
Proceedings of 10
th

 International Conference on Science and Engineering 2019,

7-8 December 2019, Yangon, Myanmar

ICSE2019-ICT-6

Impact of Dependent and Independent Variables based on Ordinary

Least Squares Method Using Test-Driven Development Approach

Myint Myint Moe
#1

, Khine Khine Oo
*2

#
 Faculty of Information Science department, University of Computer Studies (Hpa-an)

Kayin State, Myanmar
*
 Faculty of Information Science department, University of Computer Studies, Yangon

Myanmar
1
 myintmyintmoe.ucsy.1971@gmail.com

2
 khinekhineoo@ucsy.edu.mm

Abstract- Test-driven development (TDD) is a foundation for

software evolution but unit tests must be performed before

production code. To enhance both external code quality and

programmers’ productivity can be insisted on the exponents

of TDD. The consequence of test-driven development on

product quality and programmer productivity is analyzed the

main purpose of this paper. This system builds the ordinary

least squares method of regression analysis to assess the

impact of the process on dependent variables and independent

variables. This paper’s results observed the positive effect of

developer productivity, and slightly decrease the effect of

external quality. TDD can affect advance software products’

quality, also mend programmers’ productivity. TDD

undertook to help the delivery of high-quality products, both

operational (fewer bugs) and technical perspective (cleaner

code) while improving developers’ productivity. TDD leads to

less defects and fewer debugging period which correct code

can be assured by writing tests first and thus serving the

developer get a finer understanding of the software

requirements. When this proposed system evaluates the

ordinary least squares of regression analysis based on a fixed

time-frame, the result of external code quality is fewer

reduced, and the result of developer productivity is

progressed.

Keywords- Test-Driven development, Number of tests,

External Quality, Developer Productivity

I. INTRODUCTION

Test-driven development (TDD) is the basic segment

of the agile code development approach by driving from

Extreme Programming (XP) and the principles of the Agile

Platform. In recent years, this approach has become popular

in the industry as a requirements specification method.

Before the code development, developers encourage to

compose tests. The possible of TDD describes various

positive effects. TDD isn't a testing approach, yet rather a

development and design method in which the tests are

composed before the production code. During the

implementation, the tests are added step by step and when

the test is passed, the code is refactored to improve the

inside structure of the code, without changing its outside

behavior. TDD cycle is repeated until the whole

functionality is implemented. A unit test is an automated

piece of code that applies a unit of work in the system and

then a single notion about the action of that unit of work.

For each little function of an application, TDD begins with

designing and developing tests. First, the test is created that

distinguishes and approves what the code will do in TDD

approach. Make the code and after that test in the typical

testing process. The developer can be self- assurance that

code refactoring is not destroyed any existing functionality

for re-executing the test cases. Before the actual

development of the application, TDD is a process of

developing and running automated tests.

TDD is intended to make the code clearer, simple and

bug-free. This proposed system analyses the consequence

of dependent variables and independent variables on TDD.

It observes the nature of the correlation between the

number of tests (#TEST) and external code quality (QLTY),

and the correlation between the number of tests (#TEST)

and developers’ productivity (PROD). This decreases the

fault of enhanced software either instantly or in the long

run. The benefits of TDD, specifically improved software

quality (external code quality) and speed up the testing

process (developer productivity). This approach aims more

productive and make fewer efforts per line of code. It

perceives the attribute of the relationship between external

code quality and developers’ productivity. Number of tests,

External code quality and developers’ productivity focus on

ordinary least squares method of regression analysis in

statistics. By decreasing code complexity supporting, the

proposed system validates the exactness of all codes and

allows developers assurance. It is used persistently over

time and motivates developers to create higher code quality.

The contribution of this paper observed the number of

tests (#TESTS), external code quality (QLTY) and

developer productivity (PROD). The number of tests is

measured by the count of a single JUnit test case. External

code quality is proposed the percentage of acceptance tests

passed for the implemented user stories. The developer

productivity is proposed the percentage of implemented

user stories.

