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ABSTRACT 

 

Data mining is the process of analyzing data from different perspectives and 

summarizing it into useful information. Classification is a data mining technique 

which addresses the problem of constructing a predictive model for a class attribute 

given the values of other attributes and some examples of records with known class. 

Decision tree is one of the most well-established classification methods. 

 This thesis presents a weighted C4.5 decision tree algorithm for breast cancer 

classification and compared with the classification results of traditional C4.5 

algorithm. The weighted C4.5 algorithm is set to appropriate weights of preparation 

instances grounded on naïve Bayesian theorem before trying to construct a decision 

tree model. The aim of the proposed system is to examine the performance of 

weighted C4.5 decision tree algorithms. According to the experimental results, the 

accuracy of weighted C4.5 is 99.56% and traditional C4.5 is 94.27%. Therefore, the 

weighted C4.5 algorithm is better than traditional C4.5 algorithm on breast cancer 

dataset. This system is implemented by using Java language. 
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CHAPTER 1 

INTRODUCTION 

  

People live in the information age – accumulation data is not difficult and 

warehousing – it is also inexpensive. Unfortunately, as the quantity of machine 

understandable information rises, the ability to understand and make practice of it 

does not save step with it development. An abundant amount of data can be 

automatically examined by means of tools provided by machine learning. Currently a 

topic of much interest in the machine learning and data mining communities, 

classification was studied widely in many fields. A system of data study applicable to 

extracting models that define significant data classes or predicting future data trends 

whose class label is unknown is classification. Classification can be employed in 

making intelligent decisions. Many classification methods have been suggested by 

researchers and are important for research and practical application in a variety of 

fields: including pattern recognition and artificial intelligence, statistics, vision 

analysis, medicine and son. 

 „Data mining‟ is an expression invented to define the act of moving through 

huge databases exploring alluring and new patterns. Data mining has become 

considerably important and a necessity today when data are bountiful and easily 

accessible. The automatic analysis of huge numbers of data is possible through the 

methods and instruments that the field of data mining provides. Data mining is one 

aspect of the course of Knowledge Discovery in Databases (KDD). Some searchers 

regard data mining as an equivocal and the term “Knowledge Mining” is preferable as 

it is very alike to gold mining. Data mining approaches are mostly grounded on 

inductive learning i.e., constructing a mode explicitly or implicitly by forming a 

generalization from enough preparation examples. The inductive approach forms a 

basic assumption that the prepared model is related to upcoming invisible examples. 

Specifically, any procedure of conjecture is considered an induction on conditions that 

conclusions are not logically drawn from premises. Data collection was traditionally 

agreed to be vital period in data scrutiny. An analyst would be able to select the 

variables to gather by means of the available domain knowledge. The amount of 

specified mutable was normally restricted and their principles could be recorded 

physically or using viva vex. If computer-aided analysis was to be used, the collected 
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data had to be entered into numerical computer compendium or an electronic work 

sheet. Because the process of data gathering was expensive, analysts had to learn to 

make decisions on available information. Decision trees are regarded as well-known 

methods for representing classifiers. A decision tree is a classifier viewed as the 

repetitive subdivision of the instance space. 

The decision tree is composed of nodes forming a „rooted tree‟ i.e., a „directed 

tree‟ with a node known as „root‟ with no incoming edges. There is exactly one 

incoming edge in all other nodes. An internal node is a node with outgoing edges. All 

other nodes are known as leaf nodes. In a decision tree, it is each internal node 

subdivides the instance space into two or more sub-spaces by an assured discrete 

function of the input attribute‟s values. Simply and greacheck frequently, each 

examination takes a particular attribute such that the attribute‟s values subdivide the 

instance space. Concerning digital characteristics the condition deals with a variety. 

Each leaf is allocated to one class which indicates greacheck suitable goal value. On 

the other hand, the leaf may grip a probability vector that indicates the likelihood of 

the goal attribute having a definite value. Instances, from the source of a tree to a 

frond, are navigated and organized, following the result of the checks along the route. 

There have been many decision tree algorithms like C4.5, ID3 [9], CART [12] etc. 

Classification is the process of finding a set of models (or functions) that 

describe and distinguish data classes or concepts, for the purpose of being able to use 

the model to predict the class of objects whose class label is unknown. Classification 

has been successfully applied to wide range application areas such as medical 

diagnosis, weather prediction, credit approval, customer segmentation, fraud detection 

among the different proposals. Classification is clearly useful in many decision 

problems where for a data item, a decision is to be made (which depend on the class 

to which data item belongs) [13]. 

Classification is a form of data analysis to extract models describing important 

data classes or to predict future data trends whose class label is unknown.  In this 

study, weighted C4.5 algorithm is used for efficient classification. Breast cancer data 

set is used for checking of proposed method and then the results of normal C4.5 

algorithm are compared with it.  

 

 



 

3 

 

1.1 Objectives of the Thesis 

The main objectives of the thesis are as follows: 

(i)  To understand and use of C4.5 algorithm with weight values. 

(ii) To use the Naïve Bayes probability for calculation of weight values. 

(iii)To apply the weighted decision tree approach for breast cancer classification. 

(iv) To compare the result of traditional decision tree and weighted decision tree 

for Breast Cancer Classification. 

(v) To study the different decision tree algorithms and compare them in terms of 

their accuracy of Breast Cancer classification. 

 

1.2 Organization of the Thesis 

This thesis consists of five chapters. 

Chapter 1 describes the introduction, objectives and organization of thesis are 

presented. 

Chapter 2 explains data mining concepts and functionalities, classification and 

prediction, classification methods and classification algorithms. 

Chapter 3 presents introduction to decision tree, the hierarchical nature of 

decision trees, appropriate problems for decision learning, decision tree induction, 

calculation of algorithms, filling in missing values and evaluating the accuracy of a 

classifier. 

Chapter 4 describes system design, classifier accuracy measure, main page of 

the system and experimental results. 

Finally, Chapter 5 presents the conclusion, advantages of the system, 

limitation and further extension of the system. 

  



 

4 

 

CHAPTER 2 

BACKGROUND THEORY 

 

  Data Mining, also popularly known as Knowledge Discovery in 

Databases refers to extracting or “mining” knowledge from large amounts of data. 

Data mining techniques are used to operate on large volume of data to discover 

hidden patterns and relationships helpful in decision making. 

 

2.1 Data Mining 

Data mining can also be defined as knowledge mining from databases, 

knowledge extraction, data/pattern analysis, data archaeology and dredging. This is an 

interdisciplinary field that draws ideas from several areas of research including 

databases, machine learning and statistics. Data mining refers to the core process of a 

broader process of automatic information extraction called knowledge discovery in 

databases. A knowledge location in database is the important extraction of implicit, 

formerly unrevealed and potentially useful knowledge from data in large databases. 

The iterative processes of knowledge discovery of data are data cleaning, data 

integration, data selection, data transformation, data mining, pattern evaluation and 

knowledge presentation. Data cleaning is removing noise and inconsistent data from 

the database.  In data addition,varisous data basis may be united. It is   possible that 

numerous databases are combined in data blending. In data selection, data that are 

applicable to the analysis task are recovered from the database. In data transformation, 

data are converted or synthesized into forms which are suitable for mining by 

implementing summary or aggregation operations. Data mining is a crucial operation 

where intelligent methods are utilized for the purpose of extracting data patterns. 

Pattern evaluation discovers the truly interesting patterns that embody knowledge 

grounded on some interesting means. In the knowledge presentation, the uncovered 

knowledge is presented by using visualization and knowledge representation 

techniques to the user. Knowledge discovery and data mining have been increasingly 

well-known because the great quantity of stored data came out as computer storage 

became cheaper [8]. 
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2.2 Data Mining Functionalities 

Data mining responsibilities can be categorized into two groups: descriptive 

and predictive data mining. Descriptive data mining deliver information to know 

what is happening inside the data without a prearranged idea. Predictive data mining 

allows the user to acquiesce records with undefined pitch values, and the system 

guesses the undefined values built on porous patterns exposed form the database. 
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2.4 Classification Methods 

The classification methods are classified in two groups such as supervised 

methods and unsupervised methods. The supervised methods used are Bayesian 

classifier, Decision Tree, Artificial Network and Support Vector Machine, whereas 

the unsupervised methods are clustering such as an adaptation of the K-means 

clustering method [8]. 

