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ABSTRACT 

The integration of control and data planes into the same devices and lack the 

global centralization control that made the traditional networks may not meet the 

requirements of the emerging cloud computing, the tactile Internet, and the Internet of 

Things (IoT) technology. Moreover, the traditional networks cannot provide the 

complexity of control protocols, complex traffic engineering (TE) tasks, and 

interconnecting of a huge number of smart devices. Software Defined Networking 

(SDN) is an architecture that overcomes the above issues of the traditional networks by 

taking advantage of global centralization control, decouples of the control and data 

planes, and enabling innovation through the network programmability.  

The shortest path-based routing cannot guarantee future traffic demands 

because the routing only uses the minimum hop counts. The application-aware routing 

is more efficient than the traditional shortest path-based routing; however, classification 

of application traffic and estimation of QoS parameters like link utilization and link 

delay are needed to perform such kind of routing. By taking the advantage of SDN, 

application-aware traffic engineering can perform more effectively in SDN 

environments. 

This dissertation presents an application-aware traffic engineering (App-TE) in 

SDN which generally involves three main modules: traffic classification, traffic 

measurement, and traffic management. Application traffic flows classified into the 

following two classes: prioritized application traffic and non-prioritized application 

traffic by using port number and protocol number with the help of traffic analyzer 

(sFlow-RT). The classified traffic flows are fed to the traffic measurement module to 

calculate the link utilization, link delay, and Delay Weighted Capacity (DWC) values. 

Finally, prioritized application traffic flows are routed by using the DWC-aware routing 

and non-prioritized application traffic flows are routed by using shortest path routing 

(or) minimum hop-count based routing. The experimental results demonstrated that the 

average throughput results of the proposed App-TE outperformed the shortest path 

routing and LU-aware routing.   
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CHAPTER 1 

INTRODUCTION  

The rapid growth of science and technology, computer networks have achieved 

a great impact and transformed the way of connectivity, entertainment, study, and social 

networks of human life. Short Message Service (SMS) over mobile networks, smart TVs 

connected with Internet provider as an on-demand media, e-Learning systems which 

permit everyone can gain knowledge and study from everywhere, and telemedicine are 

great examples of technical revolution. Effective network management solutions are 

required not only to harmonize the dramatic growth of transferring information and 

requirements of applications but also to provide the best services to users and improve 

network performance. 

The legacy networks mostly implement in dedicated appliances and hardware 

that lead to limited innovations for both management and configuration aspects. The 

networks also create multi-vendor equipment. Therefore, network administrators need 

to have a wide knowledge of all devices from different vendors because different 

vendors have different syntaxes and commands. The concept of Software Defined 

Networks (SDN) is to organize and manage networks with software. SDN decouples 

control and data plane from networks through the control protocols such as OpenFlow 

[55]. SDN also serves vendor neutrality with the abstraction of network devices such as 

routers and switches, etc. Network administrators can easily manage the large-scale 

network with the software when SDN is employed into large-scale, carrier-grade 

networks. Therefore, SDN, an emerging architecture, has become a popular solution for 

companies to control networks using a more cost-effective software solution, rather than 

more expensive hardware methods. 

A non-profit organization, Open Networking Foundation (ONF) develops the 

adoption of SDN through open standards development. In the years since its inception, 

SDN has obtained a lot of attention not only from academia but also from the Internet 

industry and SDN has evolved into many networking technologies offered by many 

vendors such as Cisco, Juniper, VMware, Pluribus, and Big Switch. Now, Google, 

Amazon, Facebook, Microsoft, and other companies have invested heavily in SDN not 

only for their data centers but also for their Wide Area Networks (WAN). Therefore, the 

market size of SDN has been around $6.6 billion in 2017, for 2018 the market size has 
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reached $7.9 billion, and the global SDN market will expect to reach $20 billion by 2022 

[92].  

Although SDN has presented to enable network innovation, and to program new 

applications according to the user requirements, there have still problems to encounter 

in Traffic Engineering (TE), application-aware engineering, Quality of Service (QoS) 

based routing, and security. This dissertation focuses on the problems, motivations, 

methods, solutions, and results concerning traffic engineering with application-aware 

routing in SDN. 

1.1 Motivations and Problems definition of the Research 

Application-aware engineering finds the optimal route for each application 

traffic depending on the network resources requirements of each application such as 

bandwidth, network delay, and jitter. For instance, in cloud data-center networks, the 

equal treatment of all classes of applications is not the proper way to meet user’s 

application-level requirements because the network resource requirements of 

applications are varied [16]. Traditional networks that are integrated control and data 

planes into the same devices and lack of global centralization control. Traditional 

networks cannot also satisfy the requirements of the tactile Internet and the Internet of 

things (IoT) technology.  

Moreover, traditional networks cannot manage the complex traffic engineering, 

control protocols, and interconnecting of a huge number of smart devices [80]. In an 

SDN network, the complex route calculation and security are performed by the 

controller. SDN is an architecture that overcomes the issues of the traditional networks 

by taking the advantages of global centralization control, decouples of control and data 

planes, and enabling innovation through the network programmability [82]. Therefore, 

this dissertation considered the application-aware traffic engineering in SDN 

environment. 

Traditional shortest path-based routing cannot guarantee future traffic demands 

because it only considers the minimum hop counts. The application-aware routing is 

more efficient than the traditional shortest path-based routing, however, the QoS 

parameters like link utilization, link delay, delay variation, and jitter are needed to 

perform such kind of routing. There are mainly two techniques in traffic measurement: 

active and passive techniques [61]. Active techniques estimated QoS parameters by 
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sending probe packets into the network and evaluating how the network traversal affects 

the network status. This technique can cause a temporary network congestion. Passive 

techniques estimate QoS parameters by setting multiple measurement points in the 

network to monitor network statistics and this type of techniques are difficult to deploy 

in traditional networks. 

To deploy passive measurement in SDN architecture, the SDN controllers polled 

the statistics information of the switches using the statistics request and reply of 

OpenFlow message. These request/reply processes and querying statistics information 

from all the switches in the network turns to increase the controller computational time 

and load. It also increases the latency between the controller and switches.  

To perform application-aware traffic engineering in SDN, the classification of 

application traffic flows and selecting the optimal routes depending on the classified 

traffic are the necessary tasks like the network QoS parameters estimation. There are 

many techniques to classify application traffic flows such as port-based, DPI-based, and 

ML-based techniques. All the techniques have their perspective advantages and 

disadvantages; however, these techniques made the controller to perform some extra 

tasks.  

Routing plays an important role in traffic engineering. Therefore, managing 

which application traffic flows route which path is a crucial task. Some application 

traffic need bandwidth-guaranteed paths but some need delay-guaranteed path. 

Application traffic flow should route the optimal path depending on their application 

level requirements. 

To address the above issues, this dissertation proposes the application-aware 

traffic engineering (App-TE) in SDN environment in order to manage the best route for 

the application traffic flows based on their requirements. App-TE involves three main 

modules. The first one is to categorize application traffic flows into the following two 

classes: prioritized and non-prioritized traffic flows based on their requirements. Then, 

port and protocol number-based traffic classification is performed. As the second one, 

App-TE estimate the network QoS parameters by using passive technique. The third one 

is routing application traffic flows by using delay-weighted capacity (DWC) aware 

routing and minimum hop count-based routing. 
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1.2 Objectives of the Research 

The main objective for this research is the implementation of application-aware 

traffic engineering in SDN environments and the others of this research area are as 

follows:  

• To meet the network requirements of all classes of applications in SDN 

environment by considering of applications' QoS requirement such as available 

bandwidth or link utilization and link delay 

• To utilize network resources and to improve overall network performance by 

steering the best path based on maximized delay weighted capacity values 

• To reduce the controller’s work load by estimating the link utilization with the 

help of sFlow-analyzer metrics via REST API, instead of using simultaneous 

polling of port statistics information for all the switches in the network 

• To route the classified application traffic flows through the optimal routes by 

applying DWC-aware routing and minimum hop-count-based routing. 

1.3 Contributions of the Research 

The main contributions for this dissertation are as follows. A detailed analysis 

of application-aware traffic engineering in SDN is described with the previous works of 

traffic classification, traffic measurement, and traffic management methods. 

For the traffic classification, to reduce the computational complexity of the 

proposed App-TE task, firstly, application traffic flows categorized into two classes: 

prioritized application traffic and non-prioritized traffic flows. For effective traffic 

management, the mostly used application traffic in Internet such as video streaming, file 

transferring, and haptic streaming (for next generation networks, Tactile Internet) are 

defined as the prioritized application traffic. Others are defined as the non-prioritized 

application traffic flows. Then, App-TE performed port and protocol number-based 

traffic classification with the help of traffic analyzer (sFlow-RT). 

In the traffic measurement module, App-TE used passive technique like statistics 

monitoring. App-TE estimated available bandwidth (ABW) and delay-weighted 

capacity values using port statistics information of OpenFlow messages. To reduce the 

controller’s work load and avoid network congestion due to simultaneously querying 

statistics information all the switches in the network, App-TE collected port statistics 
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information only from the selected switches according to the sFlow metrics (JSON 

information via the REST API). 

For the effective traffic management, App-TE used two main routing such as 

DWC-aware routing and minimum hop-count-based routing (MHR). App-TE focused 

on the prioritized application traffic flows. Since both bandwidth-sensitive and delay-

sensitive application traffic flows are included in prioritized application traffic classes, 

App-TE routed the prioritized application traffic through the optimal path which has 

maximum ABW and minimum delay. For non-prioritized application traffic, App-TE 

simply forwarded through the minimum hop-count path by using MHR. 

1.4 Organization of the Research 

This dissertation organizes with six chapters.  

Chapter 1 includes an introduction, the motivations, problem statements, 

objectives, focuses and contributions of the research work. The remainder of this thesis 

is organized as follows.  

Chapter 2 summarizes some of the most significant previous works relating to 

traffic engineering in IP-based and MPLS-based networks to highlight the advantages 

of traffic engineering in SDN. Chapter 2 also surveys the various application-aware TE 

methods of SDN by describing the main three components: traffic classifications, traffic 

measurements, and traffic management. 

Chapter 3 provides a background theory of SDN including data plane layer with 

OpenFlow switches, the control plane layer with ONOS controller, northbound APIs 

with the concept of OpenFlow protocols, southbound APIs, and the application layer 

with various routing application methods.  

Chapter 4 presents the architecture of the proposed application-aware traffic 

engineering (App-TE) method. The detailed process of traffic classification, traffic 

measurement, and traffic management modules are described in chapter 4. 

Chapter 5 illustrates the design and implementation of the experimental testbed. 

The chapter also discusses the experimental results of the proposed system compared 

with other two methods.  

Finally, chapter 6 of the thesis provides a conclusion, summary of the 

dissertation, advantages and limitations. Chapter 6 also describes the directions for the 

future work. 
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CHAPTER 2 

LITERATURE REVIEW 

Traditional shortest path routing or minimum hop count-based routing applied 

shortest path to route packets from source to destination hosts, even this shortest route 

did not satisfy the traffic demand or not the optimal one. Traffic Engineering (TE) 

permits the network providers to omit the shortest path-based routing by using the longer 

path but a less congested path and satisfy the traffic demand. TE helps network providers 

to improve network resource utilization and offers more services to the end-user [3]. 

Typically, the objectives of TE include load balancing, alleviate network congestion, 

minimize the bandwidth consumption in the network, optimize routing, fault tolerance, 

network resiliency, and Quality of Service (QoS) guarantees. 

2.1 The Issues of Traffic Engineering in Legacy Networks 

In general, traditional TE technology is mainly classified into the following two 

types: IP-based TE and MPLS-based TE [78]. Therefore, this section describes the 

issues of TE in legacy networks related with IP-based and MPLS-based networks. 

2.1.1 IP-based Traffic Engineering 

Routing plays an important role in traffic engineering. IP-based TE generally 

involves optimizing IP routing algorithm, solving the problems of multipath traffic load 

balancing and alleviating network congestion [35]. Fortz et.al [29] proposed a routing 

algorithm which used to adjust the link weights of Open Shortest Path First (OSPF) and 

the proposed routing finally got multiple shortest paths to provide load balancing of the 

traffic. IP-based TE technology has two clear weaknesses: first, when OSPF link 

weights are used to control network routing, and traffic cannot be split in an arbitrary 

proportion that lead to reduce the utilization of network resources.  

Second, when connections lost or network topology changes have occurred, the 

OSPF protocol will take some time to converge a new network topology, which may 

lead to packet losses, delay, network congestion, and even routing loops. Besides, a 

variety of new multimedia applications in today networks not only require bandwidth 

guarantees but also need other QoS guarantees such as packet loss, jitter, end-to-end 
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delay, and energy efficiency. Therefore, QoS guarantees and network resilience schemes 

also considered as important factors of IP-based TE. Efficient resilience schemes needed 

to deal with different types of network failures such as network node and link failure 

[40]. In this situation, the solutions for IP-based TE also need to consider how to 

minimize the impact of failures on network performance and resources utilization. 

Most of IP-based TE solutions [10, 30] proposed a routing method which is 

based on the shortest path and load balancing schemes with equally split traffic into 

equal cost multiple paths (ECMP). The fundamental concept of shortest path routing is 

to set the link weights of interior gateway protocols (IGPs) concerning the network 

topology and traffic demand to manage intra-domain traffic [22]. Large-scale IP 

networks usually use IGPs such as Open Shortest Path First (OSPF) or Intermediate 

System-Intermediate System (IS-IS) which select paths by taking account into static link 

weights (cost value assigned at each link).  

In ECMP, large networks are typically divided into multiple OSPF or IS-IS areas 

[37]. In some cases, the network may have multiple equal-cost shortest paths between 

the same pairs of source and destination. The specifications of the OSPF and IS-IS 

protocols do not dictate how routers manage the presence of multiple shortest paths 

because the IGP routing algorithm used the static link that did not has the flexibility to 

divide the traffic between the shortest paths in arbitrary proportions. Therefore, routing 

based on link weight is not enough to depict all possible solutions to the routing problem. 

In practice, traffic volumes fluctuate over time due to the dynamic traffic requirements, 

and unexpected failures can lead to the changes in the network topology. Moreover, 

obtaining an exact traffic matrix estimation may be hard. 

The practical OSPF [70] offers shortest-path-first routing with ECMP to get 

simple load balancing and ECMP allows traffic uniformly divided between equal-cost 

paths. Based on the Hash function, ECMP aims to divide the hash space into equal-size 

partitions that correspond to the outbound paths and then forward packets based on their 

endpoint information along the path whose boundaries envelop the hash value of the 

packets. Although the ECMP routing provides better performance with static load 

balancing, they are inappropriate for dynamic load balancing protocols [51] because the 

static flow mapping to paths does not consider either the current network utilization or 

flow size, which may lead to increase network congestion and degrade the overall 

network utilization [34]. 
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Due to their data plane, control plane, and management plane split and 

distributed across the different network elements, today’s IP networks are far more 

complex and harder to manage [14, 13]. To encounter the above problems, one of the 

solutions is to separate the routing decision logic from the protocols between the 

network elements [14]. This solution includes the decision plane for a network-wide 

view of the network, the data plane for forwarding traffic, the discovery and 

dissemination planes for direct control. The other solution [13] introduced Routing 

Control Platform (RCP), which is a logically centralized platform that separates the IP 

forwarding plane to bring the scalability to avoid the complexity in the internal Border 

Gateway Protocol (BGP) architecture. These ideas motivate the SDN researchers and 

system developers to logically separate the controller network from OpenFlow-enabled 

switches. 

2.1.2 MPLS-based Traffic Engineering 

To avoid the issues of IP-based TE, researchers proposed another solution, so-

called Multi-Protocol Label Switching (MPLS) which forwarded the network packets 

by using MPLS labels instead of IP headers [8]. The authors [8, 9] introduced MPLS as 

an efficient solution to address the constraints of IP networks. In MPLS-based TE, the 

routing uses the MPLS label switching mechanism where labels assigned and distributed 

between routers using Label Distribution Protocol (LDP). When a packet enters the 

network, LDP assigned with the label by the ingress router and then forwarded across 

the network through a pre-established path called the Label Switched Path (LSP). 

Finally, the label removed at the egress router and forwarded as the IP packet. MPLS-

based TE is used LSP tunnels by a signaling protocol such as the Resource Reservation 

Protocol (RSVP) which used for Differentiated Services (DiffServ). 

Multiple LSP tunnels can be generated between two nodes which allocate the 

network resources. The traffic between the nodes are spilled among the tunnels by some 

local policy. The total number of LSPs in an intra-domain network be O(N2), where N 

be the number of egress and ingress routers in a single domain [10], which may be 

considered as non-scalable concerning network protocols [83]. Therefore, scalability 

and robustness has become problems in MPLS-based TE [1] as aggregate traffic are 

provided through the dedicated LSPs. If there any link failure occurs in active LSPs, the 

MPLS-based TE need to consider path protection mechanism such as backup paths, as 
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otherwise traffic cannot be forwarded through the alternative paths. Moreover, network 

management over MPLS is an important factor in traffic engineering. Eventually, the 

success of the MPLS-based TE depends on how easy it observes and controls over the 

network. 

