
Two Level Scheduling on Private Cloud System:

Cloud Resources Scheduling and Real Time Scheduling on

Virtualized Servers

Hsu Mon Kyi, Thnn Thu Naing

University of Computer Studies, Yangon
hsumonkyi.ucsy@gmail.com, ucsy21@most.gov.mm

Abstract

Cloud computing is deployed a large set

of virtualized computing resources in different

infrastructures and various development

platforms. One of the key challenges in cloud

computing system is virtual resources and virtual

machines (VMs) are rapidly provision in order to

meet the cloud user’s requirement. To address

this challenge, this system contributes two level

scheduling systems: (i) virtual resource

allocation and scheduling on private cloud

infrastructure and (ii) real time scheduling that

is invoked for multimedia applications running

on virtual machines. First is resource level

scheduling and second is application level

scheduling. This system analyzes first level

scheduling steps by applying an analytical

performance model using Stochastic Markov

chain. Moreover, a real time scheduling

algorithm is presented for application level to

analyze real time multimedia applications

running on virtualized servers. According to

performance evaluation, this system describes

the detail analysis of virtual resources and

allocation steps based on the criteria such as

user request completion probability, mean

response time. Then, this system also shows the

analysis results for real time applications

running on virtualized servers. This scheduling

algorithm contributes to reduce the rate and

ratio of missing deadline. As a testbed

infrastructure, this system evaluates and

analyzes an academic-oriented private cloud

system which is implemented using

Eucalyptus open source system.

 Keywords: Cloud Computing; Virtual Machine;

Scheduling; Virtualization; Stochastic Markov

Chain; Eucalyptus

1. Introduction

A Cloud is a type of parallel and

distributed system consisting of a collection

of inter-connected and virtualized computers

that are dynamically provisioned and

presented as one or more unified

computing resources based on Service

Level Agreements (SLA) established

through negotiation between the service

providers and consumers [9]. There are four

deployment models of cloud computing

environment such as Public, Private, Community

and Hybrid cloud. This research is only

emphasis on the private cloud model and data

and processes are managed within the

organization that a limited number of people

behind a firewall. Eucalyptus open source

provide cloud system is configured to provide

IaaS services in the system.

Resource scheduling is a key process for

cloud system. Cloud infrastructure commonly

take virtual machine (VM) as scheduling unit, be

allocated on physical resources. Some of the

classical cloud-based applications include Social

Networking, Web Hosting, Content Delivery,

and Real-Time Instrumented data

processing. It is very difficult to quantify

the performance of scheduling and allocation

policy on cloud infrastructures for different

applications under varying workload and

system size. The reason why resource allocation

and scheduling brings new research issues in

cloud computing system. To address this

challenge, this system contributes two level

scheduling systems. The detail explanation of

these scheduling are described in next section.

The paper is organized as follows: Section

2 discusses related work to this topic and design

of two levels scheduling architecture is present in

section 3. Then, the system model for resource

allocation is presented in section 4. This paper

defines steps of the model approach in section 5.

Then, numerical performance evaluation results

are presented in section 6 and followed by real

time scheduling algorithm on virtualized servers

is presented in section 7. Section 8 shows

evaluation results for real time application.

Finally, Section 9 concludes the paper.

2. Related Work

Since Eucalyptus [2] and Usher [7] are

the open source systems for cloud

infrastructure and development, they provide

VM creation and resources allocation across a

Physical Machine on cluster servers. However,

they could not support the efficient VM

scheduling policies to consolidate or

redistribute VMs.

 Rodrigo N. Calheiros et al. [10] presented

analytical performance (queuing network

system model) to improve the efficiency of

the system. This proposed provisioning

technique detects changes in workload intensity

(arrival pattern, resource demands) that

occurs over time and allocates multiple

virtualized IT resources accordingly to achieve

application QoS targets. H.M.Kyi et al. [4]

proposed stochastic markov model approach for

virtual machines scheduling on private cloud

environment. This approach analyse performance

of system based on state probability of the

system model.