 

2.5 Classification Algorithms 

Several cataloging and estimate algorithms have been planned by 

investigators in instrument education, professional systems, number, and 

neurobiology. Classification algorithm is applied to the preparation data set. The 

outputs of the classifier are stored for larger usage; this stage is known as Learn 

model. Then check data (with known classes) is checked to the classifier (Apply 

Model or Check Model). If the output of the classifier is the same as the known class, 

then the checking accuracy is good, which means the classifier algorithm and 

preparation sample have the good performance. If the system got the poor accuracy 

in the checking phase, it has bad classifier or bad preparation data set. There are 

preparation and checking processes in the classification. Preparation processes learn 

models using one of the learning algorithms (classification algorithm) from 

preparation data set. The output model is then checked with checking data set to 

deduct the checking samples [6]. There are several classification algorithms and most 

widely used algorithms are 

 

(i) Decision Tree (C4.5) 

(ii) Naïve Bayesian Classification 
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(iii)Neural Network 

(iv) Support Vector Machine Algorithm 

(v) Genetic Algorithms 

 

the algorithm. It is extensively practical in various areas since it is stout to data 

balances or supplies by comparing to other data mining techniques. 

 

2.5.2 Naive Bayesian Classification  

 

Naive is a statistical classifier that can predict class membership likelihoods 

such as the probability a given example belongs to a particular class [3]. Naive Bayes 
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classifier is a probabilistic classifier that produces probability estimates grounded on 

the Bayes theorem rather than predictions. For each class value, they approximate the 

probability that a given instance belongs to that class by using a minor amount of 

preparation data to approximation. It assumes that the effect of an attribute value on a 

given class is independent of the values of the other attributes. Bayesian classifiers 

have also exhibited high accuracy and speed when applied to large database.  

The Naive Bayes classifier technique is grounded on Bayes‟ theorem and is 

particularly appropriate when the dimensionality of the feature space is high. For 

example, a vector x=(x1,x2,….,xn) of n features is associated with each observation 

and Naive Bayes learns the class conditional probabilities p(xj|yj) of each categorical 

variable j, j=1,2,….,n, assumed the class maker yi. A new observation with feature 

vector x is classified by using the Bayes‟ rule to compute the posterior probability of 

each class yi given the vector of attributes. The basic assumption of Naive Bayes‟ 

classifier is that the variables are conditionally independent given the class label.  

 

2.5.3 Neural Network (NN)  
 

A neural network (NN) can be described as reasoning model grounded on the 

human head [20]. A NN contains of a amount of interrelated processors called 

neurons. Firstly, a neuron obtains input signals from its effort relatives, calculates an 

output signal and transmits this signal through its output relatives. An input signal can 

be raw data or the outputs from other neurons. The output signal can be either a final 

solution to the problem or an input to other neurons. A NN is set through repeated 

adjustments of these weights. A neural network model, the branch of artificial 

intelligence is commonly referred to as Artificial Neural Networks (ANNs). ANN 

constructs the system to execute task, instead definite tasks.  

Neural Networks are accomplished of predicting novel explanations from 

current annotations. The neurons within the system work composed, in parallel, to 

crop an production function. Since the computation is executed by the cooperative 

neurons, a neural network can motionless crop the production function even if some 

of the individual neurons are faulty (the network is strong and doing lenient). Neural 

 



 

10 

 

 

 
 

 



 

11 

 

2.5.5 Genetic Algorithms 

Genetic Algorithms challenge to include the planning of usual development 

[1]. Genetic algorithms are used to discover classification rules for data that can be 

used for predictions. The genetic algorithms are adaptive techniques that can be 

successfully used to solve complex search and optimization problems. They are 

grounded on the principles of genetics and Darwin‟s ordinary choice theory (“the one 

that is best endowed, survives”). In data mining, genetic algorithms have been 

effectively used to determine classification rules, to search for appropriate cluster 

centers and to select the attributes of interest in forecasting the value of a target 

characteristic and so on. By using some hybrid algorithms, classification of instances 

was performed such as Genetic Algorithms and Particle Swarm are optimized, 

respectively by Naive Bayes and k-Nearest Neighbors. Genetic algorithms were 

effectively applied to solve classification problems such as classification, heart 

disease classification and the classification of emotions on the human face.  

The fitness functions of the genetic algorithms used for mining classification 

rules may contain metrics concerning predictive accuracy, rule comprehensibility as 

well as rule interestingness [19]. Diverse studies suggest genetic algorithms with 

fitness functions that take into consideration in different ways. Genetic algorithms are 

a form of optimization algorithm, import they are expended to search the highest or 

lowest of a function [21]. These algorithms are remote additional efficient and 

powerful than arbitrary and complete search algorithms. In data mining, the advantage 

of Genetic algorithm becomes more obvious when the find space of a task is huge. 

Genetic algorithm is a find technique expended in calculating to search correct or 

estimated solution to optimization and find efforts. 
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CHAPTER 3 

BREAST CANCER CLASSIFICATION USING C4.5 AND 

WEIGHTED C4.5 DECISION TREES 

 

C4.5 is an algorithm expended to make a decision tree settled by Ross 

Quinlan. C4.5 is an allowance of Quinlan‟s earlier ID3 algorithm. The weighted C4.5 

algorithm is assigned appropriate weights of preparation instances which improve the 

classification accuracy. The decision tree produced by C4.5 can be expended for 

classification. 

 

3.1 Introduction to Decision Tree  

A decision tree is a catalog uttered as a repeatable divider of the occasion 

space. The decision tree comprises of bumps that procedure a root tree, sense it is a 

focused tree with a bumps called “source” that has no received edges. All other 

bumps have accurately one external point. A bump with leaving brinks is called an 

inner or check bumps. All extra bumps are called fronds (also known as incurable or 

decision bumps). In a decision tree, each internal bump separates the request area into 

two or more sub-places rendering to an assured discrete function of the record 

features morals. In the humblest and greacheck frequent event, each check studies a 

only attribute, such that the instance area is subdivided according to the attribute‟s 

value. In the case of digital attributes, the condition donates to a series. Each foliage is 

allocated to one class expressive the greacheck suitable goal value. Alternatively, the 

leaf may grip a likelihood vector representative to the likelihood of the aim attribute 

having a sure value. Instances are categorized by routing them from the source of the 

tree miserable to a leaf, according to the result of the examinations along the track. 

In instance of digital attributes, decision trees can be construed interpreted as a 

gathering of overexcited flat surface. Naturally, decision-makers favor fewer difficult 

decision trees, as these are extra understandable. The tree difficulty has on its 

correctness and is obviously measured by the discontinuing conditions used and the 

cropping method employed. Decision tree induction is carefully associated to rule 

investing. Each track from the source of a decision tree to single of its sprigs can 

transform into a rule basically touching the checks along the track. It forms the 
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precursor portion and takes the foliage‟s class prediction as a category value. The 

subsequent instruction fixed can then basic to expand its directness to a human 

operator, and possibly its accuracy. 

Decision tree algorithms have been expended for classification in many 

spaces, such as medicine, developed and creation, business evaluation, stargazing, and 

molecular natural science [14]. 

 

3.2 The Hierarchical Nature of Decision Trees 

 

3.3 Appropriate Problems for Decision Learning 

Although a variability of decision tree learning methods have been recognized 

with fairly conflicting abilities and necessity, decision tree learning is commonly 

maximum matched to problems with following appearances: 

 Occasions are denoted by attribute-value couples. Occasions are 

defined by a stable usual of characteristics and their morals. The 

easiest condition for decision tree learning is when each attributes 

proceeds on a small number of disjoint possible values. However, 

postponements to the essential algorithm permit managing real-valued 

characteristics as fine. 