However, MPLS have the excessively complex protocols mechanism that can 

lead to a high-performance overhead and difficult to satisfy the requirements of network 

traffic demands, network utilization, and energy saving in data centers networks. The 

simplicity of the SDN can mitigate the complexities of the MPLS control plane with 

scalability and efficiency at the same time [75]. The OpenFlow extension with MPLS 

provides much easier and more efficient in network management. The solutions [75,52] 

simply match and process the MPLS flows with OpenFlow extension and these solutions 

did not require the MPLS per packet processing operations. Therefore, an emerging 

architecture, software defined networking (SDN) has become a popular solution for 

companies to control their networks using a more cost-effective software solution, rather 

than with more expensive hardware methods. 

2.2 Traffic Engineering in SDN 

Although traffic engineering methods have widely exploited in the past and 

current traditional data networks, such as IP and MPLS networks, SDN still needs new 

traffic engineering methods to adapt its decoupling of control and data plane layer 

architecture [2]. SDN allows decoupling control functions from data plane devices as 

well as provides global centralization views including network statistics information. 

Network programmability can perform at the data plane devices by SDN controller with 

the help of OpenFlow protocol. Therefore, network operators can easily reprogram and 

dynamically manage through the network programming interface.  

OpenFlow switches can support flow management more effective and efficient 

because of their multiple flow table pipelines. By taking these advantages of SDN, many 

researchers pay attention to the following four main sections of TE in SDN. These are 

flow management, fault tolerance, topology update, and traffic analysis or 

characterization. Figure 2.1 presents four main sections of TE in SDN environment. 

When a first new flow enters the OpenFlow-enabled switches and the flow does not 

match any rules in the switch’s flow table, the switch encapsulates and forwards the flow 

to the controller. The controller computes a forwarding path and installs the appropriate 
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flow entries to the switch. When a high number of new flows enter the switch, there may 

be substantially overloaded on both control and data planes. Therefore, reducing 

communication latency and balancing the workload between the controller and the 

OpenFlow-enabled devices becomes important factors. The authors in [14, 25] 

considered the flow management solutions for switch level, controller level, and 

multiple flow tables usage to a trade-off between the load balance and latency. 

 

Figure 2.1 The Scope of Traffic Engineering Approaches in Current SDN 

 

Hash table based ECMP solution [37] which separated flows through the 

available paths by using the flow hashing mechanism. Flow hashing mechanism 

forwards a path over multiple candidate paths depending on the hash value of selected 

fields of the packet’s headers modulo with the number of paths and then split the load 

to each path. To address the long live flow collision problems of ECMP, Hedera [25] is 

one of the solutions that scalable and dynamic flow scheduling schemes to utilize the 

aggregated network resources efficiently. By taking advantage of the global view of 

SDN, Hedera gathers flow statistics information from switches, calculates available 

paths for flows, and steers switches to reroute traffic. Hedera conducted with 8,192 hosts 

data center and their experiment results outperform the static load balancing methods.  

One of the distributed control planes for OpenFlow enabled switches in SDN is 

a HyperFlow [85]. To address the scalability issue and reduce the flow setup time of 

control and data planes responds and requests, HyperFlow not physically distributed but 
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logically centralized by applying global network-wide views. HyperFlow is also an 

application which implemented in Network Operating System (NOS) called NOX with 

minor modifications.  

To gain network reliability, SDN network infrastructure (controllers, switches, 

and links) should have an ability to support failure recovery [15]. The authors in [49, 

74] proposed solutions for fault tolerance in the data plane layer and the authors in [76, 

28] discussed solutions for fault tolerance in the control plane layer. When the link or 

switch failure is detected, CORONET [49] recovered failures during a sub-second time 

by applying for multipath support. Sgambelluri et.al [74] mentioned the data plane 

protection path solution which used pre-computed paths as protection paths and installed 

together with the normal working path into the switch’s flow table. When the failure is 

detected, the switch will be used the protection path. Sharma et al. [76] proposed a 

control plane restoration mechanism, in which the controller computed alterative paths, 

after detection of failure. Then, the controller updated and installed packet forwarding 

rules urgently without caring whether the old rules are expired or not.  

For the centralized nature of SDN architecture, the reliability of the controller is 

important. Configuring backup controllers with the help of OpenFlow protocol but 

OpenFlow does not have coordination schemes between the backup and primary 

controllers. CPRecovery [28] provided a primary-backup mechanism that focused on 

the replication process between the switch component running on the primary and 

secondary controllers. The switch can check whether the controller is active or not by 

sending an inactivity probe to the controller. If the controller is down, the switch may 

not receive a reply within the waiting time. Then, the CPRecovery component started 

searching for the active backup controller. 

The centralized SDN controller needs to manage dynamically global network 

policies and rules which instruct OpenFlow-enabled data plane devices through the 

network. While updating policies and rules, the affected flows may be delayed or 

dropped, which can cause network performance degradations. The general topology 

update operation implemented as follows: whenever updating to new policies from old 

policies over multiple switches, each individual packet or flow follows the new or old 

policies, not both. By considering per-packet consistency (each packet follows through 

a single network configuration) and per-flow consistency (all packets in the same flow 

will be followed the same policies), the authors in [67, 68] solved the problems of topo- 
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logy updating in SDNs environment. The authors in [19, 86] described the traffic 

analysis solutions to acquire timely statistics on network resources at different 

aggregation levels (such as flow, packet and port).  PayLess [19] and OpenTM [86] are 

query-based monitoring techniques for SDN. PayLess supported a flexible RESTful API 

for flow statistics collection at different aggregation levels and OpenTM periodically 

polled the statistics of the switches by tracking all the active flows in the network. 

Traffic managing is a crucial task of TE in SDN. Although the traditional 

Shortest Path First (SPF) algorithm routes the traffic efficiently, however, the congestion 

may occur. SPF also produces the bottleneck for future traffic demands [48]. SPF only 

takes account of the minimum hop-count and does not achieve QoS-aware TE and load 

balancing. Therefore, QoS-aware TE algorithms are still important for the future 

Internet. There are many TE algorithms which tried to solve the problem of setting up 

the bandwidth guarantee tunnels in networks [50, 90, 53].  

For a wider range of Internet applications, the routing algorithm based on the 

delay and link utilization has become more important to fulfill the user requirements. A 

simple solution proposed in [90], where firstly they prune all the links with insufficient 

bandwidth then this solution chose a path with the smallest delay path. Among the 

bandwidth and delay constrained routing, the Maximum Delay Weighted Capacity 

Routing algorithm (MDWCRA) tries to minimize the interference between ingress and 

egress pairs [53]. It also calculates the shortest disjoint paths, defines critical links for 

bottleneck traffic, and avoids the links for future demands.  

As the rapid growth of cloud computing and Internet of Things (IoT) technology, 

the traditional network architecture cannot handle the complexity of control protocols 

and the internetworking of a large number of smart devices [80]. In cloud data-center 

networks, the equal treatment of all classes of applications is not the proper way to meet 

user’s application-level requirements because the resource requirements of network 

applications are varied [16]. By taking the advantages of SDN, application-aware 

engineering effectively performs traffic engineering mechanism based on the network 

requirements of applications.  

2.3 Application-aware Traffic Engineering 

Application-aware engineering is a computation of path or route based on each 

application requirements such as network delay, link utilization or available bandwidth, 
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and jitter. For instance, FTP traffic may better perform with higher bandwidth path and 

video traffic needs less delay path to maintain its best quality. Therefore, each 

application needs their own best path to meet their application level requirements. The 

application-aware engineering mainly contributes the following steps: 

• Identify types of applications based on the QoS requirements and classify 

application by using different mechanisms. 

• Estimate the QoS parameters such as link utilization or available bandwidth, link 

delay, and jitter by monitoring the switch ports statistics, and sending probe 

packets to the whole path to measure the end-to-end delay. 

• Calculate the optimal routes and reroute the traffic through the optimal routes. 

 

 

Figure 2. 2 The Overall Architecture of Application-aware Engineering 

 

The following sections describe the above three steps which are related with the 

application-aware engineering under the name of traffic classification, traffic 

measurement, and traffic management. These related works include not only in SDN 

environments but also in SDN-based cloud computing, SDN-based IoT networks and 

datacenters environments.  Figure 2.2 depicts the overall architecture of the application-

aware engineering in software defined networking. 

2.3.1 Traffic Classification 

Traffic classification is an intelligent process that classifies traffic into different 

categories [96]. Nowadays, in the computer science field, traffic classification is an 

essential task for Internet Service Providers (ISPs) to recognize which types of 

application traffic through the network. Network traffic classification is also an 

important pre-calculation step for network measurement, network monitoring, network 

management, network security, and network design. By using network traffic 

classifications techniques, ISPs and network administrators can steer each type of 
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network application traffic to route the optimal path through the network and can control 

the overall network performance. The following classification techniques are mainly 

used in traditional networks and even used in SDN environments [23]. 

2.3.1.1 Port-based traffic classification 

In the earliest days of the Internet, most of the Internet protocols are assigned to 

well-known port numbers by Internet Assigned Number Authority (IANA) [96]. At that 

times, port-based classifications are an effective one for traffic classification tasks. It 

classifies the application traffic by extracting port numbers from the packet header and 

then checks it out with the registered port numbers in IANA. On the other hand, there 

are increasing numbers of protocols and applications that used dynamic port or random 

port numbers tried to hide from network security tools. Therefore, port-based techniques 

give less than 85% accuracy and it cannot recognize over 50% of traffic flows that it is 

investigated [64]. 

2.3.1.2 Payload-based traffic classification 

To eliminate the limitations of port-based classification techniques, many 

researchers proposed payload-based classifiers [27]. Payload-based techniques are also 

called Deep Packet Inspection (DPI). DPI is also a form of packet filtering to identify, 

classify, reroute, and block packet by checking the content of packet beyond the packet 

header and matching payloads with the known signature of protocols [32]. DPI inspects 

the contents of packets at a specified checkpoint and controls the packets according to 

the rules given by enterprise networks, ISP, or network manager. 

The authors [26,103] proposed SDN based DPI scheme set up in the network 

application layer, controller layer, and infrastructure layer respectively. DPI inspects the 

packets at the three layers and sends them back to rules and policies. In network 

application layer, DPI correspondence a network application analogy and it may delay 

the packet processing time [26]. DPI in SDN controller performs as the network services 

and sends network statistics information and intelligence to the network application 

layer via the northbound Application Programming Interface (API). When DPI is 

running in the network nodes, it simply applied the predefined policies [103]. 

L.E. Li et.al [56] proposed an idea to extend the OpenFlow protocol with 

eliminating and adding regular expression rules. In their work, the controller can control 
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the rules tables of DPI and flow tables instead of passing through all packets to DPI. By 

using pattern matching algorithms and splay tree filtering of enhanced DPI and Intrusion 

Detection System (IDS), the authors applied network traffic statistics and aimed to 

optimize the ruled orders. They also demonstrated their algorithm through the string set 

of Snort [87]. Renukadevi et.al [69] analyzed the application signature data with DPI 

that placed on the north interface of SDN.  

They can dynamically allow or block the provision flows and can enhance the 

bandwidth. SDN architecture decouples control plane from data plane completely, 

however, traffic monitoring and control in SDN only depend on network states, not the 

traffic behaviors. To improve fast packet forwarding and to guarantee QoS demands, 

they [57] proposed an application-aware traffic control scheme with DPI. The scheme 

collaborated both network states and traffic behaviors to perform packet classification 

and behaviors matching respectively. They also designed a publish/subscribe 

middleware as the exchanger of information between the application layer and network 

services (topology management and devices monitoring).  

2.3.1.3 Machine learning-based traffic classification 

Today, most of the internet traffic are encrypted and applications are used 

dynamically assigned port numbers, therefore, DPI and port-based classification face 

difficulty to classify the application traffic [77]. To overcome the above difficulties, 

many researchers have been proposed the Machine Learning (ML) based techniques, 

which used the statistical features of network traffic flows.  

By using the extracted statistical information from network flows, they [4, 5, 31, 

65, 23] used ML algorithms to identify the application by applying useful variables. 

Alshammari et.al [4] used five ML algorithms such as C4.5, RIPPER, Naive Bayes, 

AdaBoost, and DVM to address the encrypted traffic classification. They used SSH and 

Skype as the encrypted traffic and they also showed that C4.5 and RIPPER outperform 

the other three algorithms.  

In another work [5], the authors mentioned three different ML algorithms which 

are C4.5, Genetic Programming, and AdaBoost to identify the encrypted VoIP traffic. 

Their experiment results proved that C4.5 got better performance results than the others. 

The authors of [31] identify real-time traffic in virtualized networks according to the 
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QoS classes by using Naive Bayes and other ML classification algorithms. Among them, 

Navies Bayes got 95% accuracy and gave the minimum classification time.  

The authors in [65] identified application traffic flows in SDN with the help of 

four Neural Networks methods such as feedforward, Multilayer Perceptron, NARX 

(Levenberg-Marquardt) and Naïve Bayes. They used the collected data set that contains 

instant messaging, video streaming, FTP, HTTP and peer to peer protocols. The four 

ML classification gain accuracy of 95.6%, 97%. 97%, and 97.6%, respectively.  

Dias et.al [23] proposed the Naive Bayes algorithm-based video traffic 

classification module to support QoS requirements. To increase the accuracy of traffic 

classification, their approach used the relaxation of the hypothesis of independence 

between the attributes of a class. They tested with three different traffic classes (one file 

download and two different video services) which assigned QoS priorities. The reason 

why they classified traffic classes is to get better network performance by giving an 

effective treatment for requested traffic.  

Most of the researchers and network operators have used port-based, payload-

based, and machine learning-based techniques not only to identify anomaly traffic for 

security perspective but also to give effective traffic treatments for different QoS 

demands. Therefore, traffic classifications techniques used as a preprocessing step for 

traffic measurement and management. 

2.3.2 Traffic Measurement 

Traffic measurement is a crucial task for TE. Traffic measurement in SDN 

covers the following tasks: monitoring networks, defining and measuring networks QoS 

parameters, analyzing and predicting traffic patterns. This section describes defining 

network QoS parameters and measuring techniques for those parameters in SDN. 

Network QoS parameters represent the current situation of networks.  

For effective network management, a reasonable network parameter design is 

required. In SDN network measurement, there are generally three types of network 

parameters:  network topology, traffic, and performance parameters. The network 

topology parameters are the number of network nodes, link bandwidth, and port 

statistics. In SDN, the controller detects and maintains the current topology information 

by using Link Layer Discovery Protocol (LLDP) that specifies in OpenFlow. Figure 2.3 

depicts the link discovery process in SDN by using LLDP. The controller sends 
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Packet_out messages with LLDP to all switches in the network and the switch sends 

these messages to all switches connected it directly. 

 

Figure 2. 3 Link Discovery Process in SDN 

When a switch receives an LLDP packet from other switches, it sends Packet_in 

with LLDP to the controller because of no relevant rules in switch flow tables. Then, the 

SDN controller knows which switches connected to and constructs the current network 

topology by applying these Packet_in message with LLDP. The number of packets that 

transmitted or received that passed through the network nodes or ports, the total number 

of packets count, and the total number of bytes count referred to as the network traffic 

parameters. 

Current network status and network users’ behaviors are detected and analyzed 

by applying these network traffic parameters. There are mainly two types of traffic in 

an SDN network: control traffic and data traffic. A data flow that transmitted between 

the SDN controller and switches refers to control traffic. A data flow that transmitted 

between switches called data traffic. The collecting of statistical information on each 

switch port (number of packets, number of transmitted packets sizes, number of received 

packet sizes) and traffic matrix are required to characterize flows. To characterized 

flows and measure the performance of the networks, the following factors are used as 

the network QoS parameters. 

(1) Delay 

The end-to-end delay means the requirement of the time when the destination 

host gets the packet sent by the source host. This network delay can be further separated 

 into the following four parts through the Equation (2.1): 
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𝐷𝑒𝑙𝑎𝑦𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑 = 𝑑𝑒𝑙𝑎𝑦𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑑𝑒𝑙𝑎𝑦𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝑑𝑒𝑙𝑎𝑦𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 +

                                       𝑑𝑒𝑙𝑎𝑦𝑞𝑢𝑒𝑢𝑖𝑛𝑔                                                   (2.1) 

Transmission delay 

In the wired network, the transmission delay is the time taken that transmits all 

the packets into the wire [11]. The transmission delay of a link is directly proportional 

to the data rate of the link. 

Processing delay 

Processing delay is the time taken to process a packet at a network device. In 

high-speed routers, processing delays may be a microsecond or less [102]. 

Propagation delay 

Propagation delay is the time taken to transmit the first bit from source to 

destination through the network and propagation delay depends on the propagation 

speed and distance. 

Queuing delay 

Queuing delay is the time taken to wait in a queue before it took for execution. 

It is also the time difference between when the arrival of the packet at the destination 

and when the packet was executed. 

(2) Delay Variation (or) Jitter 

The amount of delay variation in the end-to-end packet transmission is called 

 jitter. Depend on the variation of delays, bits arrive either late or early at the destination. 

The bits may be overflowed in a buffer when they arrive too early and getting poor 

quality results when the bits arrive too late. Therefore, jitter is a special problematic 

factor in a real-time application such as live video streaming, video conferencing, and 

IP telephony [33]. 

(3) Packet Loss Ratio 

The packet loss ratio represents the percentage of packet loss during the end-to- 
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end packet transmission. Packet loss can cause because the congestion occurs in the 

network or when the packet buffer overflow occurs at the network devices [6]. Different 

applications have different levels to tolerate the packet loss ratio. Video traffic is mostly 

sensitive to packet loss ratio.  