Luqun Li [6] discussed an optimistic

differentiated service job scheduling system

for cloud computing service users and

providers. This system uses non-preemptive

priority M/G/1 queuing model for these job

services. Hongbin Liang et al. [3] proposed

Semi-Markov Decision Process model for

resource allocation on mobile cloud

environment. This system aims to allocate the

cloud resource to maximize the system

resources.

O.Khalid et al. [8] proposed a dynamic

and adaptive real-time virtual machine

scheduling technique for HPC workloads on

the Grid. The objectives of the system are to

increase overall jobs throughput in the system

and meet their deadline.

W. Tsai et al. [11] proposed a framework

for real-time service-oriented cloud computing.

This system aims to schedule tasks for the multi-

tenancy SaaS applications. C.Vecchiola et al.[1]

present deadline- driven provisioning

mechanism. This mechanism shows that Aneka

cloud application platform is able to efficiently

allocate resources from different sources in order

to reduce application execution times.

To the best of our knowledge, the paper

presents Stochastic Markov Model approach for

resource allocation and the heterogeneous VM

request servicing of IaaS properties. And then,

real time scheduling algorithm is presented to

analyze the performance evaluation for real time

applications running on virtualized servers.

3. Design of Two Level Scheduling

Architecture

 This section presents two level scheduling

systems on the cloud computing architecture.

First is resource level scheduling and second is

real time application level scheduling. First level

analyzes mean response time and throughout of

system based on the effects of variations in

workload such as job arrival rates, job service

time and system capacity (number of NCs in

each pool) on IaaS cloud service. Second level

focus on deadline meet rate of real time

application running on virtualized server.

For analysis first level resource allocation

and scheduling steps, we use an analytic

modeling approach using stochastic Markov

models for analyzing performance evaluation.

First, we construct separate sub-models for

resource allocation and servicing steps of a

cloud service and then the overall solution is

obtained by iteration over individual sub-

model solutions. The detailed steps of the

model are described in the next section.

Figure 1. Layer of cloud Scheduling

For second level, we also present a real-

time scheduling algorithm for real-time

multimedia application in order to reduce the

deadline miss rate of task. The algorithm is based

on EDF (Earliest Deadline First) scheduling

policy in order to arrange real time tasks to meet

deadline. The analysis demonstrates that the

system is reduced deadline miss of system in real

time video conferencing cloud service on

virtualized server.

4. System Model for Resource

Allocation and Scheduling

This system model is constructed based on

Eucalyptus private cloud Infrastructure

architecture. In such system, several virtual

machine (VM) types are offered according to the

users’ requirements. These VM types with

specific CPU, RAM and storage capacity are

provisioned after creation an instance. These user

request VM are deployed on node controller

(NCs) each of which may be shared by multiple

VMs. The Eucalyptus Infrastructure offers two

types of resource pools. These pool are running

(turn on) and pending (turn on, but not ready)

pool. User requests several VM types are

submitted to a resource allocation decision

module that processes request on a first-come

first-serve (FCFS) basis as follows. The request

at the head of the queue is provisioned on a

running server if there is capacity to run a

VM on one of the running servers. If no

running NC is available, a NC from pending pool

is used for provisioning the requested VM. If

none of these servers are available, the request is

rejected and placed this request on appropriate

queue. For the above described scenario, we

investigate the effects of varying job arrival

rates, job service rates, system capacity on the

QoS metrics.

5. Proposed Model Approach

 Shown in Figure 2 is the life cycle of VM

instance request in cloud system. When cloud

user request VM services from web interface, the

resource allocation decision phase (RADP)

checks whether its resource availabilities can

meet the requirement of this VM request. If

the request capacity is not sufficient in the

system, the request place queue. If the request is

accepted, it goes to a specific machine for VM

creation. After creating the VM, this VM already

deploy in the cloud. Then, the VM runs in the

cloud and releases the VM when it finishes.

