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Abstract 

 

In chemical informatics, the structure of 

chemical compound can be represented as graph 

with atoms as nodes and bonds as edges. Exact 

structural graph matching (automorphism), 

exact substructure graph matching (subgraph 

isomorphism) and graph similarity searching are 

important research areas of chemical 

informatics. In this paper, we develop the system 

for efficient exact graph matching and graph 

similarity searching using the edge code. The 

structural information of chemical graph is 

generated as the edge code. To improve the 

precision of exact graph matching, we use our 

novel edge code index structure to find the 

automorphic graph in the database. For 

similarity searching, we utilize the fuzzy query 

similarity graph matching based on the edge 

code to improve the computational speed. 

Finally, we conduct an extensive set of 

experiments on chemical compound database to 

demonstrate the efficiency of our approach for 

efficient exact graph matching and similarity 

searching. 

 

1. Introduction 

 

 Chemistry is the science of matter, especially 

its chemical reactions but also its composition, 

structure and properties[11]. Chemistry is 

concerned with atoms and their relative 

interactions with other atoms and particularly 

with the properties of chemical bonds. A 

chemical compound is a substance with a 

particular ratio of atoms of particular chemical 

elements which determines its composition, and 

a particular organization which determines 

chemical properties. For example, water is a 

compound containing hydrogen and oxygen in 

the ration of two to one, with the oxygen atom 

between the two hydrogen atoms. Compounds 

are formed and inter-converted by chemical 

reactions [11]. 

Development of chemical structure databases 

for use in research and development area is a 

well-established activity in the pharmaceutical 

and chemical industries. There are three 

categories of useful tasks in the development of 

chemical compound databases. These are 

interactive search and retrieval of structures in 

such databases including exact structure 

searching, substructure searching and similarity 

searching. A better solution is appropriate to 

offer the user that would automatically find 

molecules containing structures nearly match the 

original query, and structures or substructures   

exact match the query [2]. 

For similarity searching, instead of searching 

for all molecules containing a given substructure, 

the users search for molecules “similar” to a 

given target molecule. Structurally similar 

molecules are expected to exhibit similar 

properties or biological activities. For 

substructure searching, the users would interest 

in finding the database since it contains a 



substructure isomorphic to the query structure. In 

exact structure matching, the users interest to 

find all molecules in the compound which are 

identical at some level of description. 

In this paper, we develop a system to process 

exact graph matching and graph similarity 

searching efficiently. The edge code is used to 

powerfully match exact graph structure. Fuzzy 

query similarity graph searching [9][5] is used to 

search the similar graph and faster query 

processing time based on the edge code. 

The rest of the paper is organized as follows. 

Section 2 presents the related work of the 

proposed system. In Section 3, we present the 

preliminary concepts of labeled graph, exact 

graph matching, exact subgraph matching, 

similarity graph searching and about of edit 

distance. Section 4 discusses the representation 

of chemical structures into graph data model. 

Section 5 discusses about our proposed system. 

Section 6 describes exact graph matching over 

chemical compound database. In Section 7, we 

discuss graph similarity searching over chemical 

compound database. In Section 8, we discuss the 

experimental result of our proposed system. 

Section 9 concludes of our paper. 

 

2. Related Work 

 

 The notion of chemical similarity is one of 

the most important concepts in chemical 

informatics[1][10]. It plays an important role in 

modern approaches to predicting the properties 

of chemical compounds, designing chemicals 

with a predefined set of properties and 

especially, in conducting drug design studies by 

screening large databases containing structures 

of available chemicals. Recently, various graph 

indexing methods have been designed to capture 

the intrinsic similarity of graphs to do the various 

queries in an efficient way[9][3][7][4][6]. 

In [11], a novel kernel-based similarity 

measurement has been developed to measure 

similarity of graph represented chemicals. G-

hash method is used to support new graph kernel 

function, efficient storage and fast search. The 

utility of G-hash achieves state-of-the-art 

performance for k-nearest neighbor 

classification. Moreover, the similarity 

measurement and the index structure are scalable 

to large chemical databases with smaller 

indexing size and faster query processing time. 

A new way of indexing a large database of 

graphs and processing exact subgraph matching 

and approximate graph matching queries is 

proposed in [3]. Each graph in the database is 

represented by its graph signature. During query 

processing, a query graph is mapped into its 

signature. To improve the precision of exact 

subgraph matching, a new method based on the 

concept of line graphs is proposed. The graph 

edit distance over graph signatures is developed 

for approximate graph matching. GiS can also 

provide a scalable and efficient disk-based 

solution for indexing and querying graphs. GiS 

can also outperform state-of-the-art techniques.  