(4) Available Bandwidth (or) Link Utilization 

 Bandwidth is a continuous resource value and it is also the data transfer rate for 

a fixed period [42]. Available bandwidth (ABW) is an important dynamic characteristic 

of a network path, being equivalent to the amount of traffic that can be added to the path 

without affecting the other flows that traverse part of it, and independently from their 

bandwidth-sharing properties. For instance: a link with XX Mbps maximum capacity, 

but YY Mbps is already used. The available bandwidth for a link is obtained through the 

Equation (2.2),  

                          𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 𝑋𝑋 − 𝑌𝑌                                      (2.2) 

In QoS parameter measurement, there are generally classified into two types: 

active and passive techniques. Active measurements deployed between two points in the 

network, and the injected traffic attempts to bring to the surface the unidirectional or 

bidirectional performance properties of end-to-end paths. These techniques usually 

implemented within an active measurement infrastructure framework and offered the 

flexibility of running at commodity hardware/software end-hosts at different Internet 

sites. Active techniques send probe packets into the network and evaluate how the 

network traversal affects the network status [71]. This technique can cause temporary 

network congestion. 

Passive techniques estimate QoS parameters by setting multiple measurement 

 points in the network to monitor network statistics. These passive techniques are too 

complex to deploy in traditional networks [42]. By taking the advantages of SDN’s 

global centralized control, there are some papers to estimate ABW by using passive 

techniques. Megyesi et al. [60, 61] proposed the ABW estimation in SDN by using 

OpenFlow messages to track the bandwidth utilization of every link in the network and 

calculated the ABW on each path in the network based on the statistics information. 

 In [60], they used the FloodLight controller to estimate end-to-end ABW and 

they also explained a proper trade-off is required between accuracy, polling rate, and 
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network delay constraints. In [61], they focused on the source of errors for the estimation 

of ABW measurement and highlighted that these errors are due to the lack of a local 

timestamping mechanism in OpenFlow. Singh et al. [79] estimated end-to-end ABW on 

any given path not only by composing link-wise ABW but also validating with a 

bandwidth measurement tool called Yaz [81]. The ABW measurement is worked well 

by taking the traffic statistics from the SDN controller [58, 92, 79], but the controller 

keeps querying statistics from all the switches in the network that may lead to overload 

network traffic. They [79] explored many algorithms for selecting which OpenFlow-

enabled switches to query and they also mentioned there is a trade-off between the 

querying on every switches and measurement accuracy.  

 

 

Figure 2. 4 ABW Calculation Algorithm for Application-Aware Routing 

 

To address these issues, they proposed a solution [88] that used OpenFlow 

statistics to estimate the end-to-end ABW and reduced excessive network traffic by 

querying only the selected switches statistics that are provided by the sFlow-RT 

analyzer. The main tasks of their work are as follows: (i) port-based application traffic 

classification is performed by using sFlow-RT analyzer, (ii) dynamically collects ports 

statistics of source and destination switches according to the JSON information that is 
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sent by sFlow-RT, and (iii) reroutes to the best available path based on calculated end-

to-end ABW.  

Figure 2.4 shows the algorithm for ABW calculation of their work as an example 

of FTP traffic. This algorithm is written with Java in the application layer of the ONOS 

controller. After calculating the best path, the new flow entries are added to respective 

devices along with the path by using FlowRuleService which is supported by the ONOS 

controller. Their experimental results demonstrated that the total throughput of their 

method outperformed the reactive forwarding (i.e. ONOS’s forwarding application) 

when the traffic volume is larger than the link capacity and their method also reduced 

packet loss than reactive forwarding. 

End-to-end delay is also one of the important networks QoS parameters like 

ABW.  End-to-end delay takes a vital part for sending and receiving of data between the 

end to end devices. To perform efficient network traffic forwarding, needed to select the 

minimum end-to-end delay paths. Therefore, many works [41, 36, 20] focused on 

defining delay models, minimizing delay, and estimating end-to-end delay techniques.  

Although the OpenFlow protocol can effectively manage implementation and 

configuration changes of several networks such as core and data center networks, the 

control plane instructions must reach data plane elements in a timely manner [41]. The 

delay may increase according to the increasement of propagation delay between control 

and data plane, the time increasement for finding matching flow table entries and update 

flow entries, and the execution speed of the controller.  

The authors in [36] proposed querying theory-based delay model by assuming 

packets are arriving as Poisson distribution but ethernet traffic is not accurately modeled 

as a Poisson distribution process. Ciucu et.al [20] measured latency concerning with 

execution and generation of control messages in SDN hardware switches. They also 

discussed the effect of rule position number in the OpenFlow table and the insertion 

delay. The authors in [44] proposed a delay model used by network calculus which is 

also a new alternative approach of querying theory. Their network calculus only 

supported worst-case bounds on performance metrics analysis and a little hard for 

practical usage.  

Their approaches [41, 12] have some unrealistic assumptions for practical 

analysis. Iqbal et.al [41] developed end-to-end delay measurement by using a stochastic 

model and they experimented this delay measurement by using the following three 
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different platforms such as Mininet network simulation environment, GENI, and 

OF@TEIN testbeds for real traffic scenarios. Their proposed model, a log-normal 

mixture model for end-to-end delay in SDN fitted to the empirical measurements. They 

also proved that an M/G/1 model with a log-normal mixture model estimate end-to-end 

delay in OpenFlow-enabled networks more accurately than the others.  

Traditional ‘PING’ or Internet Control Message Protocol (ICMP) is a basic 

approach to examine the delay within the networks. The authors in [91, 18] estimated 

end-to-end delay by applying ICMP nature. The authors in [91] presented delay-aware 

traffic rerouting method in SDN by conducting ONOS controller and Mininet emulator. 

They estimate the end-to-end delay by sending ICMP probe packets from source switch 

to the controller through the destination switch.  

The authors in [19] proposed a time-stamp based shortest path selection 

framework for end-to-end applications. This framework measured end-to-end delay by 

using ICMP nature and probing approach. To overcome the issues of ICMP and packet 

probing, they applied time-stamp recording which records the arrival and departure time 

of per-packet flow at Open vSwitch and calculated delay based on the recorded sending 

and receiving time.  

After defining and measuring network QoS parameters, the next important task 

is the managing traffic depends on the QoS requirements. 

2.3.3 Traffic Management 

Traffic management is the key player in the TE task. Traffic management is 

responsible for steering traffic based on the QoS requirements and performs an optimal 

rerouting scheme to meet the application-level requirements. The following works have 

applied QoS aware routing schemes and application-aware routing management 

schemes in SDN environments and SDN-based cloud, IoT and datacenters 

environments. 

Deng et.al [21] mentioned AQRA as one of the Application-aware QoS Routing 

Algorithms that guaranteed multiple QoS requirements of high-priority IoT applications 

and selected the better routing paths by adapting the current network status. First, each 

of the IoT applications needed to send their app_profile to AQRA. App-profile 

contained IP address of an IoT application server and QoS classifier. When 

communication is started, IoT application sends Packet_In message to the controller’s 
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AQRA. AQRA started to classify flow into different priorities classes:  high-priority 

application (non-real-time critical mission and delay-sensitive), medium-priority 

application (real-time services with a stringent delay bound), and low-priority 

application (no critical mission and no stringent delay bound) according to app-profile 

that supported from IoT application providers. Then, AQRA searched routed by 

applying SA (Simulated Annealing) based algorithm and installed flow entries by 

Flow_Mod messages into the network and edge layer. AQRA got better performance 

results than MINA in terms of delay, jitter, and packet loss rate. 

App-RS [16] proposed as one of the solutions for application-aware routing 

scheme for SDN-based cloud datacenters. First, App-RS classified applications 

according to the following assumptions: class 1 for real-time application depend on end-

to-end delay and link load to alleviate network congestion, class 2 for streaming 

application based on delay variation and link load to get smooth playback, class 3 

application for miscellaneous application took into account link load to reduce packet 

loss rate. Second, App-RS identified applications by using application ID that store in 

the options of IPv4 header as a 24-bit label. Third, they determined the routes by using 

the LARAC (Lagrange Relaxation based Aggregated Cost) routing algorithm as well as 

considering of minimum link load and delay for class 1 and 2 applications. For the class 

3 application, App-RS used the Dijkstra algorithm to find the least congested path. And 

then, App-RS added a determined flow entry to each switch along the path. By using the 

FloodLight controller and Estinet emulator, the simulation results of App-RS 

outperformed CORouting [63] related to the average bandwidth ratio, end-to-end delay, 

and delay variation. However, App-RS needed to consider the flow aggregation 

approach to overcome the limited flow tables size of switch’s Ternary Content 

Accessible Memory (TCAM). 

The authors [54] proposed one of the solutions for application-aware bandwidth 

allocation mechanism in data centers networks. When predefined user requirement is 

available, FlowSch, their first approach can allocate available bandwidth and prioritize 

the user demands as per flows. However, when the application requires multiple flows 

to complete their task, FlowSch cannot provide such task. To accomplish this work, they 

then proposed AppSch that can allocate available bandwidth to satisfy the application 

requirements. Their evaluation results showed that when the total demanded bandwidth 

is close enough, FlowSch has been improved the average throughput and increased link 
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utilization. When multiple flows or aggregated flows are required, AppSh has been 

improved link utilization more efficiently and decreased application completion time.  

Jarschel et al. [45] proposed a DPI-based application-aware path selection 

method for YouTube video streaming. Firstly, they defined the threshold for a YouTube 

streaming application and then monitored buffered playtime and stalling. When 

currently buffered playtime reaches below the threshold, their method calculated the 

least load path and reroute the flow through the least congested path. Their method only 

applied YouTube streaming and required an addition machine to continuously monitor 

the buffered playtime. 

 Jeong et al. [46] performed application-aware TE by using the port number and 

DPI-based traffic classifier to identify application or service flows and distributed the 

identified flows to multiple queues with different priorities in each switch port. The 

multiple queues with different priorities forwarded by different treatments according to 

the maximum bandwidth and assigned priority of the queue. Matching with identified 

flows and its queue priorities defined by a network admin. This TE searched a routing 

path for identified flow by considering the current capacity of each queue in the egress 

ports. Their evaluation results demonstrated that the initial flow treatment delay for DPI 

of the first flow rule increases but decreases the propagation delays in the congestion 

scenario. Moreover, the results of their experiments concluded the identified application 

traffic got increased throughput and reduced packet delay.  

Schweissguth et.al [73] mentioned application-aware Industrial Ethernet (IE) 

based extended TDMA (Time Division Multiple Access) approach which configured 

both routing and scheduling algorithms that took application requirements into account. 

They aimed to overcome the drawbacks of the original heuristic algorithm in switched 

networks by applying a TDMA approach. Cheng et.al [17] proposed application-aware 

routing big data processing scheme for Hadoop to accelerate its MapReduce data 

shuffling over a network. They applied the Floodlight controller and their approach 

outperformed the ECMP-RR and Spanning Tree schemes.  

Although the application identification is beyond the knowledge of the 

combination of port number and protocol type, AMPF [66] used Machine Learning 

(ML) techniques (C4.5 decision tree) to perform an application-aware multipath packet 

forwarding for SDN. When the first packet of the flows entered the switch, if the flow 

rules existed, the switch forwarded packets by the flow rule. If the flow rules did not 
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exist, the switch informed AMPF about the packet, and AMPF sent the received packet 

of collected feature vectors to ML classifier, then AMPF computed the assigned route 

to flows according to their priority of class they belong to. AMPF achieved the 

awareness of application in SDN by using ML techniques instead of using DPI.  

Jeong et.al [47] mentioned an integrated DPI with an application-aware traffic 

management method in the SDN controller. They analyzed application traffic using off-

platform DPI instances and sent the classified result to the controller to determine the 

corresponding flow rules for the incoming application traffic. They further applied 

Firewall and Bandwidth Manager application on their traffic management application to 

specify a list of application that may forward or block, and limit the rate of bandwidth. 

To the performance evaluation, they used the ONOS controller to implement the above 

traffic management and used FTP as a tested application. 

OpenQoS [24] dynamically rerouted the QoS flows such as video streaming 

application which consisted of a base layer and one or more enhancement layers. 

OpenQoS was a per-flow based traffic prioritization scheme based on different layers. 

They categorized QoS flows as two levels: level-I QoS flows are used to send base layer 

packets, and enhancement layers packet are transmitted as level-II QoS flows.  

OpenQoS applied only video streaming applications and considered level-I QoS flows 

are a higher priority than level-II QoS flows. Packets information of each flow needed 

to periodically collect in OpenQoS. When there are large number of flows needed to 

collect, OpenQoS may be overtired. 

Momin et al. [63] proposed Content Oriented Routing (CORouting). CORouting 

dealt with all types of application traffic and classified these applications into the 

following three main classes by taking account of their tolerance of packet loss and 

delay. Then, different routing methods are applied to handle each class of application. 

CORouting controlled real time application by Dijkstra's routing algorithm to find the 

minimum hop count path. CORouting managed streaming and miscellaneous 

applications by applying weighted Dijkstra’s algorithm to select the least congested 

path. Network congestion may happen as well as the number of real-time applications 

may increase because CORouting always selects the shortest path for real-time 

applications.  

Mekky et.al [62] considered application-aware processing in the SDN data plane 

which aimed to support fast packet handling without restricted to Level 2 to Level 4 
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information. They kept some application logic at the physical switches instead of 

limiting application logic at the controller. They installed application-specific packet 

processing actions at the switches tables that are similar the OpenFlow’s flow table. If 

the new flow that does not match with switch’s flow rules in the flow tables, the 

controller decides the forwarding rules for this new incoming flow. Their results proved 

that their approach has low overhead and good performance results. 

Table 2. 1 Application-Ware Traffic Engineering Schemes in SDN 

Approaches  QoS 

Constraints 

Application 

Classification 

Traffic Management 

Methodology 

AQRA [21] Delay, jitter, 

packet loss 

rate. 

High-priority, 

medium-priority and 

low-priority 

applications. 

SA-based routing with 

adaptive weights. 

App-RS [16]. Link delay, 

link load, 

delay 

variation. 

class 1: real-time 

application, class 2: 

streaming application, 

class 3: miscellaneous 

application 

LARAC routing 

algorithm for class 1 and 

class 2 applications. 

Dijkstra algorithm for 

class 3 application. 

Application-

aware BW 

allocation [54] 

Link 

utilization. 

Not categorized 

applications. 

FlowSh for single flow 

required application and 

AppSh for multiple flow 

required application. 

Application-

aware path 

selection [45] 

Bandwidth Only applying to 

YouTube traffic. 

Based on buffered 

playtime. 

Application-

aware TE in 

SDN [46] 

Link 

utilization 

and delay. 

Classify application 

with DPI and assign 

different priorities and 

queues. 

Frwarded through the 

predefined priorities 

queues according to their 

requirements. 

IE based 

Application-

aware [73] 

Bandwidth, 

latency 

Not categorized 

application. 

Enhanced TDMA 

approach with 

scheduling and routing. 
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AMPF [66]  Delay, 

minimum 

bandwidth. 

Class 1: Skype, Class 

2: YouTube, Google 

Docs, Class 3: Gmail, 

Facebook, Class 4: 

Dropbox, FileZilla 

Prioritized flow and 

identified application by 

using MLT. Routed the 

application based on 

flows priorities. 

Application-

aware traffic 

management 

with ONOS [47] 

Bandwidth Not categorized 

application. Only 

tested with FTP. 

Classified by DPI. 

Feed the classified 

results into the controller 

and determines whether 

it may forward or block 

with the help of Firewall 

application. 

Open QoS [24] Bandwidth video streaming. 

Level-I QoS for base 

layer. Level-II QoS for 

enhancement layer. 

LARAC routing 

algorithm. 

CORouting [63] Packet loss, 

delay, delay 

variation. 

Real-time applications. 

Streaming and 

miscellaneous 

applications. 

Rerouted real-time 

application with Dijkstra 

algorithm, streaming and 

miscellaneous 

applications with extend-

ed Dijkstra algorithm 

2.4 Summary of the Chapter 

In today’s networks, the equal treatment of all classes of applications is not the 

proper way to meet user’s application-level requirements because the resource 

requirements of network applications are varied. Application-aware routing means such 

a kind of ‘routing’ that takes account into the application requirements such as available 

bandwidth, delay, jitter, and so on. Traditional shortest path routing cannot provide to 

satisfy the requirements of applications. The traditional IP-based TE and MPLS-based 

TE also struggle to perform this complex application-aware engineering task. By taking 

the advantages of SDN’s decoupling of control and data plane, global centralized 

control, and enabling innovation through the network programmability, application-
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aware engineering can support more efficiently and effectively than the traditional 

networks. 

In SDN, SDN-based cloud, IoT, and data center networks, various methods and 

approaches for application-aware engineering have been proposed in literature review. 