 The goal function has distinct production morals. Decision tree 

methods aim to learning functions with two or more possible output 

values. It has more advances in extensions by allowing the learning 

goal functions with real-valued output. 

 Disjunctive descriptions may be needed. According to the above noted, 

decision trees obviously denote disjunctive terms. 

 Although preparation data may include errors, decision tree learning 

methods are strong to mistakes, both mistakes in classifications of the 

preparation examples and mistakes in the characteristic values that 

explain these examples. 
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 The preparation data may include disappeared values while decision 

tree methods can be expended even when some preparation examples 

have indefinite values. 

Decision tree methods can be expended even when some preparation examples 

have indefinite values. Many practical troubles have been established to suitable these 

characteristics. Decision tree learning has therefore been useful to difficulties such as 

equipment faults their source and advance applications by their probability of 

avoidance on expenses. Such problems, in which the task is to categorize examples 

into one of a separate set of possible groups, are often referred to as classification 

difficulties. 

 

 3.4 Decision Tree Induction 

J. Ross Quinlan is a investigator in machine learning established a decision 

tree algorithm identified as ID3 [9] (Iterative Dichotomiser). Quinlan later presented 

C4.5 [8] (a successor of ID3), which converted a benchmark to which lacheck 

supervised learning algorithms are often compared. 

C4.5 adopt a desirous (i.e., non-backtracking) method in which decision trees 

are built in a high-low repeat divide-and-conquer way. Most algorithms for decision 

tree induction also follow such a high-low approach, which starts with a preparation 

arranged of tuples and their related class labels. The preparation set is repeat 

partitioned into lesser subsets as the tree is being constructed. A fundamental decision 

tree algorithm [5] is concise as follow: 

 



 

15 

 

 

 

 

Output: A decision tree. 

Method: 

 

 

3.4.1 C4.5 Decision Tree Algorithm 

The C4.5 algorithm is the modified version of ID3 algorithm which chooses 

cracking characteristics from a dataset with the highest information gain. Input to 

C4.5 involves of a collection of preparation cases D, each having a tuple of values for 

a stable set of attributes A= {A1, A2, …, Ak} and a class attribute. An attribute Aa is 
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showed as uninterrupted or disconnected according to whether its values are digital or 

normal.  

The fundamental algorithm for decision tree induction is grasping algorithm 

that concepts decision trees in a high-low repeat split-and-conquer manner. A decision 

tree can be expended to categorize an example by initial at the tree and affecting 

through it until a leaf node which provides the classification of the instance. Decision 

trees are powerful and popular tools for classification and prediction [7]. 

Decision tree generation involves of two phases. Information gain (or recheck 

entropy reduction) is chosen as check attributes for the current node. 

The expected information (entropy) needed to classify a tuple in D: 

     ( )   ∑       (  )
 
      2.1 

Let pi is the probability that an arbitrary tuple in D belongs to class Ci and m is 

the quantity in class label. A log function to the base 2 is used, because the information 

is encoded in bits. The information is grounded on the proportions of tuples of each 

class [16]. 

Information needed (after using attribute A to split D into v partitions) to 

classify D: 

 

     ( )   ∑
    

   

 
        (  )             2.2  

where InfoA(D) is the predictable information of each attribute in data D and v is 

types of data in that attribute. Information gained by diverging on attribute A. The 

term of 
    

   
 performances as the weight of the j

th
 separation. The lesser the predictable 

information needed, the larger the purity of separations. 

 

    ( )      ( )       ( )     2.3 

 

In other words, Gain(A) is the predictable decrease in entropy manufactured 

by expressive the value of attribute A. The algorithm calculates the information gain 

of each attribute. 

The attribute with the maximum information gain is selected as the 

examination attribute for the current node. A node is manufactured and categorized 
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with the attribute, divisions are manufactured for each value of the characteristic, and 

the examples are split accordingly. 

 

 An arithmetical property, which is called information gain, is expended. Gain 

instruments how well a specified attribute splits preparation samples into targeted 

classes. The one with the maximum information (information being the best useful for 

classification) is chosen. In order to describe gain, an impression from material theory 

called entropy is first borrowed. Entropy measure the quantity of impression in an a 

characteristic [15]. 

The notion of maximum information gain is used in the C4.5 algorithm to 

decide which attribute to select. If an attribute has a diverse value for apiece record, 

then this attribute will hold the highest information gain and the preparation set will 

be subdivided according to this attributes. Such separation in the preparation data is 

useless and C4.5 expends the Gain Ratio to avoid this. Quinlan indicated that the gain 

ratio criterion is robust and typically gives a conformity better choice of check 

attribute [2]. 

Assume a set of preparation instances D and attribute A, with value 

(A1,A2,…,Am) used for the root if the decision tree, separations C into subsets 

(A1,A2,…,Am) where Di includes those objects in D that have value A of Ai. SplitInfo 

for each attribute is computed in equation 2.4. 

 

          ( )   ∑
    

   
     

 
   (

    

   
)     2.4 

 

          ( ) is the information due to the split of D on the basis of the 

value of the categorical attribute A. 

GainRatio for each attribute may be computed by equation 2.5. The attribute 

that yields the largest GainRatio is chosen for the decision node. 

 

         ( )  
    ( )

          ( )
      2.5 
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3.4.2 Weighted C4.5 Decision Tree Algorithm 

Weighted decision tree learning algorithm was developed by assigning 

appropriate weights to preparation instances, which improve the classification 

accuracy. The weights of the preparation instances are calculated using maximum 

posteriori hypothesis of Naïve Bayesian theorem. Weight of each preparation instance 

is calculated with the maximum value of the class conditional probabilities.  

Weighted C4.5algorithm calculates the highest information gain by using 

these weights and builds the decision tree model for classification. Given a 

preparation dataset, the weighted C4.5 algorithm initializes the weights of each 

preparation instance, Wi by highest posterior probability for that preparation instance. 

The algorithm uses the weight value calculated from Naïve Bayes probabilistic model 

to initialize the weights of each preparation instance.  

The naïve Bayesian classifier is founded on Bayes‟ theorem. Expect that there 

are m classes, C1, C2, …, Cm. The classifier forecasts an invisible example maximum 

next probability hardened on X. In other words, X is appointed to class Ci if and only 

if 

 (    )   (    )                    

 

By Bayes‟ theorem   

)(

)()|(
)|(

X

X
X

P
i

CP
i

CP

i
CP 

    2.6 

where, P(Ci|X) is highest posteriori hypothesis of Ci conditional probability on X. Ci 

is class. P(X) is constant for all classes. 

As P(X) is persistent for all classes, only P(X|Ci)P(Ci) need to be enlarged. 

Given a set preparation data, P(Ci) can be predictable by including how often each 

class happens in the preparation data. To decrease the calculable cost in predicating 

P(X|Ci) for all probable X, the classifier creates a naïve supposition that the attributes 

expended in relating X are provisionally liberated of each other specified the class of 

X. Thus, specified the attribute values (x1,x2,…,xn) that express X, the researches have 

           (    )  ∏ (     )   (     )  

 

   

 (     )     (     ) 

           2.7 
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The naïve Bayesian classifier is sample to expend and proficient to acquire. It 

needs only one scan of the preparation data. In spite of the point that the free 

assumption is often despoiled in repetition, naïve Bayes often conchecks well with 

more erudite classifiers. In other words, the forecast class brand is the class Ci for 

which P(X|Ci) P(Ci) is the greacheck [5]. 

The expected information required to classify a tuple in dataset D is calculated 

by applying equation (2.1). In this case, pi is the relative frequency of class i in D, 

where, pi is the probability that an arbitrary tuple in D belongs to class Ci and m is the 

The sum is computed over m classes. 