Figure 2. Life cycle of VM instance request

 From this instance life cycle, the cloud

service are decomposed the three major steps.

They are (i) resource allocation decision (ii) VM

usage (creation and deployment) and (iii) VM

execution. These steps are translated into

analytical model. These models are described

below.

VM

finish-

ing

VM creation

(running and

pending pool)

User

Request VM

deployment

Resource

Allocat-

ion

Decision

Phase

VM

Run-

ning

User

Request VM

deployment

VMM (Hypervisor)

Virtual Resource level Scheduling

VM VM VM

RT App RT App RT App

Real Time Application Scheduling

Physical Server

5.1. Resource Allocation Decision Model

 To calculate the resource allocation

decision process, we design a continuous

time Markov chain (CTMC) shown on Figure 3.

Figure 3. Resource allocation decision model

 The system users arrive at the system with

the Poisson rate λ. In this model, arrival user is u

(u {1,…,n}). States in the model in Figure 2

are labelled as (u,s), where u denotes the number

of users currently waiting in the queue and s

denotes the type of pool that the user’ requested

VM is undergoing allocation decision. In this

model, state (0,0) indicate a user has not arrived

at the system. From state (0,0) model transits to

state (0,r) with rate λ, due to arrival of a user.

State (0,r) describe the RADP is deciding if at

least one running NC can accept the user

requested VM for allocation. Similarity, state

(0,p) indicate the RADP is deciding if any

pending NC can accept the request for

allocation. This system assumes that 
1 is the

mean searching delay to fine a NC for

allocation in RADP. In state (0,r), three

possible outgoing events can occur: (a) job is

accepted for allocation on one of the running

NCs, and the model goes to state (0,0) with rate ,

rr P . (b) user request VM cannot be accepted

for allocation on any running NC, and the

model goes to state (0,p) with rate)1(rr P ,(c)

arrival of new request and the model goes to

state (1,r) with rate λ. If no running NC is

available, a transition occurs from state (0,r)

to state (0,p).In state (0,p), three possible

outgoing event are same transaction with the

state (0,r). Next State (1,r) represents the

condition that one request is waiting in the

decision queue and request job is undergoing

allocation decision. In this model, input and out

parameters discussed in the following.

5.1.1 Model Input and Output

Input parameters in this model, cloud user

in according to the Poisson distribution rate λ is

assumed to be given, the delay parameters

pr  ,
can be measure from Greedy search and

pr PP , are compute from VM usage model.

Outputs of this model are

 (i) First, user request rejection probability due to

buffer full and is denoted by Pblock

 (1)

(ii) Probability that a user request will be rejected

due to insufficient NC capacity (Pinsufficient).

 (2)

(iii) User request service unavailable probability

(Serviceunavailabe) is sum of Pblock and Pinsufficient

(iv)Measure of service availability that user

request will be available

eunavailablavailable ServiceService  1 (3)

(v) Average waiting time in resource allocation

decision phase E[WRADP] = E[Wq_dec](queuing

delay for resource allocation decision)+E[Wdec]

(decision delay)

)1(

)
)1(1

()(

][

1

0

),(),(

eunavailabl

n

i p

r

r

piri

RADP
Service

P
i

WE

















 (4)









1

0

),()1(n

u

pupp

ntinsufficie

P
P





  

  

1,r

rr P
rr P rr P

)1(rr P

pp P

)1(pp P 1,p

)1(rr P

0,p

pp P
)1(pp P

pp P

)1(pp P

n-1,p

pp P
)1(pp P

)1(rr P

0,0

rr P


0,r n-1,r

u.s

u=number of user request in queue

s=pool (running and pending)