This paper is organized as follows. Section (1)

introduces the Test-Driven Development. A framework

characterizing the whole procedure of test-driven

development is presented in Section (2). Next,

observational analysis of the proposed system is discussed

in Section (3). Section (4) expresses discussion and

comparison of results. Finally, Section (5) concludes this

paper.

mailto:2second.author@second.com
mailto:2second.author@second.com

II. BACKGROUND THEORY

Test-Driven Development is a coding technique. TDD

accelerates the early development of tests, at the time

changes are received and encouraged with functional

components. Test-Driven Development, invented by Kent

Beck (inventor of Extreme Programming and JUnit) refers

to a style of programming where three activities are closely

intertwined: Coding, Testing (in the form of unit tests) and

Design (in the form of refactoring). At first, its key idea is

to execute initial unit tests for the code, must be

implemented, and then implement the actual feature of it.

One of the features of software system requirement is user

stories, are designed to simply express and understand.

These can be easy to change by the end-user as they like

during the project’s handle time.

A. Test-Driven Development

Figure 1: Test-Driven Development flow

The TDD process is presented in Figure 1, and consists

of the following steps:

(1) Select a user story,

(2) Write a test that completes a little function of the user

story and that delivers a missed test,

(3) Re-write the creation code necessary to implement the

feature,

(4) Execute the preceding tests again. Where if any test

fails, the code is corrected and the test set is re-

executed and finally,

(5) Production code and the tests are refactored.

 As the refactoring stage is finished, the user can select

the new user story again. This method produces some

benefits that focus on the promise of increasing the quality

of the software product and the productivity of

programmers.

III. PROPOSED SYSTEM

In this proposed method, the linear regression analysis

uses to measure the number of tests, external code quality

and developer productivity.

A. Research Questions

This system concentrates to evaluate two outcomes on

the following system: external code quality and developer

productivity.

RQ1 (RQ-QLTY): Does a higher number of tests indicate

higher quality?

RQ2 (RQ-PROD): Does a higher number of tests indicate

higher developer productivity?

The notion of external code quality in RQ-QLTY and

productivity in RQ-PROD are based on ordinary least

squares of regression analysis in statistics.

B. Method

QLTY and PROD are the dependent variables.

#TESTS is the independent variable. The data set

consisting of #TESTS, QLTY and PROD attributes were

analyzed to discover outliers using both z-score and

modified z-score methods [1, 7]. Table 1 provides the raw

data used in the assessment. In the proposed system, the

ordinary least squares method is used by analyzing to

explore possible interactions such as number of tests,

external code quality, and developer productivity. #TESTS

assessed by the count of the JUnit test cases. This is a ratio

variable within the range [0, ∞]. QLTY defined as the

percentage of acceptance tests passed for the implemented

stories. PROD measured as the percentage of implemented

stories. The ordinary least squares method is a form of

mathematical regression analysis used to determine the line

of best- fit for data points. Each point of data represents the

relationship between a known independent variable and an

unknown dependent variable. In regression analysis,

dependent variables are illustrated on the vertical y-axis,

while independent variables are illustrated on the horizontal

x-axis. The line of best-fit decided from the least-squares

method has an equation that states the story of the

correlation between the data points. Line of best-fit

equations may be determined by computer software models,

which include a summary of outputs for analysis, where the

coefficients and summary outputs explain the dependence

of the variables being tested. The b1 is the slope of the

regression line. Thus this is the amount that the Y variable

(dependent) will change for each 1 unit change in the X

variable. The b0 is the intercept of the regression line with

the y-axis. In other words, it is the value of Y if the value of

X = 0. Y-hat = b0 + b1(x) is the sample regression line. This

paper must assess b0 and b1 to construct this line. Y-hat is

the predicted value of Y, and it can be obtained by plugging

an individual value of x into the equation and calculating y-

hat.
The ordinary least squares of regression analysis are

computed as the formulas:

Mean of TEST (X) =

 (1)