To determine the information required to classify D, all the possible subsets 

that can be formed using known values of attribute A are examined. When thinking a 

then InfoA(D) is calculated by applying equation (2.2). In this time, the value of 

equation (2.2) is defined as follows:  

     |Dj| = the set of tuple with weight value in D that have outcome aj of A, 

      |D|   =  total weight value tuple 

Information gain means as the dissimilarity between the unique information 

necessity (i.e., grounded on just the proportion of classed) and the novel necessity 

(i.e., got after separating on A) by using equation (2.3) and gain ratio to overcome the 

problem by using equation (2.4) and equation (2.5). The decision tree is constructed 

grounded on the weights of preparation data which results from naïve Bayes 

probabilities.  

InfoA(D), Gain(A) ,SplitInfoA(D) and GainRatio are calculated to assign 

weight value. The attribute with the greacheck information Gain Ratio is preferred as 

the check attribute at ach node in the tree. Such a scale is the golly of divided. The 

characteristic with the maximum information gain ratio is selected as the attribute for 

the existing root node. 
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3.5 Calculation of Algorithms 

 

Breast Cancer dataset from UCI machine learning repository [25] is used to 

show as an example for implementing the algorithms: C4.5 and weighted C4.5. Breast 

Cancer dataset contains 683 tuples with 10 attributes and 2 classes. As an 

implementation example, 10 tuples of breast cancer dataset are used to train the 

sample decision tree model. 8 tuples of 10 tuples belong to class label 2 (Benign) and 

2 tuples belong to class label 4(Malignant). A root node is created for 10 tuples. Table 

3.1 represents 10 sample total records of the Breast Cancer Dataset. 

 

 

 

 

 

 

 

 

 

 

3.5.1 Calculation of C4.5 Algorithm 

The C4.5 algorithm also chooses the attribute “Bland Chromatin” as the 

splitting criterion for the root node because this attribute with the maximum Gain 

Ratio is selected to carry on the expansion of the classification. The expected 

information required to classify a tuple in preparation set is calculated using Equation 

2.1: 

Next, the expected information necessity for each attribute is computed by using 

Equation 2.2: 

Table 3.1 Sample Data Records 
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The expected evidence required to catalog a tuple in D if the tuples are 

separated according to Clump_Thickness is 

InfoClump_Thickness(D) = 
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           = 0 bit 

Next, The gain in information from such a separating would be handled by 

using Equation 2.3: 

Gain (Clump_Thickness) =         = 0.722bits 

Next, the predictable information necessity for each attribute is computed by 

using Equation 2.4: 

Calculation of gain ratio for the attribute Clump_Thickness 

SplitInfoClump_Thickness(D) =  
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    = 2.922bits 

Next, the gain ration is computed by using Equation 2.5: 

Therefore, GainRatio(Clump_Thickness)= 
     

     
 = 0.247 bits 

The predictable information required to organize a tuple in D if the tuples are 

separated rendering to Uniformity_of_Cell_Size is 

Info Uniformity_of_Cell_Size (D) = 
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       = 0 bit 

The gain in material from such a separating would be 

Gain (Uniformity_of_Cell_Size) =         = 0.722bits 

Calculation of gain ratio for the attribute Uniformity_of_Cell_Size 

SplitInfo Uniformity_of_Cell_Size (D) =  
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                 = 2.161bits 

Therefore, GainRatio(Uniformity_of_Cell_Size)= 
     

     
 = 0.334 bits 

The predictable information required to organize a tuple in D if the tuples are 

separated rendering to Uniformity_of_Cell_Shape is 

Info Uniformity_of_Cell_Shape (D) = 
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       = 0 bit 

The gain in material from such a separating would be 

Gain (Uniformity_of_Cell_Shape) =         = 0.722bits 

Calculation of gain ratio for the attribute Uniformity_of_Cell_Shape 

SplitInfo Uniformity_of_Cell_Shape (D) =  
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                           = 2.161bits 

Therefore, GainRatio(Uniformity_of_Cell_Shape)= 
     

     
 = 0.334 bits 

The predictable material required to organize a tuple in D if the tuples are 

separated according to Marginal_Adhesion is 

Info Marginal_Adhesion (D) = 
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                        = 0.2 bit 

The gain in material from such a separating would be 

Gain (Marginal_Adhesion) =           = 0.522bits 

 

Calculation of gain ratio for the attribute Marginal_Adhesion 

SplitInfo Marginal_Adhesion (D) =  
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                       = 1.571bits 

Therefore, GainRatio(Marginal_Adhesion)= 
     

     
 = 0.332 bits 
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The predictable material required to organize a tuple in D if the tuples are 

separated according to Single_Epithelial_Cell_Size is 

Info Single_Epithelial_Cell_Size (D) = 
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           = 0.2 bit 

The gain in information from such a separating would be 

Gain (Single_Epithelial_Cell_Size) =           = 0.522bits 

Calculation of gain ratio for the attribute Single_Epithelial_Cell_Size 

SplitInfo Single_Epithelial_Cell_Size (D) =  
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                               = 1.571bits 

Therefore, GainRatio(Single_Epithelial_Cell_Size)= 
     

     
 = 0.332 bits 

The predictable material required to organize a tuple in D if the tuples are 

separated according to Bare_Nuclei is 

Info Bare_Nuclei (D) = 
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     = 0.475 bit 

The gain in material from such a separating would be 

Gain (Bare_Nuclei) =              = 0.247bits 

Calculation of gain ratio for the attribute Bare_Nuclei 

SplitInfo Bare_Nuclei (D) =  
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    = 1.846bits 

Therefore, GainRatio(Bare_Nuclei)= 
     

     
 = 0.134 bits 

The predictable material required to organize a tuple in D if the tuples are 

separated according to Bland_Chromatin is 

Info Bland_Chromatin (D) = 
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            = 0 bit 

The gain in material from such a separating would be 

 

Gain (Bland_Chromatin) =        =      bits 

Calculation of gain ratio for the attribute Bland_Chromatin 

SplitInfo Bland_Chromatin (D) =  
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         = 1.771bits 

Therefore, GainRatio (Bland_Chromatin)= 
     

     
 = 0.408 bits 

 

The predictable material required to organize a tuple in D if the tuples are 

separated according to Normal_Nucleoli is 

Info Normal_Nucleoli (D) = 
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            = 0.276 bit 

The gain in material from such a separating would be 

Gain (Normal_Nucleoli) =            =       bits 

Calculation of gain ratio for the attribute Normal_Nucleoli 

SplitInfo Normal_Nucleoli (D) =  
 

  
    (

 

  
)  

 

  
    (

 

  
)  

 

  
    (

 

  
) 

         = 1.296bits 

Therefore, GainRatio(Normal_Nucleoli)= 
     

     
 = 0.347 bits 

The predictable material required to organize a tuple in D if the tuples are 

separated according to Mitoses is 

Info Mitoses (D) = 
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) 

    = 0.688 bit 

The gain in material from such a separating would be 

Gain (Mitoses) =            =       bits 

Calculation of gain ratio for the attribute Mitoses 
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SplitInfo Mitoses (D) =  
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)  
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) 

         = 0.469bits 

Therefore, GainRatio(Mitoses)= 
     

     
 = 0.073 bits 

As a result, the attribute “Bland Chromatin” with the maximum Gain Ratio is 

chosen to carry on the expansion of the classification. After computing the above 

steps, the system finds the “Bland Chromatin” has the greacheck information gain 

including the characteristics; it is particular as the root node. A node is made and 

considered with Class and braches are gown for each of the characteristic‟s value. The 

decision tree generated by C4.5 for 10 tuples of Breast Cancer dataset is shown in 

Figure 3.1. 

 
 

 

3.5.2 Calculation of Weighted C4.5 Algorithm 

Given a preparation dataset, the weighted C4.5 algorithm initializes the 

weights of each preparation instance, Wi by Naïve Bayes theorem. Estimating the 

prior probability for each class is computed by how often each class occurs in the 

Breast Cancer sample dataset Table 3.2.  