Port-based approaches, DPI or payload-based approach, machine learning-based 

approaches are used to classify application traffic. As the network QoS parameters 

measurements, estimation techniques for available bandwidth, end-to-end delay, and 

link weight parameters have been proposed so far. Table 2.1 surveys the various the 

application-aware TE in SDN. According to the Table 2.1 and literature reviews of this 

chapter, the efficient application-aware engineering techniques are still required to 

satisfy the user application level requirement.  
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CHAPTER 3 

THEORETICAL BACKGROUND 

Since the main goal of the dissertation is to design the application-aware traffic 

engineering in Software Defined Networking (SDN), this chapter describes the several 

related background fields. Firstly, this chapter explains the theoretical background of 

SDN by describing each layer of SDN architecture. As OpenFlow is one of the main 

building blocks of SDN, this chapter also describes the structure and functions of one of 

the OpenFlow switches such as Open vSwitch and OpenFlow protocol. Finally, this 

chapter presents a short overview of the traffic forwarding and QoS routing methods 

which have been used in conventional IP and SDN networks.  

3.1 Software Defined Networks Architecture 

The Open Networking Foundation (ONF), a non-profit organization that is 

funded by many companies such as Deutsche Telekom, Google, Microsoft, Facebook, 

Verizon, and Yahoo, focus on the development of SDN and standardizing the OpenFlow 

protocol aims to promote networking [104]. Software-Defined Networking has 

concerned a great deal of attention from enterprises, service providers, and industry 

associations. An emerging architecture, SDN is also an ideal solution for high bandwidth 

and dynamic nature of today’s application because SDN is an adaptive, cost-effective, 

dynamic, and manageable architecture.  

Figure 3. 1 Traditional Network Architecture VS SDN Architecture 
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SDN architecture decouples control and data function from the network devices 

such as switches and routers. This architecture also has global centralization control and 

enabling innovation through the network programmability. In contrast, in most large 

enterprise networks, network devices are coupled with control and data functions, which 

may face difficulties for network operators to adjust network infrastructure and 

configure large numbers of end devices, virtual machines, and virtual networks [58].  

The difference between the traditional internets and SDN architecture is 

presented in Figure 3.1. This figure shows clearly how the data plane layer (network 

devices) is simplified into simple forwarding elements and the control layer(controller) 

is logically managed. The data plane layer comprised of network devices 

(programmable switches) which can either be implemented in hardware or software and 

these switches also support the OpenFlow protocol for communication and 

configuration with the controller. The following are some of the advantages of the 

decoupling of control and data plane function architecture, SDN: 

• Centralized Provision: In traditional networks, the network administrator 

needs to manage each device individually and difficult to monitor lots of 

disparate systems. In SDN networks, network administrators do not need to 

update or configure each device manually because of the centralized approach 

of network management. The network administrator can also manage the entire 

network as a single unit.  

• Reduced operating costs: SDN reduces operating costs by eliminating the 

requirements for configuration updates from network administrators and 

reduces hardware expenses by using virtualized control planes for each unique 

device.  

• Scalability: SDN gives the user more scalability because of centralized 

provisioning but the SDN controller can practically manage a limited number 

of devices. Therefore, a practically large-scale network may need to deploy 

multiple SDN controllers. 

• Security: The movements toward virtualization technology have challenged the 

network administrators to secure their networks. SDN controller supports a 

centralized location, therefore, network administrators can manage the entire 

security of the network. 

• Directly programmable: Network managers can directly program network 
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operation with abstracts control of forwarding elements and dynamically adjust 

network traffic flows when the changing is needed. Therefore, network 

administrators can manage, configure, secure, and optimize network resources 

by using their application which was written based on their requirements and 

the application do not rely on proprietary software.  

• Openness: There is no depended vendors because every data plane element 

(i.e., OpenFlow-enabled switches or routers) has a unified data plane 

programming interface for the OpenFlow controller to collect network status.  

The SDN architecture mainly consists of the following three layers: the 

application layer, control layer, and data plane layer as shown in Figure 3.2.  

 

 

Figure 3. 2 Software Defined Networks Architecture 

 

The SDN applications are programmed to support all kinds of network services 

such as traffic engineering, load balancing, firewall, routing, and monitoring. The 

control layer is a core layer of the SDN architecture that extracts the data plane layer 

information and communicates to the application layer with an abstract view of the 

network topology, including statistics and events.  

The application and control layers communicate by using northbound APIs. The 

data plane layer consists of network nodes which can forward and processing of the data 

path. Communications between the data plane and control layers use a standardized 
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protocol called OpenFlow. The SDN Controller defines the data flows that take place in 

the SDN Data Plane. When the flow is entered to the network, the flow must first take 

permission from the controller [104]. The controller decides whether the communication 

is permissible or not according to the network policy. If the flow is permitted, the 

controller decides an appropriate route for the permitted flow and adds flow entry for 

the permitted flow in each switch along the path. The SDN controller is responsible for 

these complex tasks and switches simply manage flow tables and focus on forwarding 

function.  

3.2 Infrastructure Layer (or) Data Plane Layer  

The data plane layer would be the physical layer over which network 

virtualization lay down through the controller. This layer consists of various networking 

equipment which may be OpenFlow-enabled or OpenFlow-complaint network devices 

(routers or switches).  

Table 3. 1 Example of OpenFlow-Complaint Switches  

Vendor  Series 

Arista Arista extensible modular Operating System (EOS), Arista 

7124FX application switch. 

Cisco Cisco cat6k, catalyst 3750, 6500 series 

Cinea Cinea Core director running firmware version 6.1.1 

HP HP procurve series-5400 xzl, 8200 zl, 6200yl, 3500yl 

Juniper Juniper MX-240, T-640 

NEC NEC IP8800 

Toroki Toroki Lightswitch 4810 

Dell Dell z9000 and S4810 

Quanta Quanta LB4G4 

Open vSwitch Software switch, Latest version 1.10.0 

 

The OpenFlow enabled switches are either based on the OpenFlow protocol or 

compatible with it. In the data plane layer, traffic may enter or exit through logical or 

physical ports by forwarding or processing functions. Management of forwarding 

functions performed by an SDN controller or other mechanisms that orchestrated in 
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conjunction with the SDN controller. An OpenFlow enabled switch may be a hardware 

device or software program which are capable of processing and forwarding of the data 

path. The examples of OpenFlow-complaint switches are shown in Table 3.1.  

3.2.1 Open vSwitch 

Open vSwitch (OVS) is a multilayer software switch which aims to implement 

the software switch platform that provides standard management interfaces and opens 

the forwarding functions to programmatic extension and control. Open vSwitch is well 

suited to function as a virtual switch in Virtual Machine (VM) environments and 

exposed standard control and visibility interfaces to the virtual networking layer, it was 

designed to provide distribution across multiple physical servers. Open vSwitch also 

supports multiple Linux-based virtualization technologies including virtual box and 

Xen/ XenServer. It writes by using in platform-independent C and is easily ported to 

other environments. OVS can also work entirely in user-space without support from a 

kernel module and the user-space implementation is easier to port than the kernel-based 

switch. OVS in user space can access Linux or DPDK devices. OVS contains the 

following distributions:  

▪ ovsdb-server (database server): ovsdb-server provides remote procedure 

called (RPC) interfaces to one or more OVS databases and supports JSON-RPC 

client connections over Unix domain sockets and TCP/IP. It is a lightweight 

configuration database server that holds information for bridges, interfaces, 

tunnel definitions, OVSDB managers, and an OpenFlow controller address. It 

also allows ovs-vswitchd to query its configuration 

▪ ovs-vswitchd (daemon): It is the core part of the OVS and it manages any 

number of OVS switches on the local machine. The daemon communicates with 

SDN controllers, ovsdb-server, kernel module, and hosting system by using 

OpenFlow, OVSDB protocol, netlink, and netdev interface, respectively 

▪ ovs-dpctl: ovs-dpctl is a tool for configuring the switch kernel module 

▪ ovs-vsctl: ovs-vsctl is a utility for updating and querying the configuration of 

ovs-vswitchd 

▪ ovs-appctl: ovs-appctl is a utility which sends commands to running OVS 

daemons 
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3.2.2 OpenFlow Switch Specifications 

There are generally two types in OpenFlow-complaint switches: OpenFlow-only 

and OpenFlow-hybrid. The first one only processed by OpenFlow pipeline, and cannot 

support otherwise. OpenFlow-hybrid switches provide both OpenFlow and 

conventional network operations [101]. An OpenFlow switch logically involves one or 

more flow tables, one or more OpenFlow channels to external controllers, a group table, 

a meter table, and shown in Figure 3.3.  

• Ports: Packets are passed through the network interface called OpenFlow ports 

between OpenFlow processing and the rest of the network. OpenFlow switches 

connect each other via OpenFlow ports.  There are generally three types of 

OpenFlow ports: physical, logical, and reserved ports.  

 

 

Figure 3. 3 The Main Components of an OpenFlow Switch 

 

• Flow Table: Flow table is a standard table which is used to forward the packet via 

a single port. A flow table consists of flow entries and each flow entry consists of: 

▪ Match fields: consists of ingress port, packet header, and metadata to match 

against packets. 

▪ Priority: matching precedence of the flow entry. 

▪ Counters: to update for matching packets.  

▪ Instructions: modify the pipeline processing or action set. 

▪ Timeouts: maximum amount of time before the flow is expired.  
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▪ Cookie: Used to provide flow modification, deletion, and statistics by the 

controller. 

• Group Table: Group table consists of group entries and uses for multicast, 

broadcast, and load balancing purposes. Each group entry contains group identifier, 

group type, counters, and action buckets. 

• Meter Table: Meter table contains meter entries that define per-flow meters which 

use for various QoS operations such as rate-limiting and DiffServ. A meter 

measures and controls the rate of packets assigned to it and meter also attaches 

directly to flow entries. Multiple meters can be used in the same table, but in an 

exclusive way. Each meter entry is identified by its meter identifier, meter bands, 

and counters. 

• OpenFlow Channel: The interface between OpenFlow switches and controller is 

called OpenFlow channel. The controller configures the switch, receives the events 

of the switch, and sends packets to switch via this interface. These OpenFlow 

channel messages must be configured by the OpenFlow protocol and this 

OpenFlow channel encrypted using TLS (Transport Layer Security) but may run 

directly over TCP. 

The controller can add, delete, and update the flow tables entries in an OpenFlow 

switch via OpenFlow protocol.  

3.2.3 Pipeline Processing of OpenFlow Switches  

In OpenFlow switches, packets are processed in OpenFlow pipeline. OpenFlow 

packets are received on an ingress port and processed by the OpenFlow pipeline which 

may forward them to an output port. There are two stages in pipeline processing: ingress 

and egress processing as shown in Figure 3.4. For the flow tables numbered from 0 to 

n, the pipeline processing always begins at the ingress processing of flow table 0. The 

numbers assigned in ingress flow tables must be less than the numbers assigned in egress 

flow tables.  

Firstly, the packet first matches with the first ingress table and other tables may 

be used depending on the result of the first flow table matched. If the ingress processing 

outcome is to forward the packet to an output port, OpenFlow switches will start to 

perform in egress processing in the context of that output port. Egress processing is 

arbitrary; therefore, a switch may not provide or configure any egress tables to use. If 
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there is no valid configured table at the first egress table, the packet may be executed by 

the output port or forwarded out of the switch.  

 

Figure 3.4 An Architecture of OpenFlow Pipeline Process 

If there is a valid configured table at the first egress table then the packet must 

match against the flow entries of that flow table and other tables may be used depending 

on the result of first flow table matched. 

3.2.4 Matching Flow Table in OpenFlow Switches 

A flow table entry is identified by its match fields and priority. These match 

fields and priority is taken together identify a unique flow entry in the flow table. Each 

flow entries contains match fields (ingress ports + packet header + metadata), counters, 

and instructions. Figure 3.4 depicts the flow matching structure of OpenFlow.  

When handled by a flow table, the packet is matched against with flow entries 

of a flow table to choose a flow entry. The flow entry instruction set involves actions to 

be executed at some point of the pipeline. If flow entry is matched, the set of instructions 

(i.e. Apply-actions, Clear-actions, Write-actions, Write-metadata, and GoTo-table) of 

this flow entry is operated. When the instruction is GoTo-Table, it may direct the packet 

to another flow table, where the same process is executed again. When a matched flow 

entry does not have an instruction that direct to another flow table, the flow table pipeline 

processing stops at this table then the packet is executed according to this associated 
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 action set. If a flow entry is not matched, OpenFlow switch perform table miss function. 

Table miss performs based on the table configuration 

 

Figure 3.5 Flow Matching Process of OpenFlow 

 

The instruction set for table miss flow table may specify how to execute 

unmatched packet. The instructions include dropping packets, passing another flow 

table, and sending back packet-in messages to the OpenFlow Controller via the control 

channel.  

3.3   Protocol Options for Southbound Interface 

The control layer communicates the data plane layer by using Southbound APIs 

(Application Programming Interfaces). The controller uses these APIs to dynamically 

change forwarding rules that installed in the data plane devices such as switches and 

routers [72]. There are some examples of southbound APIs that are used for managing 

network devices in SDN deployment: NETCONF (standardized by IETF), Opflex 

(supported by Cisco), OF-Config (supported by the Open Network Foundation (ONF)), 

OpenFlow and so on. To support hybrid networks or to utilize traditional networks with 

software-defined manner, some routing protocols (i.e. OSPF, ISIS, and BGP) have been 

developed as southbound interfaces in some OpenFlow controller. Currently, the most 

popular southbound API is OpenFlow. 

3.3.1 The Concept of OpenFlow Protocol 

OpenFlow is a standardized communication protocol which defines the 

communication between an OpenFlow switches and OpenFlow controller. It is also a 

programmable network protocol that supports an open standard-based programming 

interface for multiple vendors to manage and supports network traffic. For instance, the 
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SDN controller can configure and manage (i.e. installing packet forwarding rules) data 

plane devices (i.e. OpenFlow switches) through the OpenFlow protocol. The switches 

can send notification messages (i.e. different kinds of events) to the controller via 

OpenFlow. 

At initialization, switches configure the IP address and TCP port number of their 

SDN controller, then switches contact with controller by using these IP and TCP port. 

Switches establish secure connection by using Transport Layer Security (TLS) session.  

Afterwards, the controller requests configuration information (for example: port number 

and mac address) from each switch by sending OpenFlow OFPT FEATURES 

REQUEST message to know about the existence of the switches in the network. There 

are mainly three types of OpenFlow messages: 

• Controller to switch messages: These types of messages are used to directly 

control or check the state of the switch and initiated by the controller. These are 

▪ Features:  To establish the OpenFlow channel, controller sends a feature 

request message to switch for requesting the capabilities of a switch and the 

switch reply a feature reply message.  

▪ Configuration:  The switch only responds to the controller’s set and query 

configuration messages.  

▪ Modify-State:  These types of messages are also called ‘FLOW_MOD’ 

message which are used to modify, add, and delete flow or group entries and 

sent by the controller. 

▪ Read-State:  These messages are used by controller to get numerous 

information (i.e. current configuration and port statistics) from switches.  

▪ Packet-Out:  Packet-out message consists either full or buffers ID sent by the 

controller.  

▪ Barrier:  Barrier request or reply messages are applied by controller to ensure 

message dependencies have been met and get notifications for completed 

operations [101]. 

▪ Role-Request:  Set the role of its OpenFlow channel used by the controller. 

▪ Asynchronous-Configuration:  These messages are used by the controller to 

define an additional filter on an asynchronous message of OpenFlow channel. 

• Asynchronous: These types of messages are applied to change the switch state 

 and update the controller with the network events changes. These messages are  
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initiated by switches. These messages are: 

▪ Packet-in:  Transfer the control of a packet to the controller. It may be table-

miss flow entry, TTL checking or packet-in events. 

▪ Flow-Removed: Inform the controller about the flow has been removed 

because of the controller’s flow delete request or the switch’s flow expiry 

process. 

▪ Port-Status:  Inform the controller about the status of the port. 

▪ Error:  The switch enables to notify the problems to controllers using error 

messages. 

• Symmetric: These types of messages are initiated by either the controller or the 

switch and sent without solicitation. Five symmetric messages have been 

represented as a part of the OpenFlow protocol: 

▪ Hello:  Hello messages or keep-alive messages exchanged between switch 

and controller upon connection startup. 

▪ Echo:  To verify the liveness of connection, the controller and switch used 

echo request/reply messages. 

▪ Experimenter: To supports additional functionality within OpenFlow 

message type space or an area for the features of future OpenFlow versions.  

3.4 Control Layer of SDN 

The control layer is a core layer of the SDN architecture that extracts the data 

plane layer information and communicates to the application layer with an abstract view 

of the network topology, consisting of statistics and event [84].  

Table 3. 2 Features Comparison of Popular SDN Controllers 

Controller Implementation Developers Application Domain 

NOX Python Nicira Networks Campus 

POX Python Nicira Networks Campus 

Ryu Python NTT Campus 

FloodLight Java Big Switch Networks Campus 

OpenDayLight Java The Linux Foundation Datacenter 

ONOS Java Open Networks 

Foundation 

Datacenter, WAN 

and transport 
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3.4.1 ONOS Controller 

ONOS (Open Network Operating System) supports the control plane for an SDN 

architecture, manages network components, such as switches and links. ONOS also runs 

software programs or modules to provide communication services to end hosts and 

neighboring networks. ONOS designs to help network service providers build carrier-

grade software-defined networks architected for high availability, scalability, and 

performance.  Moreover, it can run as a distributed system across multiple servers and 

its applications and use cases consist of customized communication routing, 

management, or monitoring services for software defined networks [100]. 