ƩX = sum of all the individual #TEST data set

N = total number of # TEST data set

Mean of QLTY (or) PROD (Ȳ) =

 (2)

ƩY = sum of all the individual QLTY or PROD data set

Run the test(s)

Write a test

Test

Start Select User Story

passes

Rewrite code

Run the test(s)

Test

fails

R
e
p

e
a

t

Refactor code

passes

 End

Remove errors

fails

N = total number of QLTY (or) PROD data set

Predicted value of Y,

b0 = ŷ-b1x= mean (Y) –b1* mean (X) (3)

b0 = the intercept of the regression line with the y-axis

b1=

 (4)

b1= the slope of the regression line

ŷ= b0+b1x (5)

ŷ= the sample regression line

TABLE 1

DATASET USED IN THE ASSESSMENT

#TESTS QLTY PROD

16 69 100

10 28 46

14 49 92

17 72 100

14 78 92

17 75 100

25 60 69

11 69 85

6 26 46

5 43 31

14 68 100

13 86 100

13 68 85

8 11 46

11 75 54

10 55 85

The table-1 dataset consisting of #TESTS, QLTY and

PROD attributes was tested to find outliers using both z-

score and modified z-score methods [1]. This paper used

the dataset from Davide Fucci and Burak Turhan (April

2014) [7].

For example of #TESTS VS QLTY,

For mean of QLTY (Y),

(Y) =

 = 58.31
X X = 16- 12.75 = 3.25

Y Y = 69 - 58.31 = 10.69
(X X) 2 = (16- 12.75) 2= 10.56
(X X)(Y Y) = 3.25 * 10.69 = 34.73

Predicted value of Y for external code quality,

b1=

 =

 = 2.35

b0 = ŷ-b1x = mean (Y) -2.35 * mean (X)

 = 58.31 – (2.35 * 12.75)

 = 28.34

ŷ= b0+b1x = 28.34+ (2.35* 12.75) =58.31

Predicted value of Y for developer productivity,

b1=

 =

 = 2.99

b0 = ŷ-b1x = mean (Y) -2.99 * mean (X)

 = 76.94 – (2.99 * 12.75)

 = 38.8 4

ŷ= b0+b1x = 38.84+ (2.99* 12.75) =76.94

TABLE 2

DATA OF COMPUTATION FOR CORRELATION OF #TESTS AND
QLTY

X

(#TEST)

Y

(QLTY)
X X Y Y (X X)2 (X X)(Y Y)

16 69 3.25 10.69 10.56 34.73

10 28 -2.75 -30.31 7.56 83.36

14 49 1.25 -9.31 1.56 -11.64

17 72 4.25 13.69 18.06 58.17

14 78 1.25 19.69 1.56 24.61

17 75 4.25 16.69 18.06 70.92

25 60 12.25 1.69 150.06 20.67

11 69 -1.75 10.69 3.06 -18.70

6 26 -6.75 -32.31 45.56 218.11

5 43 -7.75 -15.31 60.06 118.67

14 68 1.25 9.69 1.56 12.11

13 86 0.25 27.69 0.06 6.92

13 69 0.25 10.69 0.06 2.67

8 11 -4.75 -47.31 22.56 224.73

11 75 -1.75 16.69 3.06 -29.20

10 55 -2.75 -3.31 7.56 9.11

204 933 0.00 0.00 351.00

X =12.75 Y =58.31

TABLE 3
DATA OF COMPUTATION FOR CORRELATION OF #TESTS AND

PORD

X (#TEST)
Y

(PROD)
X X Y Y (X X)2

(X X)(Y

Y)

