaxation based Aggregated Cost

114

LDP Label Distribution Protocol

LLDP Link Layer Distribution Protocol

LSP Label Switched Path

LU Link Utilization

MDWCRA Maximum Delay Weighted Capacity Routing Algorithm

MHR Minimum Hop-count-based Routing

ML Machine Learning

MPLS Multi-Protocol Label Switching

NOS Network Operating System

ONF Open Network Foundation

ONOS Open Network Operating System

OSPF Open Shortest Path First

OVS Open vSwitch

QoS Quality of Service

RCP Routing Control Platform

REST Representational State Transfer

RPC Remote Procedure Called

RSVP Resource Reservation Protocol

RTT Round Trip Time

SDN Software Defined Networking

SMS Short Message Service

SPF Shortest Path First

TCAM Ternary Content Addressable Memory

TCP Transport Control Protocol

TDMA Time Division Multiple Access

115

TLS Transport Layer Security

VM Virtual Machine

WAN Wide Area Network

116

APPENDIX: SOFTTWARE FOR EXPERIMENTAL

TESTBED

(I) Installation and Running of ONOS Controller

 The ONOS install process depend on on the environment variable

JAVA_HOME being properly set. Both maven and java need to have same Java version.

Firstly, it needs to install maven and Karaf as the following:

Then, install Oracle Java 8:

Set the ONOS_ROOT environment variable and it need to export in the shell profile

(bash_profile). After that, enters the ONOS directory then clean and install maven.

Before, maven clean and install, first, need to download ONOS from git and checkout

with version (need to install)

After installation required software and ONOS, ONOS controller can be started.

Note: The above installation steps are for the ubuntu user. This dissertation used Ubuntu

OS; therefore, the following steps are the required step for Ubuntu OS. The detailed

117

installation steps and installation steps for other OS can find in here

(https://wiki.onosproject.org/display/ONOS14/Installing+and+Running+ONOS).

When the ONOS is loaded correctly, ONOS CLI can be accessed with the commands

(ok clean (or) tools/test/bin/onos localhost) as the following.

ONOS’s GUI can be accessed from any browser through the IP address of the target

machine. The default username and password are onos / rocks.

http://targeted Machine IP:8181/onos/ui/index.html

(II) Installation and Running of sFlow-RT Analyzer

118

sFlow-RT analyzer is used to detects the active flows or incoming traffic through

the network. The following commands are used to download the sFlow software and

unzip the software:

$ wget https://inmon.com/products/sFlow-RT/sflow-rt.tar.gz

$ tar -xvzf sflow-rt.tar.gz

To run and start the sFlow:

$./sflow-rt/start.sh

In the script directory and html directory, the JavaScript (.js) extension file is a

thread for each of the files after sFlow is started. These are accessed from the following

directories:

http://localhost:8008/app/detectFlows/html/

http://localhost:8008/scripts/json

App-TE used Mininet Dashboard which is one of the applications of sFlow RT

for real-time dashboard for Mininet and it can provide the dashboard web interface. The

followings steps are used to install and run Mininet Dashboard:

$ cd sflow-rt

$./get-app.sh sflow-rt mininet-dashboard

$./start.sh

The dashboard application not only can add metrics but also can generate events.

To gain the sFlow metrics, firstly flows can be defined using JavaScript setFlow()

fuction. setFlow() function instructs the controller build a flow cache to track TCP/UDP

connections. Alternatively, the defined flows are used to match packets or values.

In the following source code, a defined flow name is “mn_flow” and it took the

source IP address, destination IP address, source MAC, destination MAC, TCP or UDP

source and destination ports, calculated bytes per second, and timestamp of the incoming

flow. The attributes in the “keys” are called metrics. The setThreshold() function defines

“Detect_Flows” as “mn_flow” that exceed 10% of the link's bandwidth (in this case

119

1Mbit/second) for 1 second or more. The setEventHandler() function processes each

“Detect_Flows” notification.

As the summarization, App-TE can access events of json information (5-turples

metrics) of incoming flows (mn_flow) when the flow (mn_flow) is greater than 1 M

(Megabit).

(III) Installation and Running of Mininet Network Emulator

The following codes are used to get natively from Mininet source code and to

install Mininet:

$ git clone git://github.com/mininet/mininet

$ cd mininet/util/

$ mininet/util/install.sh -a

where, -a argument means installing everything which contains Open vSwitch,

OpenFlow Wireshark dissector, POX and so on. After that, network topologies can be

created by a command or scripts that written in python file. The detailed information

can be available in here (http://mininet.org/sample-workflow/).

http://mininet.org/sample-workflow/