 

 

Figure 3.6 ONOS Architecture Tiers and Subsystem Structure 

 

The ONOS kernel, core services, and applications are written in Java as bundles 

that are loaded into the Karaf OSGi container. OSGi is a component system for Java that 

permits modules to be installed and run dynamically in a single JVM. Moreover, ONOS 

can run on several underlying OS platforms because it runs in JVM. Figure 2.3 shows 

the architecture tiers of ONOS and its subsystem structure. A service is a unit of 

functionality that consisted of multiple components that produce a vertical slice through 

the tiers as a software stack. ONOS defines many primary services such as Device, Link, 

Host, Topology, PathService, FlowRule, Packet services and so on. There are three main 

tiers in ONOS stack: Apps, Core, and Providers. The Providers interconnect with the 
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network elements using several control and configuration protocols and supplying 

service-specific sensory data to the core. 

The core tire which consists of Manager component and it is managed to accept 

and transmit information with the Provider via southbound APIs (Provider Service, 

Provider Registry) and with the Apps via northbound APIs (Admin Service, Service). 

The Apps interconnect with the core Manager to obtain the data. For instance, if an App 

needs information from network elements or if an App needs to know the current state 

of network elements, it can request information by using synchronous call or starts 

listening to asynchronous events. Then, the Manager will apply the correct Provider 

Services to retrieve the data from the network elements via protocols and serve it back 

to synchronous request or trigger an asynchronous event notification. When multiple 

ONOS instances are applied, the consistency of requested or changed information across 

ONOS instances is responsible for a Store component. 

3.5 Application Layer of SDN  

The application layer is an open area for developing as many innovative 

applications as possible by taking the advantage of the global view of network 

information, such as all network topology information, network statistic, network status, 

etc. The SDN applications are programmed to support all kinds of network services such 

as traffic engineering, load balancing, routing, network monitoring, network setup and 

management, network troubleshooting, network policy, and security. Such SDN 

applications can contribute various end-to-end solutions for data center and real-world 

enterprise networks [38]. SDN applications are directly and programmatically 

communicated SDN controller via northbound APIs. Besides, the applications can build 

an abstracted view of the network by gathering information from the SDN controller for 

decision-making purposes.  

 

3.6 Managements of Flow Entries in OpenFlow Networks 

In SDN architecture, the controller must install flow table entries in the 

forwarding tables of the switches. The wildcard, match fields of flow entries are 

classically installed in TCAM for fast packet matching and forwarding. TCAMs are 

relatively small, expensive and limited number of flow entries can be placed in the flow 
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table. The flow entry management system of OpenFlow switches can basically be 

categorized into two approaches: proactive and reactive.  

In proactive flow management, controller pre-calculates and populates flow 

entries into the flow tables of the switch. This type of installation does not incur 

additional flow setup time and latency because every flow does not consult with the 

controller. However, there is no flexibility for real-time network traffic engineering and 

a large number of entries that hold in flow table might not fit with TCAM. To address 

the issues of large flow tables management, flow entries can be installed reactively. The 

basic operations for reactive flow management are depicted in Figure 3.8: 

1) Packets arrive at the switch and there are no corresponding flow entries in 

switch’s flow table. 

2) Therefore, the switch informs the controller about the packet. 

3) The controller determines the path for the packet and puts in suitable rules in 

each switch along the path. 

4) Packets are forwarded to the destination. 

 

Figure 3.7 Reactive Flow Management 

The reactive mechanism is a timeout-base flow management mechanism and the 

default expiry timer is one second set by the controller. The switch tracks and removes 

every expiry flow. When more packets of expired flows arrived, the switch requests the 

flow entries and the controller must calculate for appropriate paths again.  

Both reactive and proactive mechanisms have different pros and cons. In a 

reactive approach, if a new flow arrives or if a switch’s flow table has no appropriate 

flow entry, the controller interaction is needed. This instantiation efficiently uses flow 

table but every flow suffers additional flow setup time which relies on the control 

channel and the current load of the controller. Therefore, reactive flow management may 
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diminish the states and number of large flow tables in the switches, but it may rise the 

delay and reliability requirements of the control channel and control plane software. 

Especially, the failures of the control plane software and control channel will have a 

great effect on the overall network performance, if flow entries cannot be settled in a 

timely manner. 

 

 

Figure 3.8 Proactive Flow Management 

 

In a proactive approach, all the required flow entries are installed in the flow 

tables of the switches. Therefore, this approach reduces the controller workload and it 

is more robust to control layer failure because the required flow entries are already 

installed into data plane layer switches. However, this approach needs to install a huge 

amount of flow tables when the network is bigger and this may be caused TCAM 

limitation problem.  

To overcome the limitations of proactive and reactive approaches, the 

combination of both proactive and reactive mechanism, called a hybrid flow 

management mechanism becomes popular. Hybrid flow management approach gets 

more flexibility. Before communication is started, flows rules are installed like 

proactive, and when communication is started, it treats the flows reactively.  

3.7 Innovation Through Routing based SDN Application 

In an SDN architecture, Network managers can innovate their application 

according to their requirements. Therefore, many researchers pay attention to the 

following applications: traffic engineering application, routing, load balancing, and 

security applications. In SDN based networks or not, routing generally involves two 

entities: network state information and routing algorithms. The network state 
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information is the network resources at nodes and links including link utilization, 

available bandwidth, delay, and packet loss rate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Routing Algorithms in SDN and Traditional Networks 

Routing algorithms apply this network state information to find routes with 

satisfying resources or demand. However, network state information can dynamically 

change because of links up and down states, fluctuations of load, and connection in and 

out states. In legacy networks, network state information is gathered by using distributed 

routing protocols and legacy networks also gain and distributes this network state 

information from and to routing devices. In SDN, the controller collects and updates the 

network states information from routing devices via direct connection of OpenFlow.  

A routing algorithm in which a router computes the shortest path between each 

pair of nodes in the network. The Open Shortest Path First (OSPF) Protocol is based on 

the Shortest Path First (SPF) algorithm. The most critical interests all the time in 

networks are traffic management or routing which focus how to decide paths depending 

on required constraints such as network QoS parameters. This type of routing is also 

called constraint-based routing. Figure 3. 9 depicts the various routing algorithms that 

are widely used in SDN, SDN based IoT networks, SDN based cloud data centers 
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networks, and conventional networks. According to Figure 3. 9, there are two main types 

of routing: shortest path routing and constrained based routing.  

3.8 Chapter Summary 

This chapter briefly explains the background theory of layer taxonomy of 

software defined networks. This chapter also describes the primary SDN protocol and 

how it works. Moreover, the architecture and functions of Open vSwitch (popular 

OpenFlow switches) are presented in this chapter. The traffic management applications 

such as routing is the most critical task for TE. Therefore, this chapter also presents 

various routing methods that are widely used in SDN and conventional networks.  
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CHAPTER 4 

THE ARCHITECTURAL DESIGN OF THE PROPOSED 

SYSTEM 

The purposes of the chapter are identifying the problems of traffic engineering 

without awareness of application, and describing the proposed application-aware 

engineering architecture with step by step explanation. 

4.1 Problem Definitions and Motivations 

The traditional Shortest Path First (SPF) algorithm routes the traffic efficiently, 

but the congestion may occur. SPF also produces bottlenecks for future traffic demands. 

SPF only takes account of the minimum hop-count and does not achieve QoS-aware TE 

and load balancing. Different applications need different routing depending on their own 

application preferences. Therefore, this dissertation has implemented an application-

aware traffic engineering in SDN environment.  

In this work, ONOS is used controller as the control plane and Mininet network 

emulator as the data plane network. The detailed requirements and implementations of 

software and hardware will be explained in section 5.1. In ONOS, there are many 

applications such as segment routing, SDN-IP, default forwarding (or) reactive 

forwarding and so on. Reactive forwarding (denoted as onos-app-fwd) is one of the 

shortest path computation mechanism on discovered topology by using Dijkstra 

algorithm. This forwarding worked are as follows: when a new packet enters a switch, 

firstly the switch lookup flow entries in its flow tables. If there have no matched flow 

entries, the switch asks the controller’s decision to manage the packet. The controller 

processes the packet and defines a flow entry based on the end-to-end paths then installs 

flow entry into the network switches through the path. Therefore, reactive forwarding is 

assumed as a shortest path routing and analyzed by multiple testing scenarios. 

Figure 4.1 is a sample test topology that has tested to explain the issues of 

shortest path routing. There are 4 switches and 6 hosts that involved in sample test 

topology. To easily and simply analyzed, the specified bandwidth of each link in the 
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network is defined as 20 Mbps.  Table 4.1 describes the available paths information 

between source hosts (H1, H2) and destination hosts (H5, H6).  

 

Figure 4.1 Sample Test Topology  

This experiment generated different bit rates of UDP traffic flows between 

switches S1 and S4 and carried out the following two tests called test 1 and 2 here.  

1. Test 1: H1 sends 15 Mbps of UDP traffic to H5 and H2 parallel sending 5 Mbps 

to H6.  

2. Test 2: H1 sends 15 Mbps to H5 and H2 parallel sending 10 Mbps to H6.  

Table 4.1 Available Paths Between S1 and S2 

Source Destination Available Paths Available Bandwidth 

H1, H2 H5, H6 P1= {S1, S3, S4} 

P2= {S1, S2, S4} 

P3 = {S1, S3, S2, S4} 

P3 = {S1, S2, S3, S4} 

 

20 Mbps 

According to Figure 4.1 and Table 4.1, it is seen that there are two equal cost 

paths between switches S1 and S4 {p1= {S1, S2, S4}, p2= {S1, S3, S4}}. The idea of the 

shortest path routing (reactive forwarding or default forwarding) is to select a single 

shortest path. In test 1, if the traffic volume is equal to the current link capacity, the 

packet loss rate is nearly % and the average throughput result can be seen in Figure 4.2.  

In test 2, if the traffic volume is greater than the link capacity, the average 

throughput results of 15 Mbps and 10 Mbps for the reactive forwarding (shortest path 

routing) are shown in Figure 4.3. In this case, the default forwarding selects path p1 and 
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that path p1 already consumed 15 Mbps and left 5 Mbps. Parallel to this, when H2 sends 

10 Mbps to H6, the default forwarding selects again the path p1 even the alternative path 

p2 provides a better ABW (20 Mbps) because the flow entries for source switch S1 and 

S2 already exists. Therefore, nearly 23% of packet loss occurred in default forwarding.  

 

Figure 4.2 Average Throughput Results of Test 1 

By analyzing these tests, it can be concluded the shortest path routing (default 

forwarding) is a simple and fast packet forwarding, however, it always routes every 

traffic via shortest path, lacks the sense of load balancing and decreases link and path 

utilization. 

 

Figure 4.3 Average Throughput Results of Test 2 
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4.2 Application-aware Traffic Engineering Architecture 

The Application-aware TE (App-TE) generally involves three main modules: 

traffic classification, traffic measurement, and traffic management. When the incoming 

traffic enters the network, App-TE first classified whether the priorities traffic or not, 

then performed the other modules (i.e. measurement and management). The overall  

system design is shown in Figure 4.4. 

 

 

Figure 4.4 The overall system design 

The SDN applications are programmed to support all kinds of network services 

such as traffic engineering, load balancing, routing, and monitoring.  As illustrated in 

Figure 4.5, an App-TE is an application which implemented on the SDN application 

layer and written in Java. Topology Manager, Device Manager, Port, Link, and Path 

services are Application Programming Interface (APIs) of the ONOS, SDN controller. 

The control layer extracts the data plane layer information and communicates to the 

application layer with an abstract view of the network topology, including statistics and 

events. Communications between the data plane and control layers use a standardized 

protocol called OpenFlow. 

Moreover, the traffic analyzer (sFlow-RT) is used to help the traffic 

classification and reduce the controller’s work load. The detailed explanation for each 

traffic module will be described in the next sections. 
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Figure 4.5 The Architecture Design of Application-aware TE (App-TE) 

4.3 Traffic Classification in App-TE 

In traffic classification module, App-TE used sFlow-RT as a prerequisite for 

traffic monitoring and classified application traffic by port-number. The sFlow analytics 

engine obtains a continuous telemetry stream from sFlow Agents embedded in network 

devices and converts them into actionable metrics, accessible through the REST flow 

API [89].  

Table 4.2 Classified Classes in App-TE 

Classes Traffic 

Prioritized Video streaming, file transferring, and 

haptic stream 

Non-Prioritized Other traffic 

The idea of using sFlow-RT in traffic classification is to reduce the controller 

work load for monitoring. When the application traffic is entered the network, the sFlow 
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agent accessed this traffic and sent to sFlow collector. sFlow collector analyzed and sent 

back to controller as the accessible metrics via the REST API.   

 This section chose application traffic which not only widely used in current 

networks but also work well in Mininet network emulator. To reduce computational 

complexity of controller, App-TE simply classified application traffic flows into the 

following two classes: prioritized and non-prioritized classes. The detailed information 

of these two classes are shown in Table 4.2. The detailed step by step process for the 

traffic classification module is written as the Algorithm 4.1 as shown in Figure 4.6. 

Algorithm 4.1: Traffic Classification in App-TE 

1: #previous_timestamp = 0 

2: #flows = [srcIP, dstIP, srcMac, dstMac, srcPort, dstPort, timestamp]      

3: #priorities_flows = [RTP, FTP, HTTP, Haptics], non-priorities_flows = other flows 

4: function: Flows_Detecting(flows): 

5:       if (timestamp > previous_timestamp) 

6:              check priorities or non-priorities flows by Port numbers 

7:  if  flows = priorities_flows 

8:                  then DWC-aware Routing(flows) 

9:              end if 

10:              if flows = non_priorities_flows 

11:                  then MHR(flows) 

12:              end if 

13:       end if 

14: end function 

Figure 4.6 Algorithm for Traffic Classification in App-TE  

4.4 Traffic Measurement in App-TE 

Collecting traffic statistics, calculating available bandwidth, link delay, and 

Delay-weighted Capacity (DWC) are the responsibility of traffic measurement module.  

4.4.1 Estimating Available Bandwidth using OpenFlow messages 

According to the literature reviews of section 2.3.2, many researchers estimated 

the QoS parameters such as ABW and link delay by using OpenFlow protocol. They 

estimate these parameters by active technique (sending probe packets to the switches 
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which need to estimate QoS parameters) and passive technique (monitoring at the 

specified period). For ABW estimation in SDN, passive techniques are more popular 

and widely used because of the centralized view of SDN. 

 By taking advantage of SDN’s global centralized control, this dissertation also 

uses OpenFlow messages to calculate the ABW. OpenFlow has many statistics 

messages such as flow stats, meter stats, aggregate stats, queue stats, port stats, and table 

stats. OpenFlow permits the controller to query the statistics information of the switches. 

Therefore, the controller can request the current statistics information from the switches 

by sending OpenFlow Statistics_REQUEST message to the switches. After the time, Ts, 

the execution time of the switch, the switch reply OpenFlow Statistics_REPLY message 

to the controller with its current statistics information. Figure 4.7 depicts the process of 

OpenFlow request/reply messages.  

 

Figure 4.7 OpenFlow request/reply messages between switch and controller 

However, OpenFlow does not implement a way to gather the network QoS 

parameters, for instance, link utilization or available bandwidth from the switch directly. 

Therefore, the controller uses to make sense of the raw statistics values to determine the 

available bandwidth of the switches.  

Table 4.3 The port statistics counter values 

Type Metrics Unit  Counter Unit 

Port 

Statistics 

pktRx n/s Received Packets n 

pktTx n/s Transmitted Packets n 

byteRx Bytes/s Received Bytes Bytes 

byteTx Bytes/s Transmitted Bytes Bytes 

pktRxDrp n/s Packet Received Drop Rate n 

pktTxDrp n/s Packet Transmitted Drop Rate n 
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There are many types of traffic statistics related with switch or router’s port such 

as packets Received (pktRx), packet Transmitted (pktTx), bytes Received (bytesRx), 

bytes Transmitted (bytesTx), packet Drop Rate (pktRxDrp) and packet Transmitted 

Drop (pktTxDrp) as shown in Table 4.3. The received bytes of one switch were more 

than the bytes transmitted by other switch at the ports through which they are connected.  