Now the prior probability for each class and conditional probabilities for each 

attribute value are computed by using Equation 2.6: 

Assigning weight value By Using Naïve Bayes Probability 

P(class=2) = 
 

  
 

P(class=4) = 
 

  
 

Conditional probabilities for each attribute value: 

Figure 3.1 Decision Tree Generated by C4.5 for 10 tuples of Breast Cancer 

Dataset 
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P(ClumpThickness=“1”,class=“2”)= 
 

 
 

P(ClumpThickness=“1”, class=“4”)= 
 

 
 

P(ClumpThickness=“2”, class=“2”)= 
 

 
 

P(ClumpThickness=“2”, class=“4”)= 
 

 
 

P(ClumpThickness=“3”, class=“2”)= 
 

 
 

P(ClumpThickness=“3”, class=“4”)= 
 

 
 

P(ClumpThickness=“4”, class=“2”)= 
 

 
 

P(ClumpThickness=“4”, class=“4”)= 
 

 
 

P(ClumpThickness=“5”, class=“2”)= 
 

 
 

P(ClumpThickness=“5”, class=“4”)= 
 

 
 

P(ClumpThickness=“6”, class=“2”)= 
 

 
 

P(ClumpThickness=“6”, class=“4”)= 
 

 
 

P(ClumpThickness=“8”, class=“2”)= 
 

 
 

P(ClumpThickness=“8”, class=“4”)= 
 

 
 

P(ClumpThickness=“10”, class=“2”)= 
 

 
 

P(ClumpThickness=“10”, class=“4”)= 
 

 
 

P(Uniformity of Cell Size=“1”,class=“2”)= 
 

 
 

P(Uniformity of Cell Size =“1”, class=“4”)= 
 

 
  

P(Uniformity of Cell Size=“2”,class=“2”)= 
 

 
 

P(Uniformity of Cell Size =“2”, class=“4”)= 
 

 
 

P(Uniformity of Cell Size=“4”,class=“2”)= 
 

 
 

P(Uniformity of Cell Size =“4”, class=“4”)= 
 

 
 

P(Uniformity of Cell Size=“8”,class=“2”)= 
 

 
 

P(Uniformity of Cell Size =“8”, class=“4”)= 
 

 
 

P(Uniformity of Cell Size=“9”,class=“2”)= 
 

 
 

P(Uniformity of Cell Size =“9”, class=“4”)= 
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P(Uniformity of Cell Size=“10”,class=“2”)= 
 

 
 

P(Uniformity of Cell Size =“10”, class=“4”)= 
 

 
 

 

For Id Number= “101” 

P(class= “2”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  = 0 

P(class= “4”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  = 0.0015625 

 

For Id Number= “102” 

P(class= “2”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  =              

P(class= “4”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  = 0 

 

For Id Number= “103” 

P(class= “2”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  =           

P(class= “4”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  = 0 

 

For Id Number= “104” 

P(class= “2”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  =              

P(class= “4”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  = 0 

 

For Id Number= “105” 

P(class= “2”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  =           

P(class= “4”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  = 0 

 

For Id Number= “106” 

P(class= “2”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  =   

P(class= “4”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  = 0.0015625 

 

For Id Number= “107” 

P(class= “2”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  =           
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P(class= “4”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  = 0 

 

For Id Number= “108” 

P(class= “2”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  =           

P(class= “4”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  = 0 

 

 

For Id Number= “109” 

P(class= “2”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  =              

P(class= “4”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  = 0 

 

For Id Number= “110” 

P(class= “2”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  =              

P(class= “4”)= 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
  = 0 

 

Now calculate the posterior probabilities for preparation instances and assign 

the weights of each attribute instance with highest posterior probability using sample 

dataset in Table 3.1. Table 3.2 describes the assigned weights of preparation instances 

in preparation dataset.  

 

 

Table 3.2 Assigned weights in training sample data 
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Next, to calculate the information gain for each attribute using weights, the 

predictable material required to categorize a tuple in preparation usual is computed 

using Equation 2.1. Table 3.3 represents 10 sample records of the Breast Cancer 

Dataset. 

 

 

 

To calculate the expected information required to classify a tuple in Dataset D: 

Info(D) =     
             

           
    (

             

           
)  

        

           
    (

        

           
)  

= 0.8350728bits 

Next, the expected information necessity for each attribute is computed by 

using Equation 2.2: 

The predictable material required to organize a tuple in D if the tuples are 

separated according to Clump_Thickness is 

InfoClump_Thickness(D) 

=
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Table 3.3 Sample records of the Breast Cancer Dataset 
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 = 0 bit 

Next, the predictable material necessity for each characteristic is computed by 

using Equation 2.3: 

The gain in material from such a separating would be 

Gain (Clump_Thickness) =             = 0.8350728bits 

Next, the predictable material necessity for each attribute is processed by 

using Equation 2.4: 

Calculation of gain ratio for the attribute Clump_Thickness 

SplitInfoClump_Thickness(D)=  
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) 

= 2.7977228bits 

Next, the predictable material necessity for each attribute is computed by 

using Equation 2.5: 

Therefore, GainRatio(Clump_Thickness)= 
         

         
 = 0.0298484 bits 

The predictable material required to organize a tuple in D if the tuples are separated 

according to Uniformity_of_Cell_Size is 

Info Uniformity_of_Cell_Size (D) 

=
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 = 0 bit 

The gain in material from such a separating could be 

Gain (Uniformity_of_Cell_Size) =             = 0.8350728bits 

Computation of gain ratio for the attribute Uniformity_of_Cell_Size 

SplitInfo Uniformity_of_Cell_Size (D)  

= 
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= 1.9381352bits 

Therefore, GainRatio(Uniformity_of_Cell_Size)= 
         

         
 = 0.4308668bits  

The predictable material required to organize a tuple in D if the tuples are 

separated separated according to Uniformity_of_Cell_Shape is 

Info Uniformity_of_Cell_Shape (D)  

=
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       = 0 bit 

The gain in information from such a separating would be 

Gain (Uniformity_of_Cell_Shape) =             =          bits 

Calculation of gain ratio for the attribute Uniformity_of_Cell_Shape 

SplitInfo Uniformity_of_Cell_Shape (D)  

= 
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= 1.9581201bits 

Therefore, GainRatio(Uniformity_of_Cell_Shape)= 
         

         
 = 0.4264693 bits 

The predictable material required to organize a tuple in D if the tuples are 

separated separated according to Marginal_Adhesion is 

Info Marginal_Adhesion (D)  

=
         

           
 ( 

         

         
    

         

         
 

 

         
    

 

         
) 

  
          

           
 ( 

         

          
    

         

          
 

         

          
    

         

          
) 

  
            

           
 ( 

            

            
    

            

            
 

 

            
    

 

            
) 

  
         

           
 ( 

 

         
    

 

         
 
         

         
    

         

         
) 

= 0.2672727 bit 

The gain in material from such a separating could be 

Gain (Marginal_Adhesion) =                     = 0.567805bits 

Calculation of gain ratio for the attribute Marginal_Adhesion 

SplitInfo Marginal_Adhesion (D)  

=  
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= 1.344931bits 

Therefore, GainRatio(Marginal_Adhesion)= 
        

        
 = 0.4221815 bits 

The predictable material required to organize a tuple in D if the tuples are 

separated separated according to Single_Epithelial_Cell_Size is 

Info Single_Epithelial_Cell_Size (D)  
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= 0.0011103 bit 
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The gain in material from such a separating could be 

Gain (Single_Epithelial_Cell_Size) =                     = 0.8339678bits 

Calculation of gain ratio for the attribute Single_Epithelial_Cell_Size 

SplitInfo Single_Epithelial_Cell_Size (D)  