),1(),1(pnrnblockP   

5.2. Virtual Machines Usage Model

VM usage models capture the instantiation

creation and deployment of a VM on a NC. We

assume that all event times (e.g., VM request

inter-arrival time, service time, VM provisioning

time etc.) considered in this model are

exponentially distributed. Service time for each

VM request type: µ obtained from run time

model. We design separate VM usage models for

running, pending pool of NCs. States of the

model in Figure 3 are indexed by (i,j), i denotes

number of VMs currently being provisioned and

j denotes the number of VM on a NC which have

already been deployed. In this model, from state

(0,0), after a job arrival, model goes to state

(1,0), with rate r . In state (1,0), a VM instance

is created. Mean time to creation a VM on a

running PM, is
r1 and the model moves from

(1,0) to (0,1) with rate
r . Upon service

completion, VM instance is removed and the

model moves from (0,1) to (0,0) with rate  ; this

rate is computed as an output from the VM

execution model. In this usage model, input and

output parameters are discussed in the following.

Figure 4. Virtual Machine usage model for

running and pending pool

5.2.1 Model Input and Output

This model assumes total Hr NCs in the

running pool, the arrival rate r to each running

NC is given by:

r

block
r

H

P)1(




 (5)

the mean time to creation a VM on the running

NC is
r

1
and service rate µ are obtained from

the VM run time model. Outputs of this model

are

(i) the steady state probability (r) that all VM

on the running server are busy and probability of

running pool that a user request can be accepted

rH

rrP)(1  (6)

For a pending NC is similar to the running NC

model, with few differences:

(i) the arrival rate p to each pending NC is

given by:

p

rblock
p

H

PP)1)(1(




 (7)

(ii) the pending NC requires some additional

start-up time to make it ready to use. Time to

make a pending NC ready for use, is assumed to

be exponentially distributed with mean
p

1 . (iii)

Mean time to provision a VM on a pending NC

is
p

1 for the first VM to be deployed on this

PM; mean time to provision VMs for subsequent

jobs is the same as that for a running NC, i.e.,

r
1 . After solving the pending NC, we can

compute the steady state probability (
p) that a

pending NC can not accept a request for VM

provisioning and overall pool model is a set of

Hp. The probability of pending pool can accept

the request is given by:

pH

ppP)(1  (8)

0, 0 r r



r ---

M2

1, 0 0, 1 0, M

0, 00 p



M2

1, 0 0, 1 0, M 0, 0
p

p p

i.j
i = number of VMs being provisioned and

j= number of VMs running

From VM usage models, we can also compute

average waiting time in VM usage E([Wusage])

=(E[Wvm_q])(queuing delay)+(E[Wprov]) (provis-

ion delay). According to their Resource

Allocation Decision Model and VM usage

Model, we can compute average response time

for a VM request. This is given by:

E[Tresp]=E([Wusage])+E[WRADP] (9)

5.3. Virtual Machine Execution Model

 Once a VM request is successfully

allocated, it utilizes the resources until its

execution is completed.

Figure 5. Virtual Machines execution model

for each virtual machine request

 VM execution model is used to determine

the mean time for a VM service completion. We

use a Discrete Time Markov Chain (DTMC) to

capture the details of VM execution. From the

initial state labeled CPU, a VM can finish its

execution with a probability P0 or go for some

I/O operations with probability (1- P0).A

transition can occur from local I/O to waiting I/O

with a probability (1- P1) or from local I/O to

CPU with probability p1 . Assuming the mean

service times on the CPU, local I/O and waiting

I/O to be
lc u

11 , and
w

1 respectively, we

compute the mean VM service time:

wlc PP

PP

PP

P

P  10

10

10

0

0

)1)(1()1(11 



 (10)

6. Numerical Performance Evaluation

Results

We evaluated cloud user VM request

services are two solutions- (1) User request

completion probability and (2) mean response

time for resource allocation and servicing. In this

system model, we show the effect of changing

job arrival rates, job service time and system

capacity (number of servers in each pool). We

assumed exponential distribution for inter-arrival

times and service times.