Substructure similarity search using indexed 

features in graph databases has been developed 

in [12]. Grafil filters many graphs without 

performing pair-wise similarity computations by 

transforming the edge relaxation ratio of a query 

graph into the maximum allowed missing 

features. By examining the effect of different 

feature selection mechanisms, a multi-filter 

composition strategy is developed where each 

filter uses a distinct and complementary subset of 

the features. Grafil can also be applied to 

searching approximate non-consecutive 

sequences, trees, and other complicated 

structures as well. 

In [8], a mechanism is proposed that can 

check whether two graphs are automorphic or 

not. Storing the graphs into large databases is a 

challenging task as it deals with efficient space 



and time management. A proficient F-GAF 

algorithm is designed that efficiently detects and 

avoids the same graph getting stored into the 

database based on grid code representation of a 

graph. The computational time is substantially 

reduced compared to the canonical labeling 

approach used in frequent subgraph discovery 

algorithm. 

 

3. Preliminaries 

 

This section describes the formal graph 

definitions and notations used for this work. 

 

Definition 1 (Labeled Graph) A labeled graph G  

is defined as a 4-tuple,  (V,E,Lv,Le,l) where V is the set 

of vertices, E∈V ×V is the set of edges, Lv and Le 

are the set of labels for  vertices and edges and l 

is a labeling function assigning a label to a vertex              

l: V     Lv  or an edge l:E     Le. 

Definition 2 (Exact Graph Matching): Given a 

query graph Q, an exact graph matching query 

finds the graph in the database that is 

automorphic to Q. 

 

Definition 3 (Exact Subgraph Matching): 

Given a query graph Q, an exact subgraph 

matching query finds the graphs in the database 

that contain a subgraph that is isomorphic to Q. 

 

Definition 4 (Similarity Graph searching): 

Given a query graph Q and   a distance d, 

similarity graph matching finds the graphs in the 

database whose edit distance with Q is at most d. 

 

Definition 5 (Edit Distance): The edit distance 

d is the number of edits (insertions, deletions, 

and substitutions) required to transform a string 

(A) into another string (B). In graph similarity 

searching, the graphs returned from the database 

are within a user-specified edit distance d from a 

query graph. 

 

4. Representation of Chemical 

Structures into graph data model 
 

 A model is a simplified approximation of 

reality. Scientific models are simplified but 

useful representations of something real (for 

example, 3D structures chemical compounds). 

However, the models are not always physical 

entities. Sometimes they are sets of ideas instead. 

But it is required to represent these scientific 

models to get exact structure as much as 

possible.  

There has been a tremendous increase in our 

understanding of the physical world, but much of 

that understanding is based on extremely 

complicated ideas and mathematics. The 

application of the most sophisticated forms of 

these modern ideas is difficult and not very 

useful to those of us who are not well trained in 

modern physics and high-level mathematics. 

Therefore, scientists have developed simplified 

models for visualizing, explaining, and 

predicting physical phenomena.  

In this paper, we propose the system that 

combines scientific model and high-level 

mathematics to develop useful representation and 

querying of chemical compounds in graph data 

structure in the area of chemical informatics. 

Figure 1 shows the example of chemical 

compound paracetamol with 2D and 3D 

structures and graph structure of paracetamol.    

    (a)Paracetamol 3D structure 

 

(b)Paracetamol 2D structure 



 

 

 

 

 

(c)Graph structure of Paracetamol(GPara) 

 

Figure 1. An example illustration of 

Paracetamol compound 

5. Proposed System 

 

 We have developed a system that can index 

and query labeled, undirected graphs. The system 

is designed for the chemical compound graphs in 

the area of chemical informatics. The purposes of 

our proposed system are described as follows: 

(1) we can verify the substances contained in the 

medical products that have the sufficient amount 

of chemical elements in definite proportion by 

weight 

(2) we can search the chemical compounds that 

are nearly similar to the compounds with respect 

to either structural or functional qualities already 

defined in pharmaceutical and chemical 

industries.      

 Our key technical contributions in this work 

are: 

 (1) exact graph structure matching using edge 

code index structure to improve the precision of 

graph matching 

(2) graph similarity searching based on fuzzy 

query graph similarity matching over edge code 

to improve computational speed  

 The architecture of our proposed system is 

shown in figure 2. The main components of our 

proposed system are edge dictionary, edge code 

generating engine and graph matching engine. 