Therefore, this dissertation only used the transmitted bytes counter values and it 

also used northbound API (DeviceService.getDeltaStatisticsForPort) to extract the port 

statistics of each switch port. The link capacity is the defined link capacity and the link-

load can be obtained by applying the calculated some byte counter values. The link load, 

L of ith link at time t can be obtained through the Equation (4.1): 

𝐿𝑖(𝑡) = 𝑠𝑟𝑐𝑃𝑜𝑟𝑡_𝑏𝑦𝑡𝑒𝑠𝑇𝑥 (𝑡) + 𝑑𝑠𝑡𝑃𝑜𝑟𝑡_𝑏𝑦𝑡𝑒𝑠𝑇𝑥 (𝑡)                             (4.1)                                       

where, 𝑠𝑟𝑐𝑃𝑜𝑟𝑡_𝑏𝑦𝑡𝑒𝑠𝑇𝑥 (𝑡) is the source port statistics of transmitted bytes count at 

time t and 𝑑𝑠𝑡𝑃𝑜𝑟𝑡_𝑏𝑦𝑡𝑒𝑠𝑇𝑥 (𝑡) is the destination port statistics of transmitted bytes 

count at time t. After calculating each link load along a given path, the available 

bandwidth (ABW) of ith link at time t can be derived as Equation (4.2):  

               𝐴𝐵𝑊𝑙𝑖𝑛𝑘𝑖
(𝑡) = 𝐶𝑖(𝑡) − 𝐿𝑖(𝑡)                                                                  (4.2) 

where,  𝐴𝐵𝑊𝑙𝑖𝑛𝑘𝑖
(𝑡) is the available bandwidth for the 𝑖𝑡ℎ link at time t, 𝐶𝑖(𝑡) is the 

capacity of the 𝑖𝑡ℎ link and  𝐿𝑖(𝑡) is the link load for 𝑖𝑡ℎ link at time t. We can obtain 

the ABW of a link by subtracting the link load from the defined link capacity. Then, 

ABW of a given path is obtained through the following equation Equation (4.3): 

                  𝐴𝐵𝑊𝑝𝑎𝑡ℎ(𝑡) = 𝐴𝐵𝑊𝑙𝑖𝑛𝑘𝑖
(𝑡)𝑙𝑖𝑛𝑘𝑖𝜖𝑃𝑎𝑡ℎ

min                                               (4.3) 

where,  𝐴𝐵𝑊𝑝𝑎𝑡ℎ(𝑡) is the ABW of a path at time t, which is the minimum ABW of 

links along a given path, and 𝑙𝑖𝑛𝑘𝑖𝜖𝑃𝑎𝑡ℎ.  

However, querying port statistics from all the switches in the network may 

increase the controller’s load and computation time. Therefore, the traffic measurement 

module in App-TE only queried statistics from the source and destination switches of 

incoming traffic and then calculated the link utilization.  



64 

 

4.4.2 Estimating Link Delay 

 There has been numerous research handling estimation of link delay. One of the 

solutions [100] is to estimate the end-to-end link delay and it is as follows: 

𝑇𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑−𝑑𝑒𝑙𝑎𝑦 = 𝑇𝑡𝑜𝑡𝑎𝑙 − (𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑡𝑜𝑠𝑜𝑢𝑟𝑐𝑒𝑠𝑤𝑖𝑡𝑐ℎ +

                                                             𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑡𝑜𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠𝑤𝑖𝑡𝑐ℎ)             (4.4) 

where 𝑇𝑡𝑜𝑡𝑎𝑙  is the time duration to send a probe packet from the controller to source 

switch plus source switch to destination switch plus destination switch to the controller. 

𝑇𝑒𝑛𝑑−𝑡𝑜−𝑒𝑛𝑑−𝑑𝑒𝑙𝑎𝑦 is the delay time form source switch to destination switch. The 

solution got one-way delay by subtracting the delay time of the controller to source 

switch, and controller to destination switch from the total time, 𝑇𝑡𝑜𝑡𝑎𝑙. This work 

assumed that the link delays are already known according to the global view of SDN. 

Therefore, the link delay of each link is specified delay of the link when the network is 

started. The total end-to-end delay for the path is the sum of each link delay along the 

path through the network as in Equation (4.5): 

                                         𝐷𝑒𝑙𝑎𝑦𝑝𝑎𝑡ℎ = ∑ 𝑙𝑖𝑛𝑘𝑖   𝑙𝑖𝑛𝑘 𝜖 𝑃𝑎𝑡ℎ                                    (4.5) 

where, 𝐷𝑒𝑙𝑎𝑦𝑝𝑎𝑡ℎ is the total end-to-end delay for a path and 𝑙𝑖𝑛𝑘𝑖 is the 𝑖𝑡ℎ link delay 

and that link include in that path, 𝑙𝑖𝑛𝑘 ∈ 𝑃𝑎𝑡ℎ. 

4.4.3 Estimating Delay-Weighted Capacity (DWC) 

In the prioritized application traffic, some are delay-sensitive applications such 

as haptic and video streaming but the other are non-delay-sensitive applications which 

required more bandwidth. The non-delay-sensitive applications are file transferring and 

so on. Therefore, App-TE further considered the weighted value of delay and available 

bandwidth for prioritized applications. The DWC is obtained dividing the available 

bandwidth by the total path delay (Delay) as in Equation (4.6).  

                    𝐷𝑊𝐶 =  
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝐷𝑒𝑙𝑎𝑦
                                            (4.6) 

The source switch (s) to the destination switch (d), the DWC is obtained through the 

Equation (4.7): 
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 𝐷𝑊𝐶𝑠,𝑑 =  ∑
𝐴𝐵𝑊𝑠,𝑑

𝑖

𝐷𝑒𝑙𝑎𝑦𝑠,𝑑
𝑖𝑝𝑠,𝑑

𝑖 𝜖𝑝𝑠,𝑑
    (4.7) 

where, 𝐷𝑊𝐶𝑠,𝑑 is the DWC value of source (s) and destination (d), 𝐴𝐵𝑊𝑠,𝑑
𝑖  is the 

available bandwidth of s and d for ith  link, and  𝐷𝑒𝑙𝑎𝑦𝑠,𝑑
𝑖  is the delay value of  s and d 

for ith  link. App-TE defined the optimal path with the maximum weighted sum of DWC 

value between source and destination. 

4.5 Traffic Management in App-TE 

The traffic management module in App-TE performed the following four main 

tasks. First, App-TE extracted all possible paths between the source and destination 

switches. Then, App-TE queried port statistics from the selected switches and calculated 

ABW, delay, and DWC. After that, App-TE selected maximum DWC path (DWC-

aware routing) for prioritized traffic and minimum hop-count path (minimum hop-count 

based routing) for non-prioritized traffic. Finally, App-TE installed flow rules for 

calculated paths into the intermediate switches along the path.  

 

Figure 4.8 The Flow Diagram for Traffic Management Module 
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As illustrated in Figure 4.8, when the classified traffic is entered the network, 

the App-TE first checked whether the prioritized traffic or not. If the classified traffic is 

prioritized traffic, the App-TE calculated the ABW, delay, and DWC. Then, it 

performed the DWC-aware routing. If the classified traffic is non-prioritized traffic, the 

App-TE calculated minimum hop-count path and performed the minimum hop-count 

based routing. 

4.5.1 Minimum Hop-count-based Routing (MHR) 

When the non-prioritized application traffic is entered the network, App-TE 

routed this application traffic through the minimum hop-count path. Figure 4.9 shows 

step by step process of MHR algorithm. 

Algorithm 4.2: MHR Algorithm 

1: #srcIP = source host IP address, dstIP = destination host IP address 

2: #srcMac = source Host MAC Address, dstMac = destination Host MAC 

Address 

3: #srcPort = source Port number, dstPort = destination Port number 

4: #srcDeviceId = deviceID of switch that source host connected  

5: #dstDeviceId = deviceID of switch that destination host connected  

6: function: Minimum_hop_count_based_Routing (srcIp, dstIp, srcMac, 

dstMac, srcPort, dstPort): 

7:       get srcDeviceId and dstDeviceId from srcMac and dstMac 

8:       all_shortest_paths = getPaths (srcDeviceId, dstDeviceId) 

9:       select one path from all_shortest_paths 

10:       install flow rules through the selected path 

11:      forward the packets 

12: end function 

Figure 4.9 Minimum Hop-count-based Routing Algorithm 

Firstly, MHR extracts the DeviceIDs of source and destination switches. Then, 

MHR finds the all possible shortest paths between the source and destination switches 

by using the ONOS’s northbound APIs (PathService). Finally, selects one path from all 

shortest path and installs flow entries of selected path to the intermediate switches 

through that path. 
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4.5.2 Delay Weighted Capacity-aware Routing (DWC-aware Routing) 

When the prioritized-application traffic is entered the network, this application 

traffic is routed by using DWC-aware routing. Figure 4.10 describes how DWC-aware 

routing is worked.  

Algorithm 4.3: DWC-aware Routing Algorithm 

1: #srcIP=source host IP address, dstIP=destination host IP address,   

2: # srcMac=source Host Mac, dstMac=destination Host Mac 

3: #srcPort=source Port number, dstPort=destination Port number, 

srcDeviceId=deviceID of switch that source host connected 

4: function: DWC-aware-Routing (srcIp, dstIp, srcMac, dstMac, srcPort, dstPort): 

5:         get srcDeviceId and dstDeviceId from srcMac and dstMac 

6:         construct Depth first search graph 

7:         all_possible_paths = getDFSpaths (srcDeviceId, dstDeviceId) 

8:         for path in all_possible_paths do: 

9:              for link in path. links () do: 

10:                 ABW = link. Capacity () - link. load () 

11:                 total_delay += link_delay              

12:              end for 

13:             ABW_path = min (ABW) 

14:             DWC = ABW_path / total_delay 

16:             optimal_path = max (Delay_weighted_capacity) 

17:         end for 

18:         install flow rules through the maximum DWC path 

19:         forward the packets 

20:  end function 

Figure 4.10 DWC-aware Routing Algorithm 

DWC-aware routing works as follows: 

• extracts the DeviceIDs of source and destination switches. 

• constructs the Depth First Search graph for source and destination switches. 

When ONOS needed to extract the paths between source and destination 

switches, it used the PathService API. PathService can support shortest paths 
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and disjoint paths between the source and destination switches. However, one of 

the objectives of App-TE is to improve network utilization and choose the best 

path for application traffic. Therefore, App-TE needs all possible paths to 

perform DWC-aware routing. 

• calculates ABW, delay, and DWC for each link and path. Then, selects 

maximum DWC path. 

• Finally, DWC-aware routing installs flow entries of selected path to the 

intermediate switches through that path. 

4.6 Chapter Summary 

This chapter describes the architecture of App-TE with its three modules. Firstly, 

it discusses the issues of shortest path routing and demonstrates with average throughput 

results. Then, this chapter explains the three main modules of App-TE with system 

diagram and algorithms. 
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CHAPTER 5 

IMPLEMENTATION AND EVALUATION OF THE 

PROPOSED SYSTEM 

The implementation of experimental testbed and evaluation of the proposed 

system are discussed in chapter 5. Firstly, the hardware and software requirements of 

experimental testbed are described. Then, the experiments are carried out by using the 

following methods: App-TE, link-utilization aware routing, and shortest path routing. 

Finally, the chapter discussed the experimental results of each method by conducting 

different scenarios. 

5.1 Design and Implementation of Experimental Testbed 

In order to assess the performance of the App-TE, the experimental testbed has 

to be designed. As the App-TE is implemented using ONOS controller, it runs in tested 

topologies in order to compare and evaluate the results with or without the App-TE. In 

order to have deterministic and low-cost environments to test, a virtual testbed was 

created that can run on two machines and do not require additional effort to be 

maintained and operated. This dissertation applied ONOS controller as the SDN 

controller and Mininet [94] as the network emulator. Moreover, the analytic engine 

sFlow-RT analyzer [98] is also used. The Figure 5.1 illustrates the logical testbed design 

of this dissertation.  

 

Figure 5.1 Logical Testbed Design 

In Figure 5.1, the ONOS controller is connected to Mininet network emulator 

via OpenFlow protocol. The sFlow agent is run on each switch of Mininet topology by 

sFlow-RT analyzer. These agents sent sFlow metrics to sFlow collector by using sFlow 
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datagram connection. App-TE got the active flows events from sFlow analyzer by REST 

API calling.  

 

 

Figure 5.2 The Physical Testbed Design of Classical-Y Topology 

According to the literature reviews of application-aware engineering in SDN, the 

classical-Y topology is widely used and depicted as Figure 5.2. All the switches/routers 

are connected to SDN controller (ONOS) and traffic analyzer (sFlow-RT). The 

hardware requirements of the experimental testbed are depicted as Table 5.1. Table 5.2 

depicts the software tools that are used in this dissertation. 

Table 5.1 Hardware Requirements of Experimental Testbed 

Name Specifications 

CPU Core TM i5-42100U CPU @2.40GHz 

RAM & HDD 8.00GB & 500GB 

Operating System Linux 16.04 LTS 

Number of PCs 1 

Table 5.2 Software and Tools that Used in this Research. 

Software Versions Used in 

ONOS (SDN Controller) 1.10.0 (Kingfisher) Implementation and Evaluation 

Mininet Emulator 2.2.1 Testbed (Evaluation) 

sFlow-RT 2.0-r1121 Implementation and Evaluation 

Open vSwitch 2.9.2 Testbed (Evaluation) 

OpenFlow Protocol Version 1.3 Testbed (Evaluation) 
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5.2 Experimental Methods 

The experimental results of the proposed App-TE and other traffic management 

methods which are conducting with multiple scenarios are presented in this section. To 

highlight the outcome of the proposed App-TE, the following three methods are 

compared with different scenarios. 

5.2.1 Application-aware TE (App-TE) 

The proposed App-TE considered two routing methods. When prioritized 

application traffic is entered the network, App-TE routed the traffic by using Delay 

weighted Capacity-aware Routing (DWC-aware Routing). If the incoming traffic is non-

prioritized application traffic, App-TE routed the application traffic by using shortest 

path routing (or) minimum hop-count based routing. To perform such kinds of routing 

mechanism, App-TE needs to estimate Available Bandwidth (ABW), total path delay, 

and DWC values. 

5.2.2 Link Utilization-aware Routing (LU-Routing) 

 LU-Routing is one of the types of constrained-aware routing. Its interested 

constraint or weight value is the link utilization. In this dissertation, Link utilization 

(LU) is defined as the ABW. When the incoming traffic is entered the network, first, 

LU-Routing estimated the LU, then calculated maximum LU path. Finally, the traffic is 

routed through the maximum LU path. 

5.2.3 Shortest Path Routing  

As explained in chapter 2, this dissertation defined one of the applications of 

ONOS controller, default forwarding, so called reactive forwarding as the shortest path 

routing. Shortest path routing is fast and simple. It simply forwarded the traffic through 

the minimum hop-count path. 

5.3 Performance Assessment Parameters 

The performance assessment parameters that have used in this dissertation are 

as follows: 
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(i) Throughput 

The throughput refers to the data rate of successful data that delivered over a 

communication link. Throughput is measured in bits per second (bps) or sometimes in 

megabyte per second (MB/s). Alternatively, the throughput is the rate at which data is 

traversing a link and it can be obtained dividing the total payload over the entire session 

by the total time (or) time taken that transmitted that data [99]. The throughput can be 

derived as the Equation (5.1):  

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑇ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝑇𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛
 

(ii) Packet Loss Rate 

Packet loss rate refers to the ratio of number of loss packets to the total number 

of sent packets. Packet loss rate can be obtained through the following Equation (5.2): 

𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑜𝑠𝑠𝑅𝑎𝑡𝑒 =
(𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐿𝑜𝑠𝑠𝑃𝑎𝑐𝑘𝑒𝑡𝑠)

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑𝑃𝑎𝑐𝑘𝑒𝑡𝑠
 

5.4 Traffic Generators 

The App-TE used different kinds of application traffic flows such as file 

transferring, video streaming, haptic stream. To generate these application traffic flows, 

the following traffic generators are used in this dissertation. 

 

(i) Iperf Traffic Measurement Tool 

Iperf works as a client-server architecture. By default, Iperf client connects to 

the Iperf server on the TCP port 5001 and the bandwidth displayed by Iperf is the 

bandwidth from the client to the server. To generate Iperf TCP traffic, first Iperf server 

need to run with the following command: 

$ iperf - s  - i 1 - p 5001 

where, the arguments for -s denotes the server mode, - i denotes the interval in seconds 

between periodic bandwidth reports, and - p specifies port number [97]. The iperf client 

connects to the server by using the following command: 

(5.1) 

(5.2) 
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$ iperf - c [server’s IP Address] - p 5001 - t 20 

where, the arguments for - c indicates client mode and - t specifies the test duration time 

in seconds. In Figure 5.3, there are two Xterm windows in Mininet emulator. The left 

one is host H1 and the right one is host H6. Host H1 is used as a server and host H6 is 

used as a client. 

 

Figure 5.3 Generating Iperf Traffic between H1 and H6 

(ii) Web-based Video Streaming by HTTP 

Cisco experts predict 80% of Internet traffic will be video traffic by 2022 [95]. 

Therefore, App-TE defined video traffic as prioritized-application traffic. In this work, 

App-TE used web-based video streaming. The Hyper Text Transfer Protocol (HTTP) is 

a stateless application-level request/response protocol. HTTP follows a classical client-

server model. A client opens a connection to make a request, then waits until it receives 

a response [105]. To perform this, the python SimpleHTTP module is applied as a web 

server and web clients. The following command is used to implement SimpleHTTP 

server on port 80: 

$ python –m SimpleHTTPServer 80 

To get the contents (e.g. videos, images, documents, files, folders) from the 

server, the client used the following command: 

$ wget http://[server IP Address]:80/[file name] 

https://en.wikipedia.org/wiki/Client–server_model
https://en.wikipedia.org/wiki/Client–server_model
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The clients must specify the server’s IP address, port number, and file name for 

this downloading process. Figure 5.4 shows the client (H3) downloading a file from the 

SimpleHTTP server (H1). 

 

 

Figure 5.4 Generating HTTP Traffic Between H1 and H3 

(iii) File Transferring with FTP 

The File Transfer Protocol (FTP) is a standard network protocol used for file 

transferring between a server and clients on a computer network [93]. The following 

commands are used to apply FTP server and clients: 

$ inetd & 

$ ftp [server IP Address] 

FTP also protects the username and password, therefore after accessing the 

correct username and password, ftp prompt will appear and can get any file from the 

server directory. Figure 5.5 shows the file downloading process of FTP client (H1) from 

the FTP server (H3). 