In our example scenario, buffer size in

front of RADP to be 20, and buffer size within

each NC to be zero. System capacity for each NC

has CPU (2x2 GHz), Memory (4 GB) and disk

space (320 GB) are considered in this system

model. In this stochastic model, resource

allocation decision model (in our example, 41

states) and VM usage models (for each model

respective numbers of states depend on number

of VMs) are solved in this system.

For the performance analysis, academic-

oriented Private Cloud Testbed measurements

are used in these model parameters. Our testbed

analysis, system allows available number of

virtual machines according to the user request as

shown in the Table 1.

Table 1. Maximum number of VMs on each

NC

Name Max

number

of VMs

CPUs Memory

(MB)

Disk

(GB)

c1.medium 16 1 256 5

m1.large 8 2 512 10

c1.xlarge 2 4 2048 40

All models were solving using SHARPE

[5] software package. Values of key parameters

are shown in Table 2.

Table 2. Values of key parameters

Symbol Meaning Value

pr 
11 ,

Mean search delays for

resource allocation

decision phase: from a

particular pool (running

and pending)

4 seconds

r
1

Mean time to VM for

creation and deployment

a VM on a running server

8 minutes

CPU

0P

01 P
I/O

operation

1P

Waiting for

I/O

operation

11 P

1

Finish

1

p
1

Mean time to VM for

creation and deployment

a VM on a pending server

12 minutes

p
1

Mean time to prepare on

pending state for ready to

use

20 seconds


1

Mean VM service time 15minutes

 Cloud user request VM

arrival time

300-500

request/hr

In our experiment, Figure 6(a) shows,

at a fixed mean service time (15 minute) and

fixed number of NCs in each pool (e.g., 8

NCs in each pool) and when increasing

arrival rate, decreases user request

completion probability. If we will increase

the capacity (NCs in each pool), user request

completion probability will rises.

Figure 6(a). User request completion

probability for different arrival rate and fixed

mean service time (15 minutes)

Figure 6(b) shows that with increasing

arrival rate, mean response delay increases for a

fixed number of NCs in each pool. In Figure

6(b), observe arrival rate at 300, 350, 400, 450

and 500 user request VM an hour, for analysis

different VM request type.

Figure 6(b). Mean response time for different

arrival rate and fixed mean service time (15

minutes)

7. Real-Time Scheduling Algorithm on

Virtualized Servers

The second part of the paper is real-time

application scheduling algorithm. The real-time

algorithm can be applied to meets the deadline of

the cloud services when cloud users use the web

portal to request multimedia application running

on virtualized server on cloud platform.

Figure 7. Cloud platform architecture

 First the system can be considered on a

number of tasks and other parameters that

include the system. Then applied the algorithm

based on the following parameters; execution

Cloud user

request from

web interface

Internet N/W

Cloud Provider Physical

Servers Pool

Hardware

VMM

VM VM

Multimedia Server

Physical Server

time, arrival time, start transmission time, and

deadline.

 In a video conferencing system, video

frames and audio samples are arranged at the

virtual resource. In this service, the system

decides which task is the nearest deadline to

schedule. It makes a schedule based on earliest

deadline first (EDF) scheduling policy in which

task should be sent first. The following algorithm

shows how to process the proposed scheme. In

this system, tasks are schedule based on deadline

nearest. Then, we find the difference between

finishing time and deadline. Then, the value of

the difference is less than the zero, this task is

schedule meet the deadline.

Alogrithm: Real Time Scheduling Algorithm

Begin

ti={ai,ei,di} where 1≤i≤m, m>0

Schedule these tasks whose deadlines are the nearest

and send them by orderly.

fi=si+ei

If (di- fi <0)then

Deadline-miss=1

Else

Deadline-miss=0

End

Table 3. Notation of real time algorithm

Symbol Meaning





m

i

itT
1

A set of tasks in a real time

application

ai Arrival time of task i

ei Execution time of task i

di Deadline of task i

si Start transmission time of task i

fi Finish time of task i

8. Evaluation Results

 In this section, the performance evaluations

of the real time multimedia application are

presented. The proposed algorithm tests with

video data tasks on virtualized running server.