=  
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= 1.5808228bits 

Therefore, GainRatio(Single_Epithelial_Cell_Size)= 
         

         
 = 0.5275530 

bits 

The predictable material required to organize a tuple in D if the tuples are 

separated according to Bare_Nuclei is 

Info Bare_Nuclei (D)  
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= 0.5865113 bit 

The gain in material from such a separating could be 

Gain (Bare_Nuclei) =                      = 0.2485668bits 

Calculation of gain ratio for the attribute Bare_Nuclei 

SplitInfo Bare_Nuclei (D)  

= 
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= 1.5456027bits 

Therefore, GainRatio(Bare_Nuclei)= 
         

         
 = 0.1608219 bits 

The predictable material required to organize a tuple in D if the tuples are 

separated according to Bland_Chromatin is 
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Info Bland_Chromatin (D)  

=
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= 0 bit 

The gain in material from such a separating could be 

Gain (Bland_Chromatin) =            =          bits 

Calculation of gain ratio for the attribute Bland_Chromatin 

SplitInfo Bland_Chromatin (D) = 
             

           
    (

             

           
) 

 
             

           
    (

             

           
)  

          

           
    (

          

           
) 

 
         

           
    (

         

           
)  

         

           
    (

         

           
) 

= 1.9552543bits 

Therefore, GainRatio (Bland_Chromatin)= 
         

         
 = 0.4270944 bits 

The predictable material required to organize a tuple in D if the tuples are 

separated according to Normal_Nucleoli is 

Info Normal_Nucleoli (D)  

=
         

           
 ( 
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) 

= 0.0015906 bit 

The gain in material from such as separating would be 

Gain (Normal_Nucleoli) =                    =           bits 

Calculation of gain ratio for the attribute Normal_Nucleoli 
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SplitInfo Normal_Nucleoli (D)  

= 
         

           
    (

         

           
)  

             

           
    (

             

           
)  

         

           
    (

         

           
) 

= 0.835696 bits 

Therefore, GainRatio(Normal_Nucleoli)= 
         

        
 = 0.9973572 bits 

The predictable material required to organize a tuple in D if the tuples are 

separated according to Mitoses is 

Info Mitoses (D)  

= 
         

           
 ( 

          

         
    

          

         
 

        

         
    

        

         
) 

  
         

           
 ( 

         

         
    

         

         
 

 

         
    

 

         
) 

= 0.6195906 bit 

The gain in material from such a separating could be 

Gain (Mitoses) =                    =           bits 

Calculation of gain ratio for the attribute Mitoses 

SplitInfo Mitoses (D) =  
         

           
    (

         

           
)  

         

           
    (

         

           
) 

           = 0.6837673bits 

Therefore, GainRatio(Mitoses)= 
          

         
 = 0.3151475 bits 

The gain value of Normal Nucleoli is maximum than other attributes, so root 

of decision tree will be Normal Nucleoli. 

 

 

Figure 3.2 Root node of the tree 
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To calculate the expected information required to classify a tuple in Dataset D: 

Info(D) =   
            

         
    (

            

         
)  

        

         
    (

        

         
) 

 = 0.0059888bits 

The predictable material required to organize a tuple in D if the tuples are 

partitioned according to Clump_Thickness is 

InfoClump_Thickness(D) 

=
            

         
 ( 
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 ( 

 

         
    

 

         
 
         

         
    

         

         
) 

  
         

         
 ( 

 

         
    

 

         
 
         

         
    

         

         
) 

 = 0 bit 

The gain in material from such a separating could be 

Gain (Clump_Thickness) =             = 0.0059888bits 

Calculation of gain ratio for the attribute Clump_Thickness 

SplitInfoClump_Thickness(D)=  
            

         
    (

            

         
) 

  
         

                    
    (

         

         
)  

         

         
    (

         

         
) 

= 0.5060950bits 

Table 3.4 Subset of data Normal_Nucleoli=7 
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Therefore, GainRatio(Clump_Thickness)= 
         

         
 = 0.011833 bits 

The predictable material required to organize a tuple in D if the tuples are 

partitioned according to Uniformity_of_Cell_Size is 

Info Uniformity_of_Cell_Size (D)  

=
            

         
 ( 
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) 

 = 0 bit 

The gain in material from such a separating could be 

Gain (Uniformity_of_Cell_Size) =             =          bits 

Calculation of gain ratio for the attribute Uniformity_of_Cell_Size 

SplitInfo Uniformity_of_Cell_Size (D)  

= 
            

         
    (

            

         
) 

  
         

                    
    (

         

         
)  

         

         
    (

         

         
) 

= 0.5060950bits 

Therefore, GainRatio(Uniformity_of_Cell_Size)= 
         

         
 = 0.011833 bits 

The predictable material required to organize a tuple in D if the tuples are 

partitioned according to Uniformity_of_Cell_Shape is 

Info Uniformity_of_Cell_Shape (D)  

=
         

         
 ( 
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 ( 
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) 

 = 0 bit 

The gain in material from such a separating could be 

Gain (Uniformity_of_Cell_Shape) =             =          bits 

Calculation of gain ratio for the attribute Uniformity_of_Cell_Shape 

SplitInfo Uniformity_of_Cell_Shape (D)  

= 
         

                    
    (

         

         
)  

            

         
    (

            

         
) 

  
         

         
    (

         

         
) 
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 = 0.5060950bits 

Therefore, GainRatio(Uniformity_of_Cell_Shape)= 
         

         
 = 0.011833 bits 

The predictable material required to organize a tuple in D if the tuples are 

partitioned according to Marginal_Adhesion is 

Info Marginal_Adhesion (D)  

=
            

         
 ( 
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 ( 
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 ( 

 

         
    

 

         
 
         

         
    

         

         
) 

 = 0 bit 

  The gain in material from such a separating could be 

Gain (Marginal_Adhesion) =             =          bits 

Computation of gain ratio for the attribute Marginal_Adhesion 

SplitInfo Marginal_Adhesion (D)  

 = 
            

         
    (

            

         
) 

  
         

                    
    (

         

         
)  

         

         
    (

         

         
) 

= 0.5060950bits 

Therefore, GainRatio(Marginal_Adhesion)= 
         

         
 = 0.011833 bits 

The predictable material required to organize a tuple in D if the tuples are   

according to Single_Epithelial_Cell_Size is 

Info Single_Epithelial_Cell_Size (D)  

=
            

         
 ( 

            

            
    

            

            
 

 

            
    

 

            
) 

  
         

         
 ( 

 

         
    

 

         
 
         

         
    

         

         
) 

  
         

         
 ( 

 

         
    

 

         
 
         

         
    

         

         
) 

 = 0 bit 

The gain in material from such a separating could be 

Gain (Single_Epithelial_Cell_Size) =             =          bits 

Calculation of gain ratio for the attribute Single_Epithelial_Cell_Size 

SplitInfo Single_Epithelial_Cell_Size (D)  

= 
            

         
    (

            

         
) 
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    (

         

         
)  

         

         
    (

         

         
) 

= 0.5060950bits 

Therefore, GainRatio(Single_Epithelial_Cell_Size)= 
         

         
 = 0.011833 bits 

The predictable material required to organize a tuple in D if the tuples are   

separated according to Bare_Nuclei is 

 

Info Bare_Nuclei (D)  

=
         

         
 ( 
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) 

 = 0 bit 

The gain in material from such a separating could be 

Gain (Bare_Nuclei) =              =          bits 

Calculation of gain ratio for the attribute Bare_Nuclei 

SplitInfo Bare_Nuclei (D)  

= 
         

                    
    (

         

         
)  

            

         
    (

            

         
) 

  
         

         
    (

         

         
) 

 = 0.5060950bits 

Therefore, GainRatio(Bare_Nuclei)= 
         

         
 = 0.011833 bits 

The predictable material required to organize a tuple in D if the tuples are   

separated according to Bland_Chromatin is 

Info Bland_Chromatin (D)  

=
            

         
 ( 
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) 

 = 0 bit 

The gain in material from such a separating could be 

Gain (Bland_Chromatin) =            =         bits 

Calculation of gain ratio for the attribute Bland_Chromatin 
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SplitInfo Bland_Chromatin (D) = 
            

         
    (

            

         
) 

  
         

                    
    (

         

         
)  

         

         
    (

         

         
) 

= 0.5060950bits  

Therefore, GainRatio (Bland_Chromatin)= 
         

         
 = 0.011833 bits 

The predictable material required to organize a tuple in D if the tuples are   

separated according to Mitoses is 

Info Mitoses (D)  

= 
         

         
 ( 

             

         
    

             

         
 

        

         
    

        

         
) 

= 0.00598588 bit 

The gain in material from such a separating could be 

Gain (Mitoses) =                      =  bits 

Calculation of gain ratio for the attribute Mitoses 

SplitInfo Mitoses (D) =  
         

         
    

         

         
 

           = 6.9293439bits 

Therefore, GainRatio(Mitoses)= 
  

         
 = 0bits 

As a result, the attribute “Clump Thickness” with the maximum Gain Ratio is 

chosen to carry on the expansion of the classification. The decision tree generated by 

weighted C4.5 for 10 tuples of Breast Cancer dataset is shown in Figure 3.3. 