  When the graph G enters into the graph 

database, the edge list of G is retrieved from the 

database. The edge dictionary contains the edges 

in the database with unique identifiers. The edge 

code generating engine generates the edge code 

which contains the nearest neighbor edges in the 

graph. Then the edge codes are stored in the disk 

storage. When a query graph Q enters into the 

system, the edge code of the query graph is 

generated and inputs to the edge code matching 

engine. The matching engine can process two 

types of queries: exact structure graph query and 

similarity search query. According to the user 

defined query mode, the matching engine 

processes the query and the results are displayed 

to the user. Table 1describes the notations used 

in the algorithms for our proposed system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.Architecture of the proposed system 
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Table 1. Notations used in the system 

Notation Definition 

GDB Graph database 

Gi Graph in the GDB 

EC(Gi) Edge code of Gi 

De(Gi) Distinct edge in Gi 

eadj Adjacent edge of an edge e 

simmin Minimum similarity value for Gi 

Simedit Similarity between Gi and Gq 

 

5.1. Edge Dictionary 

 

The edge dictionary contains the distinct 

edges in the graph database. When a graph 

introduces to the database, the graph may contain 

the same edges and needs to find distinct 

edges(De) in this graph. The edge dictionary 

contains the unique edges to represent the same 

edges in the database. Each edge in the database 

can be assigned with the global unique identifier 

from the edge dictionary for further graph 

processing. Therefore, it is efficient to retrieve 

the equivalent edge came along in the graph. In 

the edge dictionary, an edge is defined as a 3-

tuple where (l(u),l(u,v),l(v)) and l(u) and l(v) are the 

labels of the vertices and  l(u,v) is the label of the 

edge itself. Table 2 shows constructing the edge 

dictionary using the graph shown in figure 1(c). 

Table 2. Edge dictionary  

ID Edge 

1 H,s,O 

2 O,s,C 

3 C,d,C 

4 C,s,C 

5 C,s,N 

6 H,s,N 

7 C,d,O 

 

5.2. Edge Code Generating Engine 

 

 A graph is transformed into an edge code that 

captures the structural representation of the 

graph. The edge code generating engine 

computes adjacent edge information of each edge 

appeared in the graph. Every edge in the graph is 

assigned with global unique identifier already 

defined in the edge dictionary.  For each edge 

e=(l(u),l(u,v),l(v)) , we finds the adjacent edges of e 

in the graph where the identifiers of the adjacent 

edges are the global edge identifiers in the edge 

dictionary. Furthermore, the edge code 

representation of each graph is in the form of 

string for further string comparisons efficiently. 

Figure 3 describes algorithm for generating edge 

code. 

 

Algorithm GenerateEdgeCode(Gi) 

Input:   GDB       {G1,G2,…,Gn}, EDict 

Output: ECstore        {EC(G1), EC(G2),…, EC(Gn)} 

∀De(Gi) ∈ Gi 

Find all eadj for De(Gi)  

 Substitute each eadj with corresponding ID 

 in edge dictionary 

 EC(Gi):=all eadj of De(Gi) 

 ECstore:= ECstore+EC(Gi) 

Return ECstore 

Figure 3.GenerateEdgeCode algorithm 

 

Table 3 shows adjacent edge information in 

the given graph in figure 1(c). Table 4 illustrates 

the detail information of adjacent edges for each 

edge in the graph with corresponding edge ID in 

Edge Dictionary. 

Table 3. Adjacent edge information of (GPara) 

Edge ID in 

dictionary 
Edge Edge ID in 

the graph 

1 H,s,O 1 

2 O,s,C 2 



3 C,d,C 3,5,7 

4 C,s,C 4,6,8,12 

5 C,s,N 9,11 

6 H,s,N 10 

7 C,d,O 13 

Table 4. Adjacent edge information of (GPara) 

using IDs in edge dictionary 

Edge ID in 

the graph 
Adjacent edge information 

1 {2} 

2 {1,3,4} 

3 {2,4,4},{4,4,5},{4,4} 

4 {3,3},{3,3,5},{3,3,2},{7,5} 

5 {3,4,5,6},{7,4,5,6} 

6 {5,5} 

7 {4,5} 

Therefore, the edge code of the graph GPara is 

defined in term of string and describes as 

follows. 