The result shows that the number of tasks

dropped due to deadline miss is significantly

reduce in the system.

 In figure 8(a), real time statistics on video

transmission. The result shows that the deadline

miss loss occurs without applying algorithm.

Figure 8(a). Deadline miss occurrence

without applying algorithm

 In figure 8(b), the same experiment is

tested by applying the algorithm, the result

shows that the deadline miss occurrence is

significantly reduced within the same time series.

The result shows that the deadline miss

occurrences reduce to 28%.

Figure 8(b). Deadline miss occurrence with

applying algorithm

9. Conclusion

It has been widely accepted that virtual

machines can be employed as computing

resources for high performance computing.

Therefore, present Stochastic Markov model for

evaluate the performance of resource scheduling

and allocation on private cloud system. This

method is suitable for analyzing the VM request

service of large sized IaaS clouds, with reduced

complexity of analysis. In the second part, a real

time scheduling algorithm for real time

multimedia applications is proposed. This

algorithm shows that significantly reduce the

deadline miss rate of real time application.

References

[1] C.Vecchiola, R.N.Calheiros, D.Karunamoorthy

“Deadline-driven provisioning of resources for

scientific applications in hybrid cloud with Aneka”,

ACM,In Proc.ISLPED,2011.

[2] D.Nurmi, R.Wolski, C.Grzegorczyk, G. Obertelli,

S.Soman, L.Youseff, and D.Zagorodnov. “The

Eucalyptus open-source cloud-computing system”, In

Proceedings of Cloud Computing and Its

Applications,2008.

[3] H.Liang, D.Huang, L..Cai, X. (Sherman) Shen

and D. Peng, “Resource Allocation for Security

Services in Mobile Cloud Computing”, IEEE,pp. 191-

195 ,May 2011.

[4] H.M.Kyi and T.T.Naing. “Stochastic Markov

Model Approach for Virtual Machines Scheduling on

Private Cloud”, International Journal on Cloud

Computing: Services and Architecture

(IJCCSA),Vol.1, No.3, pp 1-13, November 2011.

[5] K. S. Trivedi and R. Sahner, “SHARPE at the age

of twenty two,” ACM Sigmetrics Performance

Evaluation Review, vol. 36, no. 4, pp. 52–57, March

2009.

[6] L.Li “An Optimistic Differentiated Service Job

Scheduling System for Cloud Computing Service

Users and Providers”, IEEE Third International

Conference on Multimedia and Ubiquitous

Engineering, pp.295-299, 2009.

 [7] M. McNett, D. Gupta, A. Vahdat and G. M.

Voelker. “Usher: an extensible framework for

managing custers of virtual machines”. In Proc. LISA,

2007.

 [8] O. Khalid, I. Maljevic, R.Anthony, M.Petridis,

K.Parrott and M. Schulz. “Deadline Aware Virtual

Machine Scheduler for Grid and Cloud Computing” ,

IEEE 24th International Conference on Advanced

Information Networking and Applications Workshops,

pp.85-90,2010.

[9] R.Buyya, C. S. Yeo and Venugopal, “Market

oriented cloud computing: Vision, hype, and reality

for delivering IT services as computing utilities”.

Proceeding of the 10th IEEE International Conference

on the High Performance Computing and

Communications,2008.

[10] R. N. Calheiros, R. Ranjany, and R.Buyya,

“Virtual Machine Provisioning Based on Analytical

Performance and QoS in Cloud Computing

Environments”, 2011.

[11] W.T.Tsai, Q.Shao, X.Sun and J.Elston “Real-

Time Service-Oriented Cloud Computing”,2011.