16 100 3.25 23.06 10.56 74.95

10 46 -2.75 -30.94 7.56 85.08

14 92 1.25 15.06 1.56 18.83

17 100 4.25 23.06 18.06 98.02

14 92 1.25 15.06 1.56 18.83

17 100 4.25 23.06 18.06 98.02

25 69 12.25 -7.94 150.06 -97.23

11 85 -1.75 8.06 3.06 -14.11

6 46 -6.75 -30.94 45.56 208.83

5 31 -7.75 -45.94 60.06 356.02

14 100 1.25 23.06 1.56 28.83

13 100 0.25 23.06 0.06 5.77

13 85 0.25 8.06 0.06 2.02

8 46 -4.75 -30.94 22.56 146.95

11 54 -1.75 -22.94 3.06 40.14

10 85 -2.75 8.06 7.56 -22.17

204 1231 0.00 0.00 351.00 1048.75

X =12.75 Y =76.94

C. Assessment

The image below is a scatter plot. Scatter plots are used

when this paper want to show the relationship between two

variables. Scatter plots are called relationship plots because

they show how two variables are interrelated. A trend-line

also referred to as a line of best fit, is a straight or curved

line in a chart that shows the general pattern or overall

direction of the data. This analytical tool is most often used

to show data movements over a period of time or

correlation between two variables. This system expects that

the regression analysis of the information compiled from

the developer productivity by TDD responds positively to

questions RQ2. A slight decrease in the external code

quality is expected due to the fact that TDD presents more

steps in its process RQ1.

In figure 2, the external code quality is slightly

decreased by measuring the ordinary least squares (OLS)

method of quality (QLTY).

Figure 2 QLTY as a function of #TESTS

In figure 3, the developer productivity is improved by

measuring the ordinary least squares (OLS) method of

productivity (PROD).

Fig. 3 PROD as a function of #TESTS

IV. DISCUSSION AND COMPARISON OF RESULT

In this section, this paper presents the results of linear

regression analysis. The predicted value of Y (ŷ)

correlation between #TESTS and QLTY is 58.31. Further,

a significant relation between #TESTS and QLTY, as

expressed in RQ1, with a positive linear trend was not

found. The linear regression between the two variables is

expressed through the equation: QLTY= 28.34 + 2.35*

#TESTS. This equation is plotted in Figure 2. The

significance test for the linear regression coefficient, the

regression line slope (b1) is 2.35 and the regression

intercept line of y-axis (b0) is 28.34. Hence there is no

arithmetically expressive relationship between the number

of tests and external code quality.

The predicted value of Y (ŷ) correlation between the

#TESTS and PROD variables is 76.94. Further, a

significant relation between #TESTS and PORD, as

expressed in RQ2, with a positive linear trend was found.

The linear regression between the two variables is

expressed through the equation: PROD= 38.84 + 2.99*

#TESTS. This equation is plotted in Figure 3. The

significance test for the linear regression coefficient, the

regression line slope (b1) is 2.99 and the regression

intercept line of y-axis (b0) is 38.84. Hence there is an

arithmetically expressive correlation between the number

of tests and programmer productivity. In this study, the

number of tests is a good predictor for TDD programmer

productivity. Consequently, developer productivity

becomes improvement and external code quality becomes

lightly diminishment.

V. CONCLUSIONS

The proposed system is a developing software

technology that can support developers to design a code

and in their task with resolution. Therefore, the developer

will be capable to create extra reliable software. This

system has given the developers a more logical accepting

of their code and has supported them to advance their

development skills. The system counts the bugs and defects

over the time-frame. This approach allows thorough unit

testing which enhances the quality of the software and

advances customer satisfaction. They help with maintaining

and changing the code. Moreover, the number of

acceptance test cases passed and number defects found

through static code analysis are used to measure the

external code quality. All these measures are consistent

with the studies and will be considered as standard

measures. When this proposed system assesses ordinary

least squares of regression analysis, the result of external

code quality is fewer decreased, and the result of developer

productivity is increased in giving a fixed time-frame.

ACKNOWLEDGMENT

This research paper is partially supported by academic

studies. Professionals were fit to implement more effective

with test-driven development. Furthermore, this proposed

system observes that the measurement reveal different

aspects of a development approach in academic studies.