$ ftp> get [filename] 
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Figure 5.5 Generating FTP Traffic between H1 and H3 

(iv) Haptic Stream by D-ITG 

There has been a recent concern in the transmission of multi-modal information 

over the Internet, and especially the transmission of haptic information [39]. The 

characteristics and QoS requirements of haptic traffic are outlined in Table 5.3. 

Table 5.3 The Parameters Settings of Haptic Traffic 

Traffic Characteristics QoS requirements 

Haptic Constant packet rate. 

Transmission rate of 1000 packet/sec.  

Sensitive to delay and jitter.  

Packet loss <∼ 10% and Jitter <∼ 2ms. 

Delay <∼ 50ms.    

Throughput ∼ 500 kbps to 1 

Mbps.  Packet loss <∼ 10% 

and Jitter <∼ 2ms.  

 

Distributed Internet Traffic Generator (D-ITG) is a platform that can produce 

traffic at packet level accurately replicating appropriate stochastic processes for both inter 

departure time with random variable packet sizes (exponential, uniform, normal, etc.). 

Moreover, D-ITG can analyze network by generating network traffic on a packet by packet 

basis. There are five main modules in D-ITG: ITGSend (Sending Process), ITGRecv 

(Receiving processes), ITGLog (Storage server), ITGManager (Remote control manager), 

ITGDec (Analyzing results) [7]. 
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This work generated the traffic which has a constant packet rate and transmission 

rate of 1000 packet/sec by using the D-ITG. The transmission rate of haptic media is 

1000 MU/s and video is 30 MU/s. The maximum allowable delay for haptic media is 30 

to 60 ms and the average bit rate of haptic media is 320 kbps [59]. Then, this scenario 

generated TCP traffic which average bit rate is 320 kbps as the haptic media stream. To 

generate such kind of traffic, D-ITG used the following command lines: 

$ ./ITGSend -T TCP -a <Ip-address> -c 100 -C 10 -t 15000 

$ ./ITGRecv  

$ ./ITGDec sender.log 

where, parameters -T specifies protocol such as TCP or UDP. -a denotes destination IP 

address. -c defines the constant payload size which measure by bytes. -C specified 

constant packet rate (pps) and -t defined the duration (ms).   

5.5 Experiment Topology 

The experimental test topology is depicted in Figure 5.6. This Figure includes 

six switches and six hosts that connected to each switch. 

 

Figure 5.6 Test Topology 

The number (1 2, 3, and 4) written at each switch denotes the port numbers for 

the switch. The two numbers (e.g. (14, 10)) on each link represent the link capacity 

(Mbps) and the link delay (ms), respectively. 
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5.6 Experimental Scenarios 

Five different experimental scenarios have been carried out in this work. The 

scenarios are chosen based on the ideas that highlighted the advantage of App-TE. These 

scenarios are conducted according to Tables 5.1 and 5.2 and tested with Figure 5.6, test 

topology. The experimental results are calculated based on the average results of five 

running time. 

5.6.1 Scenario I: Analyzing Methods with Iperf   

In scenario I, experiments are carried out according to the parameter settings that 

described in Table 5.4 and testing with test topology, Figure 5.6. This scenario aimed to 

discuss which methods choose which paths based on its constraints and analyze their 

performance results.  

Table 5.4 The Experimental Parameters Values for Scenario I 

Scenario I Traffic 

Generator 

Iperf Server Iperf Client Number of 

Flows 

Run time 

duration 

Test 1 Iperf H1 H2, H3, H4, 

H5, H6 

5 20 s 

(one by one) 

Test 2 Iperf H1 H2, H3, H4, 

H5, H6 

5 Parallel 

 

In test 1, host H1 sends Iperf TCP traffic to hosts H2, H3, H4, H5, and H6 for 

20s. Then, host H1 parallel sends 5 numbers of Iperf TCP flows to hosts H2, H3, H4, 

H5, and H6 in test 2. As the sample path calculation, Table 5.5 describes the possible 

available paths between hosts H1 and H6. There are three shortest available paths for 

shortest path routing with hop counts constraints.  

The LU-aware routing and App-TE extract paths from Depth First Search (DFS) 

graph. The four possible available paths with LU and DWC constraints for LU-aware 

and App-TE are also presented in Table 5.5. The constrained values are calculated when 

generating Iperf traffic between hosts H1 and H6. When host H1 sent Iperf TCP traffic 

to host H6 by using shortest path routing, H1 forwards the Iperf TCP traffic to H6 

through the path p1 = S1–S2–S3-S6. This forwarded path is known by checking flow 

tables on each switch. 
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Table 5.5 The Paths and Constraints between Hosts H1 and H6 

Source Destination Possible Paths Constraints Value Methods 

 

 

 

H1 

  

 

 

H6 

S1-S2-S3-S6  

Hop-count 

 

3 hops 

Shortest 

Path 

Routing 

S1-S4-S3-S6 

S1-S4-S5-S6 

S1-S2-S3-S6  

Link 

Utilization 

9.9995  

LU-aware 

Routing 

S1-S4-S5-S6 19.995 

S1-S4-S3-S6 14.9995 

S1-S2-S3-S4-S5-S6 9.9995 

S1-S2-S3-S6  

Delay 

Weighted 

Capacity 

0.3887  

App-TE S1-S4-S5-S6 1.240 

S1-S4-S3-S6 0.7261 

S1-S2-S3-S4-S5-S6 0.2429 

 

The flow table information for the switches are shown in Figure 5.7, where only 

shows the flow table information of switches S1, S2, S3, and S6 because there is no flow 

table information in switches S4 and S5. 

 

Figure 5.7 Flow Table Entries in Switches S1, S2, S3, and S6 
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Shortest path routing only took account minimum hop counts paths, therefore, 

when the path p1 does not satisfy the flow demands, the throughput results of shortest 

path routing may decrease According to the Figure 5.8, when the traffic is sent one by 

one, the throughput results of shortest path routing may increase and outperform the 

other two methods. However, when the traffic is sent in parallel, which means all the 

traffic are parallel using only shortest paths, the throughput results of shortest path has 

been decreased as shown in Figure 5.9. 

 

 

Figure 5.8 Throughput Results for Shortest Path Routing by Test 1 in Scenario I 

 

 

Figure 5.9 Throughput Results for Shortest Path Routing by Test 2 in Scenario I 

The throughput results for tests 1 and 2 in scenario I by conducting the LU-aware 

routing, and App-TE are shown in the Figures 5.10, 5.11, 5.12, and 5.13, respectively.  

LU-aware routing used the calculated maximum link utilization path and App-TE used 

the calculated maximum DWC path. The throughput results of LU-aware routing for 

sending one by one Iperf traffic outperformed the App-TE, however, when the traffic is  
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sent in parallel, the throughput results of App-TE outperformed the other two methods. 

 

Figure 5.10 Throughput Results for LU Routing by Test 1 in Scenario I 

 

 

Figure 5.11 Throughput Results for LU Routing by Test 2 in Scenario I 

 

 

Figure 5.12 Throughput Results for App-TE by Test 1 in Scenario I 
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Figure 5.13 Throughput Results for App-TE by Test 2 in Scenario I 

5.6.2 Scenarios II: Testing with Larger Link Capacities  

In scenario II, experiments are carried out according to the Table 5.6 parameters 

settings by using test topology, Figure 5.14.  

Table 5.6 The Experimental Parameters values for Scenario II 

Scenario 

II 

Traffic 

Generator 

FTP 

Server 

FTP Client Number 

of Flows 

File 

Size 

Run time 

Duration 

Test 1 FTP H1 H2, H3, 

H4, H5, H6 

25 1G (one by 

one)  

20s 

Test 2 FTP H1 H6  

10 

 

1G 

 

Parallel H2 H5 

 

 

Figure 5.14 Sample Test Topology with Larger Link Capacities 
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There are 6 hosts and 6 switches in Figure 5.14. The two numbers on each link 

denote link capacity (Mbps) and link delay (ms). Therefore, the configured link 

bandwidth for each link ranges from 100 Mbps to 250 Mbps. The configured link delay 

for each link ranges from 15 ms to 20 ms.  

In scenario II, host H1 served as an FTP server and other hosts are served as the 

clients. Clients have downloaded a file whose size is 1G (1024Bytes). This scenario 

aims to present how the three methods are handled the FTP traffic, to prove App-ware 

TE can handle the FTP traffic, and to be conducted with the larger amount of configured 

link bandwidth. 

 

Figure 5.15 Throughput and Time Results of Test 1 in Scenario II by Shortest Path 

Routing 

 

 

Figure 5.16 Throughput and Time Results of Test 2 in Scenario II by Shortest Path 

Routing 
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Figures 5.15 and 5.16 depict the throughput and time results for accessing FTP 

servers by shortest path routing. These Figures show the analysis results of when FTP 

clients downloading a file (1G) from an FTP server. 

 In these experimental results of the figures, the throughput bar shows which 

Mbps are used to download the file from the server. The time bar represents the duration 

to accomplish the file downloading process. 

 

Figure 5.17 Throughput and Time Results of Test 1 in Scenario II by LU-aware 

Routing 

To parallel accessing, this scenario generated cross traffic between hosts H1, H2, 

H5, and H6. For this test, hosts H1 and H2 served as the FTP servers and hosts H5 and 

H6 performed as the clients. The Figures 5.17, 5.18, 5.19, and 5.20 depict the throughput 

and time results for accessing FTP servers in tests 1 and 2 by using LU-aware routing 

and App-TE. 

 

Figure 5.18 Throughput and Time Results of Test 2 in Scenario II by LU-aware 

Routing 
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Figure 5.19 Throughput and Time Results of Test 1 in Scenario II by App-TE 

 

 

Figure 5.20 Throughput and Time Results of Test 2 in Scenario II by App-TE 

 

 

Figure 5.21 Throughput and Time Results of Test 2 in Scenario II by the Three 

Methods  
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Figure 5.21 summarized the throughput and time results for parallel accessing 

FTP servers (H1 and H2) from the clients (H5 and H6). According to this Figure 5.21, 

shortest path routing has downloaded a file with lower throughput but taken highest 

amount of time. LU-aware routing has gotten higher throughput than the shortest path 

routing. The proposed App-TE and LU-aware routing got nearly the same throughput 

results and their significant difference is 1.146. The throughput results of App-TE is 

higher than LU-aware routing. Moreover, App-TE took less time to accomplish this FTP 

file downloading. 

5.6.3 Scenario III: Testing with Different Application Traffic Flows 

Scenario III conducted different application traffic flows by using three different 

methods. This scenario is running in sample test topology as shown in Figure 5.14. This 

scenario also used different application traffic flows such as, video streaming and haptic 

stream.  

Table 5.7 Experimental Parameters for Scenario III 

Application traffic flows Options 

Video streaming VLC Server (H1), VLC Client (H6) 

Haptic stream Generated by using D-ITG 

 

The main goal of this test is analyzing how the three methods perform to conduct 

these application traffic flows. The experimental parameters are as shown in Table 5.7.  

Table 5.8 Parameters Settings 

Video File Settings VLC Streaming Settings 

Parameters Values Parameters Values 

Video file type MPEG-4 (mp4) Video Codec H.264+MP3 (MP4) 

Size 101.1MB  

(101,123,423 bytes) 

Bit Rate 128Kbps 

Duration  11 minutes 25 seconds Sample Rate 44100KHz 

Dimension 1280×720 Encapsulation MP4/MOV 

Codec H.264 Protocol Type HTTP 
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To apply video streaming, this test used VLC server and client. Host H1 served 

as the VLC server which stream the video to the VLC client host H6. Table 5.8 depicted 

as the parameter setting of the VLC software and streamed video file. 

The streamed video file size is 101.1 MB and the duration for this video is 11 

minutes and 25 seconds. VLC server streamed this video by using HTTP protocol. This 

scenario also analyzed packet loss rate of video streaming by applying the three methods 

(shortest path routing, LU-aware routing, App-TE). To analyze packet loss rate of video 

streaming, this scenario checked packet retransmission of TCP connection. 

 

Figure 5.22 Video Streaming with Shortest Path Routing 

 

 

Figure 5.23 Video Streaming with LU-aware Routing 

Figures 5.22, 5.23, and 5.24 showed the occurrence of packet retransmission, 

alternatively, the occurrence of packet loss when the VLC server H1 was streaming video 

file to VLC client H6. According to the packet retransmission analytical results, the shortest 
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path routing got the highest number of retransmitted packets (nearly 1000 packets) and the 

packet loss rate is nearly 20% as shown in Figure 5.22.  

 

 

Figure 5.24 Video Streaming with App-TE 

When video streaming is conducted by LU-aware and App-TE, the highest 

number of retransmitted packets are nearly 500 packets and less than 450 packets, 

respectively. APP-TE not only got a smaller number of retransmitted packets than the 

others but also got less time duration to transmit the video file.  

To conducted the haptic stream, scenario III used D-ITG. Figure 5.25 showed 

the throughput versus elapsed time of haptic streams by applying the three methods. 

According to the Figure 5.25, the average throughput result of App-ware TE 

outperformed the others two methods. 

 

Figure 5.25 Comparative Throughput Results by the Three Methods 
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5.6.4 Scenarios IV: Testing with and without Application-awareness 

In scenario IV, experiments are carried out according to the parameter settings 

of Table 5.9 by testing with Figure 5.14. This scenario aims to present the effectiveness 

of with and without application awareness.  

Table 5.9 The Experimental Parameters Values for Scenario IV 

Application traffic flows Server Clients Number of 

flows 

Prioritized-application traffic:  

file transferring, video streaming, 

haptic stream 

H1 

H2 

H6 

 H5 

6 

Non prioritized-application traffic: 

Iperf 

H1 

H2 

H6 

H5 

6 

 

In scenario IV, 4 types of 12 traffic flows are parallelly generated and conducted 

by using the following three methods: shortest path routing, LU-aware routing, and App-

ware TE. For file transferring, sending a huge file whose size is 1G. For video streaming, 

a video file whose size is 101.1 MB. Moreover, this scenario also generated haptic 

stream and Iperf traffic. Whenever the prioritized- or non prioritized-application traffic 

flows are entered the network, the shortest path routing always forwarded the traffic 

flow through the shortest path. LU-aware routing forwarded through the maximum link 

utilization path.   

 

Figure 5. 26 Throughput and Time Results of Scenario IV by Shortest Path Routing 
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Figure 5. 27 Throughput and Time Results of Scenario IV by LU-aware Routing 

 

 

Figure 5. 28 Throughput and Time Results of Scenario IV by App-TE 

The goal of App-TE is to find the optimal path for prioritized-traffic to maintain 

the quality of this traffic. In App-TE, the prioritized-traffic flows are forwarded through 

the maximum DWC path and non-prioritized traffic flows are simply forwarded through 

the minimum hop-count paths. Figures 5.26, 5.27, and 5.28 described the throughput 

and time results of prioritized and non-prioritized application traffic flows conducted by 

the shortest-path routing, LU-aware routing, and App-TE, respectively. 

In Figure 5.29, App-TE has been decreased throughput results for non-priorities 

traffic (Iperf) than the other two methods. The LU-aware routing got better throughput 

results for non-priorities traffic (Iperf) than the shortest path routing and App-TE. The 

shortest path routing got the least throughput results than the other two methods. As the 

experiment results in Figure 5.29, the throughput results of prioritized-application traffic 
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flows (file transferring, video streaming, haptic streaming) conducted by the App-TE 

outperformed the other two methods.  

 

Figure 5.29 Comparative Throughput Results for the Three Methods 

5.6.5 Scenarios V: Testing with Different Topologies 

In scenario V, experiments are carried out according to the parameter settings of 

Table 5.10 by testing with different topologies such as leaf-n-spine topology (Figure 

5.30) and random topology (Figure 5.31). The main objectives of this scenario are to 

analyze the performance of the three methods in different topologies and present the 

effectiveness of with and without application awareness in different topologies.  

 

Figure 5. 30 Leaf-n-Spine Topology 
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Moreover, scenario V compared the topologies that contained multiple equal cost 

paths and less equal-cost paths. In this scenario, different types and sizes of the 

application traffic flows are simultaneously generated in random order. These analytical 

results are calculated by using the average results of six running times. 

 

 

Figure 5. 31 Random Topology 

Table 5.10 Topology Settings 

Parameters Settings Leaf-n-Spine Topology Random Topology 

Number of switches 6 9 

Number of hosts 6 13 

Links bandwidth 150 ~ 350 Mbps 200 ~ 450 Mbps 

Links delay 10ms 10ms 

Application traffic 

flows 

File transferring, video streaming, haptic stream, iperf 

 

Figures 5.32 and 5.33 depict the comparative throughputs results by the three 

methods in leaf -n-spine topology and random topology, respectively. App-TE used DFS 

to construct the network topology graph. 
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Figure 5.32 Comparative Results of the Three Methods in Leaf-n-Spine Topology 

 

The available paths between source and destination hosts contained all the 

possible paths rather than disjoint paths and shortest path. That is why, App-TE can 

perform efficiently in the random topology which involve less equal-cost paths as shown 

in the experimental results of Figures 5.32 and 5.33. 