 
 

 

Figure 3.3 Complete Decision Tree using Breast Cancer Dataset 
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3.6 Filling in Missing Values 

 

 In some cases, some of the values of features or attributes may not be 

available. In such cases, handling the values of missing attributes must be 

considered. There are number of way: 

 Ignoring any instance with a missing value of an attribute. This will decrease 

the number of available instances. 

 Filling in with the most possible value of the attribute with missing value of 

the instance. 

 Combining the outcomes of classification using each possible value according 

to the probability of that value [17]. 

 

3.7 Evaluating the Accuracy of a Classifier 

Cross-validation, Holdout, random subsampling, and the bootstrap [22] are 

mutual techniques for measuring accuracy grounded on random sampled separates of 

the assumed data. The habit of such techniques to approximation accuracy surges the 

general working out time and is suitable for model variety. 
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3.7.3 Random Subsampling 

Using the random subsampling method, the assumed data are arbitrarily 

divided into two mutually exclusive sets, a preparation set and a check set. Naturally, 

two-thirds of the data are used as the preparation set, and the residual one-third is used 

as the check set. Then, the preparation set is used to develop the model, whose 

accuracy is probable with the check set. To make it more objective, random 

subsampling is done with k iterations. The estimated accuracy is calculated by taking 

the regular of the precisions got from each repetition. For forecast, the regular of the 

analyst mistake rates is taken. Figure 2.3 illustrates the random subsampling method. 

The whole dataset (100%) is divided to a preparation set (67%) and check set (33%). 

This is done k-times. After that, the model is learned from each combination of 

preparation and check sets. The final accuracy comes from the average of all acquired 

accuracies (Accuracy 1 to Accuracy k). 

To compare the models derived by C4.5 and weighted C4.5, random 

subsampling technique is performed on each dataset in this study. The original dataset 

are regular separated into two mutually exclusive sets, a preparation set and a check 

set. Therefore, k-times of model construction and the accuracy estimation of the 
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models derived by the algorithms are implemented. To compute the accuracy of the 

model, the number of right categorized tuples is divided by the total number of tuples 

in check set.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Random Subsampling (graphical representation) 
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CHAPTER 4 

 DESIGN AND IMPLEMENTATION 

 

The system presents the comparative study for classification of Breast Cancer 

classification using decision tree algorithms; C4.5 and weighted C4.5. We compare 

the accuracy of the weighted C4.5 and traditional C4.5 algorithms. There are various 

classification algorithms, among them; decision tree algorithm is a tree like structure. 

It is well known algorithm and works well in the area of diagnosis problems and 

decision support systems. 

 

4.1 System Design 

In this thesis, the whole dataset is randomly separated into two mutually 

exclusive sets, a preparation set and a check set. Typically, two-thirds of the data are 

used as the preparation set, and the residual one-third is used as the check set. The 

random is done with k iterations. According to random method, preparation set is 

imported into the system. The imported preparation set is trained to build the decision 

tree model to get the maximum rule length, the amount of rules created, and the total 

number of condition checks to classify the whole preparation set as results from the 

derived model by each algorithm. And then the check set is expended to check the 

model in order to obtain accuracy estimation. The results from each iteration are 

averaged. The system reports results from each iteration and its average in terms of 

bar chart. 

Experimental results from both preparation and checking phases are used to 

compare two decision tree algorithms: traditional C4.5 and weighted C4.5 algorithms. 

As the preparation phase results, the total number of leaves of decision tree 

representing the total number of rules generated by each algorithm, the maximum 

depth the decision tree representing the maximum length of the rules, the total number 

of nodes representing the condition check required to classify the whole preparation 

set and processing time representing the time required to build the model are obtained 

from each iteration. Each of preparation results is calculated to make comparison. As 

the checking phase, the average accuracy estimation from each iteration is used to 

compare performance of two algorithms. For analysis purpose random iteration runs 
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are performed on each dataset. An iteration run for one dataset is performed as 

follows: 

Setp 1. Original dataset is randomly separated into two mutually exclusive sets, a 

preparation set and a check set. Typically, two-thirds of the facts are used 

as the preparation set, and the remaining one-third is used as the check 

set. 

Setp 2. The system implements the algorithm on the preparation set to construct 

the model and checks on the checking set to estimate accuracy. 

Setp 3. For each algorithm, the system produces preparation results from the 

model in preparation phase and divides the number of exact classification 

to the element size of the check set to estimation accuracy in checking 

phase. 

Setp 4. Step 2 and step 3 have to be done until each part is left one time for 

checking set. 

After all these iterations, the preparation results and the accuracy 

estimations obtained from iterations are averaged. The resulting average results 

are used to compare two algorithms. 
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Figure 4.1 System Flow Diagram 
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4.1.1 Breast Cancer Dataset 

In this thesis, there are 2 class labels and 10 attributes in the classification 

process. The breast cancer dataset contains 683 instances and 10 attributes. Each of 

the characteristics is assigned a value from 1 to 10 by the pathologist. The larger the 

value of attribute the greater the likelihood of malignancy. There are two types of 

classes in dataset, benign (It does not invade nearby tissue or spread to other parts of 

the body), or malignant (It is serious and likely to spread other parts of the body). 

Attributes and values used in the preparation datasets are shown in Table 4.1. 

Table 4.1. Attribute Names and Values 

 

 

4.2 Classifier Accuracy Measure 

Using the preparation set to spring a classifier or analyst and approximating 

the accuracy of the ensuring learned model can result in ambiguous overoptimistic 

evaluations due to overspecialization of the studying algorithm to the data. The 

accuracy of a classifier on a given check set is the percentage of check set tuples that 

are correctly classified by the classifier. 

The confusion matrix is a expedient tool for examining how well a classifier 

can identify tuples of dissimilar classes. Given m classes, a confusion matrix is a table 

of at smallest size m by m. An entry, CMi,j in the first m rows and m columns 



 

48 

 

designates the number of tuples of class i that were branded by the classifier as class j. 

For a classifier to have moral accuracy, preferably greatest of the tuples would be 

denoted along the slanting of the confusion matrix, from entry CM1,1 to entry CMm,m, 

with the respite of the entrances being near to zero. Figure 4.2 represents confusion 

matrix for multi-classes. 

 

class of interest) that were properly branded by the classifier, while true negatives are 

the negative tuples that were right labeled by the classifier. False positive tuples are 

the negative tuples that were mistake labeled. Similarly, false negatives are the 

positive tuples that were incorrectly labeled. These terms are suitable when evaluating 

a classifier‟s aptitude. 