REFERENCES

[1] Causineou and Chartier, 2010; Outliers Detection and Treatment: a

Review, International Journal of Psychological Research, 3(1): 58-

67.}
[2] H. Kou, P. M. Johnson, and H. Erdogmus, “Operational definition

and automated inference of test-driven development with Zorro,”

Automated Software Engineering, 2010.
[3] Shaweta Kumar, Sanjeev bansal, “Comparative Study of Test

driven Development with Traditional Techniques”; International

Journal of Soft computing and Engineering (IJSCE); ISSN:2231-
2307,Volume-3, Issue-1, (March 2013).

[4] A.N. Seshu Kumar and S. Vasavi ; “Effective Unit Testing

Framework for Automation of Windows Applications”; Aswatha
Kumar M.et al.(Eds); Proceedings of ICADC, AISC 174, pp. 813-

822. Springerlink .com @ Springer India 2013

0

20

40

60

80

100

0 10 20 30

D
ep

en
d

en
t

V
ar

ia
b

le
 (

Q
L

T
Y

)

Independent Variable(#TESTS)

#TESTS Vs QLTY

Y

Linear (Y)

ŷ =b0+ b1 x= 58.3

0

20

40

60

80

100

120

0 10 20 30D
ep

en
d

en
t

V
ar

ia
b

le
(P

O
R

D
)

Independent Variable(#TESTS)

#TESTS Vs PROD

Y

Linear (Y)

ŷ =b0+ b1x = 76.94

[5] Y. Rafique and V. B. Miˇsi´c, “The effects of test-driven

development on external quality and productivity: A meta-analysis,”
IEEE Transactions on Software Engineering, vol. 39, no. 6, pp.

835–856, 2013.

[6] Causevic, A., Shukla, R., & Punnekkat, S. (2013). “Industrial study
on test driven development: Challenges and experience” 2013 1st

International Workshop on Conducting Empirical Studies in

Industry (CESI).
[7] Davide Fucci, Burak Turhan, “On the role of tests in test- driven

development: A differentiated and partial replication”, Empirical

Software Engineering Journal (April 2014, Volume 19, Issue 2, pp
277-302)

[8] Tosun A., Dieste O., Fucci D., Vegas S., Turhan B., Erdogmus H.,

Santos A., Oivo M., Toro K., Jarvinen J., & Juristo N. An Industry
Experiment on the Effects of Test-Driven Development on External

Quality and Productivity

[9] Fucci, D., Turhan, B., & Oivo, M. The Impact of Process
Conformance on the Effects of test-driven Development

(ESEM2014) 8th Empirical Software Engineering and

Measurement, 2014 ACM/IEEE International Symposium on. Turin,
Italy.

[10] Fucci, D., Turhan, B., & Oivo, M. On the Effects of Programming

and Testing Skills on External Quality and Productivity in a Test-

driven Development Context (EASE2015) 19th Evaluation and

Assessment in Software Engineering 2015 ACM/IEEE International
Conference on., Nanjing, China.

[11] Viktor Farcic , Alex Garcia ; “Java Test-Driven Development”;

First published: August 2015; Production reference: 1240815;
Published by Packt Publishing Ltd.; Livery Place; 35 Livery Street;

Birmingham B3 2PB, UK. ISBN 978-1-78398-742-9;

www.packtpub.com; www.it-ebooks.info.
[12] Christine Sarikas (GENERAL EDUCATION) https://blog.

prepscholar.com/independent-and-dependent- variables; Feb 12,

2018
[13] https://chartio.com/learn/charts/what-is-a-scatter-plot/ Jan 9, 2019

[14] Svetlana Cheusheva ; https://www.ablebits.com/office-addins-

blog/2019/01/09/add-trendline-excel/ May 15, 2019
[15] Will Kenton https://www.investopedia.com/terms/l/least-squares-

method.asp; Sep 2, 2019.

[16] Tosun, A., Ahmed, M., Turhan, B., & Juristo, N. (2018). On the
effectiveness of unit tests in test-driven development. Proceedings

of the 2018 International Conference on Software and System

Process - ICSSP ’18.

https://www.investopedia.com/contributors/53661/