 

Figure 5.33 Comparative Results of the Three Methods in Random Topology 

5.7 Chapter Summary 

In this chapter, the experiments are carried out by using different scenarios and 

analyzed by using different methods. First, to analyze which methods used which paths 

depending on which constraints, this chapter carried out the testing with scenario I. To 

analyze how to handle FTP and larger link capacities, the chapter carried out the testing 
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with scenario II. Scenario III tested with different application traffic flows. In scenario 

IV, two classes of traffic are handled for testing with and without application-awareness 

of the following three methods: shortest path routing, LU-aware routing, and App-TE. 

To prove App-TE can apply in different topologies, scenario V tested with App-TE by 

conducting leaf and spine and random topologies. By analyzing the experimental result 

of scenarios I, II, III, IV, and V, App-TE got the increased throughput results than the 

others dealing with prioritized application traffic flows.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

The final chapter concluded the proposed work, App-TE by describing the 

summary of the dissertation, advantages and limitations, and future work. 

6.1 Summary of Dissertation 

Effective traffic management solution is required not only to harmonize the 

dramatic growth of networks but also to improve network performance and to support 

the best services to the user.  The equal treatment of all classes of applications is not the 

proper way to meet user’s application-level requirements because the resource 

requirements of network applications are varied. Different applications have different 

application requirements. Application-aware engineering is one of the effective traffic 

management solutions which computed paths based on the application requirements 

such as bandwidth, network delay, jitter, and so on. 

The legacy networks struggle to perform such complex application-aware 

engineering tasks. It cannot provide complex the complexity of control protocols and 

interconnecting of a large number of smart devices and it also leads to limited 

innovations for both management and configuration aspects. Software Defined 

Networking (SDN) provides an effective traffic management solution by separating 

control and data planes, global centralization control, and being programmable.  

And, the traditional shortest path routing cannot provide effective traffic 

engineering because it only aware the shortest path. The constraint-aware routing is 

more efficient than the traditional shortest path routing, however, it needed to estimate 

constraints such as link capacity, delay, jitter, and so on. This constraint-aware routing 

cannot guarantee future traffic demands and the prioritized traffic flows.  

 To overcome such kinds of issues, this dissertation proposed effective 

application-aware traffic engineering in SDN which contributes the following three 

main modules: traffic classification, measurement, and management. And, the 

dissertation described the proposed work with six chapters. In chapter 1, this dissertation 

was starting to introduce what is application-aware engineering and how important it is. 

After that, the chapter also presented the motivations and the problem definitions that 
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faced in the three main modules. App-TE aimed to overcome these problems by 

fulfilling its objectives such as selecting the optimal path for the prioritized application 

traffic flows. Then, the chapter also mentioned the overall contributions of this work 

related in three different modules. 

To highlight the problems of application-aware traffic engineering in SDN, the 

dissertation firstly surveyed the issues of traditional IP-based and MPLS-based traffic 

engineering in chapter 2. Chapter 2 also mentioned some of the surveyed works of traffic 

engineering in SDN under the scope of flow management, fault tolerance, topology 

update, and traffic analysis. After that, it presented separately the brief review of 

previous work for each type of three main modules. In traffic classification, the chapter 

briefly mentioned the related works of port-based approach, DPI or payload-based 

approach, and machine learning-based approaches. And, it also mentioned the issues of 

these approaches. In traffic measurement, the chapter firstly explained the definition of 

network QoS parameters which represent the current situation of networks, then it also 

discussed the surveyed of estimation techniques for these parameters especially 

available bandwidth, end-to-end delay, and link weight. For traffic management, the 

various methods and approaches of application-aware traffic management in SDN, 

SDN-based cloud, IoT, and data center networks have been proposed so far. Finally, the 

chapter concluded by describing the various application-aware traffic engineering in 

SDN as in Table 2.1 and showed that efficient application-aware engineering techniques 

are still required to satisfy the user application level requirement. 

The background theory for the proposed App-TE was detailed described in 

chapter 3. Since App-TE implemented in the SDN environment, chapter 3 included the 

description of the layer taxonomy of SDN architecture which involving infrastructure 

layer, controller layer, data plane layer, northbound, and southbound protocols. To 

describe these layers, the chapter also gave examples of each layer for instance; Open 

vSwitch, its specifications, and processing structure are described in the data plane layer. 

The ONOS controller for the control layer and the OpenFlow protocol for southbound 

protocols. Finally, this chapter presented a short overview of flow management 

approaches (proactive, reactive, and hybrid) and QoS routing methods which have been 

used in conventional IP and SDN networks.  

The overall system architecture of the proposed App-TE is well described in 

chapter 4. App-TE routed the traffic according to the prioritized classes. Firstly, chapter 



96 

 

4 defined the application traffic as two classes: prioritized and non-prioritized classes. 

The main objective of App-TE is to route the prioritized traffic through the optimal path. 

Both bandwidth and delay-sensitive application traffic are included in the prioritized 

traffic class. Therefore, App-TE considered two different routing methods. When the 

incoming traffic is entered the network, App-TE classified the traffic by using port and 

protocol number with the help of a traffic analyzer (sFlow-RT). If the classified traffic 

is prioritized application traffic, App-TE routed it by using DWC-aware routing. If the 

non-prioritized traffic is entered the network, App-TE simply routed the traffic through 

the shortest path. Therefore, step by step process for estimation of available bandwidth, 

link delay and delay weighted capacity values are also described in chapter 4. Finally, 

this chapter explained with the detailed process of two different routing methods by 

using flow diagrams and algorithms. 

The experimental design, implementation and evaluation of the App-TE in SDN 

are presented in chapter 5 with the various types of experimental results. Firstly, the 

requirements of hardware, software, and tools that are in designing of experimental 

testbed are described in chapter 5. To highlight the outcome of App-TE, chapter 5 

comparatively discussed and analyzed App-TE with other two methods such as Link 

Utilization aware routing and shortest path routing and it also evaluated and analyzed 

with five different scenarios. This dissertation used different types of application flows 

such as video streaming, file transferring, and haptic stream. To conducted this traffic 

in Mininet network emulator, this chapter also described different traffic generating 

tools (Iperf, FTP, HTTP, and D-ITG) to generate the traffic as in the real network traffic. 

The evaluation results are measured by the following parameters: throughput and packet 

loss. According to the experimental results that conducted with various scenarios in 

chapter 5, the throughput and packets loss results of App-TE outperformed the other two 

methods and improved the network utilization. 

6.3 Advantages and Limitations 

To reroute the non-prioritized applications through the optimal path can occur a 

lack of network resources for prioritized-applications. The flow management method 

proposed in this dissertation is so-called App-TE. Consequently, App-TE focused on the 

prioritized traffic to reroute through the best path. The delay-sensitive and non-delay-

sensitive application traffic are involved in the prioritized application traffic class. For 
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this reason, App-TE used the weighted parameters’ values of ABW and link delay to 

choose the best path. For the non-prioritized application traffic, App-TE simply 

forwarded through the shortest path. 

To perform this kind of flow management, first App-TE estimates QoS 

parameters such as Available Bandwidth (ABW) and link delay. To estimate these QoS 

parameters, querying statistics information from the switches is needed to perform and 

this may increase the latency between controller and switches. Moreover, this may 

increase the controller workload. To overcome this, App-TE queried port statistics from 

the selected switches that information is provided by the sFlow-RT analyzer via REST 

API calling instead of querying all the switches in the network. 

According to the preliminary experiments of App-TE, the throughput and packet 

loss rate of App-TE outperformed the other two methods by conducting five different 

scenarios. To analyze which methods choose which paths based on their constraints, this 

work used scenario I (section 5.6.1). From this experiment, we observed that all three 

methods work well and correctly choose their constrained paths. We also know that, 

when the traffic volume is smaller than the link capacity, the fast and simple shortest 

path routing got better throughput results than the others because of the other two (App-

TE, LU-aware routing) methods incurred the delay time for estimating QoS parameters 

and installing flow table entries. However, when the traffic is sent in parallel and the 

traffic volume is larger than the link capacity, the App-TE and LU-aware routing got 

better throughput results than the shortest path routing. 

Not only to present how the three methods handled different application traffic 

but also to prove App-TE work well with larger link capacity and different application 

traffic flows (file transferring, video streaming and haptic stream), the performance 

results of three methods are demonstrated in scenario II and III (5.6.2 and 5.6.3). 

According to the experimental results of scenario II, the shortest path routing has 

downloaded a file with lower throughput but taken highest amount of time. LU-aware 

routing has gotten higher throughput than the shortest path routing. The proposed App-

TE and LU-aware routing got nearly the same throughput results and their significant 

difference is 1.146. The throughput results of App-TE is higher than LU-aware routing. 

Moreover, App-TE took less time to accomplish the file downloading process. 

According to the analytical results of packet retransmission, the shortest path 

routing got the highest number of retransmitted packets (nearly 1000 packets) and the 
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packet loss rate is nearly 20% when video streaming is conducted in scenario III. When 

video streaming is conducted by LU-aware and App-TE, the highest number of 

retransmitted packets are nearly 500 packets and less than 450 packets, respectively. 

APP-TE not only got a smaller number of retransmitted packets than the others but also 

got less time duration to transmit the video file.  

The performance results of scenario IV analyzed how the three methods are 

conducted with prioritized and non-prioritized application traffic flows and showed the 

effectiveness of with and without application awareness. According to these 

experimental results, App-TE has been decreased throughput results for non-priorities 

traffic (Iperf) than the other two methods. The LU-aware routing got better throughput 

results for non-priorities traffic (Iperf) than the shortest path routing and App-TE. The 

shortest path routing got the least throughput results than the other two methods. When 

the prioritized application traffic is conducted, the throughput results of App-TE 

outperformed the other two methods.  

To analyze the performance of App-TE with different topologies, scenario V 

(section 5.6.5) is conducted. This scenario compared the topologies which contained 

multiple equal-cost paths and less equal-cost paths. According to the experimental 

results, the average throughput results of App-TE outperformed the others when the 

random topology (less equal-cost path) is conducted.  

As a summarization, App-TE not only got better throughput results but also 

obtain less packet loss rate. The estimation of QoS parameters and installing flow entries 

took a significant amount of time. When the traffic volume is smaller than the link 

capacity, the shortest path routing can get better results than the constraints-aware 

routing. And, App-TE can apply every topology, however, App-TE got better 

performance results in topology which has less equal-cost paths.  

For the limitations, App-TE mainly focused on two modules: measurement and 

management in this work. To perform traffic classification and measurement, App-TE 

does not consider the previous flows which are already classified and it already has 

assigned flow rules. Therefore, App-TE can avoid unnecessary flow classifications, 

estimation parameters, and installing flow rules. Moreover, the purpose of using a 

sFlow-RT analyzer in traffic classification is to reduce controller workload. However, 

port and protocol number-based application traffic classification cannot exactly 

categorize application traffic flows; therefore, the effective traffic classification schemes 
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are needed to perform by applying Deep Packet Inspection (DPI) or Machine Learning 

techniques. 

6.3 Recommendations for Future Work 

Although App-TE is implemented to fulfill its objectives. There has still left 

some works for future extension.  

App-TE took account of the network QoS constraints such as available 

bandwidth and delay. Not only to study other network QoS constraints such as jitter and 

delay variation but also consider application QoS constraints such as buffer playtime for 

YouTube video. 

App-TE aims to guarantee the prioritized application traffic flows, therefore, the 

traffic management method of App-TE considers two routings. One for prioritized and 

other for non-prioritized application traffic flows. App-TE does not consider future 

traffic demands. Therefore, the traffic management solution still need to consider to 

adapt to future demands. 
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LIST OF ACRONYMS 

ABW  Available Bandwidth 

APIs  Application Programming Interfaces 

App-TE Application-aware Traffic Engineering 

BGPs  Border Gateway Protocols 

DFS  Depth First Search 

DiffServ Differentiated Services 

D-ITG  Distributed Internet Traffic Generator 

DPI  Deep Packet Inspection 

DWC  Delay Weighted Capacity 

ECMP  Equal-cost Multipath 

FTP  File Transfer Protocol 

HTTP  Hyper Text Transfer Protocol 

IANA  Internet Assigned Number Authority 

ICMP  Internet Control Message Protocol 

IDS  Intrusion Detection System 

IE  Industrial Ethernet 

IGP  Interior Gateway Protocol 

IoTs  Internet of Things 

IP  Internet Protocol 

ISPs  Internet Service Providers 

IS-IS  Intermediate System – Intermediate System 

JSON  JavaScript Object Notation 

JVM  Java Virtual Machine 

LARAC Lagrange Relaxation based Aggregated Cost 
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LDP  Label Distribution Protocol 

LLDP  Link Layer Distribution Protocol 

LSP  Label Switched Path 

LU  Link Utilization 

MDWCRA Maximum Delay Weighted Capacity Routing Algorithm 

MHR  Minimum Hop-count-based Routing 

ML  Machine Learning 

MPLS  Multi-Protocol Label Switching 

NOS  Network Operating System 

ONF  Open Network Foundation 

ONOS  Open Network Operating System 

OSPF   Open Shortest Path First 

OVS  Open vSwitch    

QoS  Quality of Service 

RCP  Routing Control Platform 

REST  Representational State Transfer 

RPC  Remote Procedure Called 

RSVP  Resource Reservation Protocol 

RTT  Round Trip Time 

SDN  Software Defined Networking 

SMS  Short Message Service  

SPF  Shortest Path First 

TCAM  Ternary Content Addressable Memory 

TCP  Transport Control Protocol 

TDMA  Time Division Multiple Access 
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TLS  Transport Layer Security 

VM  Virtual Machine 

WAN  Wide Area Network 
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APPENDIX: SOFTTWARE FOR EXPERIMENTAL 

TESTBED 

(I) Installation and Running of ONOS Controller 

 The ONOS install process depend on on the environment variable 

JAVA_HOME being properly set. Both maven and java need to have same Java version. 

Firstly, it needs to install maven and Karaf as the following: 

 

 

Then, install Oracle Java 8: 

 

Set the ONOS_ROOT environment variable and it need to export in the shell profile 

(bash_profile). After that, enters the ONOS directory then clean and install maven. 

 

Before, maven clean and install, first, need to download ONOS from git and checkout 

with version (need to install) 

 

After installation required software and ONOS, ONOS controller can be started. 

Note: The above installation steps are for the ubuntu user. This dissertation used Ubuntu 

OS; therefore, the following steps are the required step for Ubuntu OS. The detailed 
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installation steps and installation steps for other OS can find in here 

(https://wiki.onosproject.org/display/ONOS14/Installing+and+Running+ONOS). 

When the ONOS is loaded correctly, ONOS CLI can be accessed with the commands 

(ok clean (or) tools/test/bin/onos localhost) as the following. 

 

 

ONOS’s GUI can be accessed from any browser through the IP address of the target 

machine. The default username and password are onos / rocks. 

http://targeted Machine IP:8181/onos/ui/index.html 

 

(II) Installation and Running of sFlow-RT Analyzer 



118 

 

sFlow-RT analyzer is used to detects the active flows or incoming traffic through 

the network. The following commands are used to download the sFlow software and 

unzip the software: 

$ wget https://inmon.com/products/sFlow-RT/sflow-rt.tar.gz 

$ tar -xvzf sflow-rt.tar.gz 

To run and start the sFlow: 

$ ./sflow-rt/start.sh 

In the script directory and html directory, the JavaScript (.js) extension file is a 

thread for each of the files after sFlow is started. These are accessed from the following 

directories: 

http://localhost:8008/app/detectFlows/html/ 

http://localhost:8008/scripts/json 

App-TE used Mininet Dashboard which is one of the applications of sFlow RT 

for real-time dashboard for Mininet and it can provide the dashboard web interface. The 

followings steps are used to install and run Mininet Dashboard: 

$ cd sflow-rt 

$ ./get-app.sh sflow-rt mininet-dashboard 

$ ./start.sh 

The dashboard application not only can add metrics but also can generate events. 

To gain the sFlow metrics, firstly flows can be defined using JavaScript setFlow() 

fuction. setFlow() function instructs the controller build a flow cache to track TCP/UDP 

connections. Alternatively, the defined flows are used to match packets or values. 

In the following source code, a defined flow name is “mn_flow” and it took the 

source IP address, destination IP address, source MAC, destination MAC, TCP or UDP 

source and destination ports, calculated bytes per second, and timestamp of the incoming 

flow. The attributes in the “keys” are called metrics. The setThreshold() function defines 

“Detect_Flows” as “mn_flow” that exceed 10% of the link's bandwidth (in this case 
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1Mbit/second) for 1 second or more. The setEventHandler() function processes each 

“Detect_Flows” notification. 

 

As the summarization, App-TE can access events of json information (5-turples 

metrics) of incoming flows (mn_flow) when the flow (mn_flow) is greater than 1 M 

(Megabit). 

(III) Installation and Running of Mininet Network Emulator 

The following codes are used to get natively from Mininet source code and to 

install Mininet: 

$ git clone git://github.com/mininet/mininet 

$ cd mininet/util/ 

$ mininet/util/install.sh -a 

where, -a argument means installing everything which contains Open vSwitch, 

OpenFlow Wireshark dissector, POX and so on. After that, network topologies can be 

created by a command or scripts that written in python file. The detailed information 

can be available in here (http://mininet.org/sample-workflow/). 

http://mininet.org/sample-workflow/