If how well the classifier can identify the positive tuples and how well it can 

recognize the negative tuples would be able to be accessed, then the recall, precision, 

f-measure and specificity measures can be used respectively. Accuracy is the 

percentage measure of correctly classified instances for all instances. These measures 

are defined as  

             
     

           
    4.1 

 

         
  

     
    4.2 
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     4.3 

 

           
                  

                
   4.4 

 

 

              
  

     
    4.5 

 

Biometric evaluation system that assigns all authentication attempts a „score‟ 

between closed interval [0, 1]. 0 means no match at all and 1 means a full match. 

False Acceptance Rate (FAR) is calculated as a fraction of negative scores 

exceeding your threshold. 

     
  

(     )
      4.6 

 

False Rejection Rate (FRR) is calculated as a fraction of positive 

score falling below your threshold. 

     
  

(     )
    4.7 

where TP is the number of true positives, TN is the number of true negative, 

FP is the number false positive and FN is the number of false negative. 
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4.3.1 File Menu 

Figure 4.4 shows file menu of the system. Using this menu, comparison of 

C4.5 and weighted C4.5 algorithms can be implemented. 

 

 

 

 

 

 

 

 

 

4.3.1.1 C4.5 Form 

Figure 4.5 shows C4.5 algorithm implemented this system. In this form, there 

are one textbox, three buttons and one textarea. The number of record can be inserted 

into the textbox. And then, the „Generate‟ button is clicked to see the „Train File‟ and 

„Text File‟. Next, by clicking the „Calculate‟ button, the preparation file and checking 

file are imported into the system. Imported preparation set is trained with C4.5 

Figure 4.3 Main Page of the System 

Figure 4.4 File Menu of the System 
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algorithm and to generate the decision tree model. The imported checking set is 

applied to check the model trained by C4.5 and the results of specificity, precision, 

recall, f-measure, FAR, FRR and accuracy to show in textarea. And then, the „Result‟ 

button is clicked to see the checking file. The comparison between the class label and 

check label can be seen in Figure 4.6.    
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4.3.1.2 Weighted C4.5 Form 

 

Figure 4.7 shows weighted C4.5 algorithm implemented this system. 

„Weighted Decision Tree‟ form has five buttons namely „Browse Train File‟, „Browse 

Check File‟, „Compute Weight‟, „Calculate‟ and „Result‟. And then, this form has one 

textarea. To import the preparation dataset into the system, the „Browse Train File‟ 

button is used and to import the checking dataset into the system, the „Browse Check 

File‟ button is used. And then, „Compute Weight‟ button is used to calculate the 

preparation dataset by Naïve Bayes theorem. This theorem initializes the weights of 

each preparation data. The highest posterior probability is added to each class 

occurring in the preparation data. Next, by clicking the „Calculate‟ button, the 

preparation file and checking file are imported into the system. Imported preparation 

set is trained with weighted C4.5 algorithm and to generate the decision tree model. 

The imported checking set is applied to check the model trained by weighted C4.5 

and the results of specificity, precision, recall, f-measure, FAR, FRR and accuracy are 

shown in textarea. And then, the „Result‟ button is clicked to see the checking file. 

The comparison between the class label and check label can be seen in Figure 4.8. 

Figure 4.6 The Results of Testing file  
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4.4 Experimental Results 

 

The experimental results of categorize are to be analyzed weighted C4.5 

decision tree and traditional C4.5 decision tree algorithm. The breast cancer dataset 

from UCI [25] is used for proportional analysis. This system is trained with 683 data 

records. For each categorize, 2/3 of the dataset is used for preparation and 1/3 of 

Figure 4.8 The Results of Testing File  
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datasets is expended for checking. The following table compares the accuracy results 

of two classifiers. 

Table 4.2: Experimental Results for Different Preparation Records 

Experiment No. of Record C4.5 algorithm Weighted C4.5 algorithm 

1 100 80% 85% 

2 200 87% 90% 

3 400 91.25% 92.5% 

4 683 94.27% 99.56% 

 

 The accuracy comparison on different preparation records by using C4.5 and 

weighted C4.5 algorithms are illustrated by Table 4.2. According to Figure 4.9 the 

more preparation data records are used to train C4.5 and weighted C4.5 algorithms, 

the best accuracy is achieved. 

 

 
 

Figure 4.9 Breast Cancer Classifications of Accuracy Results for Different 

Preparation Records 

 

 

According to the result, it can be observed that when the amount of patients 

has been increased, the percentage of system accuracy has been increased slightly. 

Therefore, it can describe the accuracy of Breast Cancer classification system has 

been increased when the amount of trained data is increased. 
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Figure 4.10 and 4.11 illustrates the performance and accuracy comparison of 

C4.5 and weighted C4.5 algorithms. The algorithm with the best accuracy is weighted 

C4.5 algorithm with the accuracy of 99.56%.  The weighted C4.5 algorithm shows the 

best accuracy while C4.5 shows the accuracy of 94.27%. Therefore, the accuracy of 

weighted C4.5 decision tree algorithm is well than the accuracy of the C4.5 algorithm 

on Breast Cancer dataset. 

Using partial percentage of the preparation data, the user can obtain exact 

result for their Breast Cancer classification. This system is trained with 683 data 

records. Decision tree is trained with 456 preparation records and checked with 227 

checking records.  The experimental results for two classifiers are shown in Table 4.3. 

 

 

 

 

 

 

 

Recall Precision 
F-

measure 
Specificity FAR FRR 

Accura

cy 

(%) 

C4.5 

algorithm 
86.3 95.5 90.6 98.1 19 14.4 94.27 

Weighted 

C4.5 

algorithm 

100 98.8 99.4 99.3 7 0 99.56 

 

 

Table 4.3 Performance Evaluation Results of Breast Cancer 

Classification for 683 Data Records 
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Figure 4.10 Performance Evaluation Results of Breast Cancer 

Classification for 683 Data Records 

 

 

 

Figure 4.11 Comparison of Accuracy Results for Breast Cancer Classification of 683 

Records 
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CHAPTER 5 

CONCLUSION  

 

Computer grounded diagnosis systems is play an increasingly important role 

in health care facilities. They may improve the quality of the diagnosis process in 

accuracy and efficiency and the patients can save their cost and time. The automatic 

diagnosis of Breast Cancer is an essential real-world medical problem. Detection of 

Breast Cancer in it early stage is the key of treatment. 

This system performs the implementation of Decision Tree algorithms and 

compares their performance grounded on practical implementation. In this thesis, the 

comparative analysis of C4.5 and weighted C4.5 algorithms classification on Breast 

Cancer classification is presented. From this study it is found that accuracy of 

weighted C4.5 algorithm is better than traditional C4.5 algorithm. In this thesis, the 

system has used 683 records for breast cancer datasets and random subsampling to 

compute accuracy and confusion matrix of each class of the mode. The experimental 

results prove that the weighted C4.5 algorithm can achieve high classification rate 

because weighted C4.5 decision tree algorithm gets the system accuracy of 99.56% by 

using random subsampling method for accessing classifier accuracy. 

 

5.1 Advantages of the System 

This system presents the comparative study of different decision tree 

algorithms; traditional C4.5 and weighted C4.5. The main advantages of this system is 

performing the comparative study, building the decision trees with different 

algorithms. It helps the patients with Breast Cancer classification and medical staffs in 

deciding on Breast Cancer classification. Classification by weighted C4.5 reduces the 

errors of C4.5 decision tree algorithms and therefore it provides the better accuracy. 

 

5.2 Limitations and Further Extensions 

 The comparative study has few limitations. This comparative study is only for 

Breast Cancer Classification. Other medical problems can be implemented to this 

comparative study in its further extension. More algorithms may also be implemented 

in this system presents only the classification and hence diagnosis features can be 
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added in its further extension. The system can classify only two stages of breast 

cancer classification and the user must know the symptoms of the breast cancer. The 

system is implemented only by using the C4.5 algorithm and Bayesian method. The 

future work will extend weighted C4.5 algorithm to work on the datasets and other 

classification methods for accuracy classifier. And it can be planned to check other 

cancer datasets by using weighted C4.5 classification. 
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