EC(GPara)=1{2},2{1,3,4},3{{2,4,4},{4,4,5},{4,4

}},4{{3,3},{3,3,5},{3,3,2},{7,5}},5{ 

                 {3,4,5,6},{7,4,5,6}},6{5,5},7{4,5} 

 

5.3. Graph Matching Engine 

 

 The proposed system supports two types of 

queries over chemical compound graph 

databases, namely, exact graph matching and 

graph similarity searching. By inputting a query 

graph based on exact graph matching, we can 

identify those molecules in the database that is 

symmetric to the query graph. On the other hand, 

given a query graph Q and a minimum similarity 

value simmin, graph similarity searching or 

approximate graph matching finds all molecules 

in the database whose similarity values with Q is 

greater than or equal to simmin based on the edge 

code representation of Q and the database 

graphs. 

 Our proposed system relies on the properties 

of edge codes over chemical graphs during query 

processing. The edge code is represented as 

string so that operations on strings can be 

performed in linear time.

  

6. Exact Graph Matching over 

Chemical Compound Database 

 

 First, the idea of our proposed system is to 

verify the substances contained in the drug that 

have the sufficient amount of chemical elements 

in definite proportion by weight as described in 

section 5. The proposed algorithm for exact 

graph matching is described in figure 4. Figure 5 

shows the example illustration of exact graph 

query in chemical compound database.                                                          

                                                                                                                                                                   

Algorithm ExactGraphSearch(Gq) 

result:= Ø 
EC(Gq):=GenerateEdgeCode(Gq) 

∀ EC(Gi) ∈ ECstore 

 If |Gq| = |Gi| then 

   If EC(Gq)= EC(Gi) then 

    result:=Gi 
   End if 

 End if 

Return result 

Figure 4.ExactGraphSearch algorithm 

 

                                                 
 

 

 

 

Figure 5.An example illustration of exact 

graph query in chemical graph database 

Exact graph query 

 

 

Result 
Graph database 



7. Graph Similarity Searching over 

Chemical Compound Database 

 

 Second, other fact of our proposed system is 

to search chemical similarity. Chemical 

similarity is also one of the most important 

concepts in chemical informatics. It plays an 

important role to predicting the properties of 

chemical compounds, designing chemicals with a 

predefined set of properties and especially, in 

conducting drug design studies by screening 

large databases containing structures of available 

chemicals. Similarity compounds have similar 

properties.          

 Fuzzy query string search method is used to 

find the similarity compounds for the given 

graph query Q. The fuzzy similarity 

measurement is based on the Levenshtein edit 

distance (LED) algorithm. The Levenshtein 

distance is a string metric for measuring the 

amount of difference between two sequences. 

The distance d between two strings is the 

minimum number of edits needed to transform 

one string to other, with the allowable edit 

operations such as insertion, deletion, or 

substitution of a single character. The 

Levenshtein matrix is used to compare two 

strings for similarity. String similarity increases 

as LED decreases. Measuring string similarity 

with LED is precise. To find the similarity 

between two strings, we define the similarity 

formula as follows: 

                      Simedit=1/(1+d(x,y))               (1) 

 

Where d(x,y) is the minimum number of 

operations needed to transform one string to 

another. The Simedit is in the range between 0 and 

1.The algorithm for graph similarity searching is 

described in figure 6. An illustration example of 

chemical similarity searching is demonstrated in 

figure 7.  

 

Algorithm GraphSimilaritySearch(Gq, simmin) 

resultset:= Ø 
EC(Gq):=GenerateEdgeCode(Gq) 

∀ EC(Gi) ∈ ECstore 

 If |Gq| = |Gi| then 

       distance=d( EC(Gq) , EC(Gi))  

   simedit=1/(1+distance) 

   If simedit >= simmin then 

    resultset:=resultset+Gi 
   End if 

 End if 

Return resultset 

Figure 6.ExactGraphSearch algorithm 

  

 

                                          
                                             

                                                   

 

Figure 7.An example illustration of graph 

similarity query in chemical graph database 

 For the example query in figure 7 with simmin 

=0.75, the system retrieves the database graphs if 

their simmin is greater than or equal to 0.75.  

 

8. Experimental Results 

 

 The performance of the generating edge 

codes is tested on different types of chemical 

graphs such as sparse, dense and complete 

graphs. We experienced our proposed work 

using chemical compound dataset from 

http://pubchem.ncbi.nlm.nih.gov/. Then graph 

index construction time was measured for 

different types of graphs in second. All 

experiments were made using a 3GHz Intel Core 

2 Duo CPU with 1 GB memory and Microsoft 

Windows XP.  

Exact graph query 

                              

                           
                             
                            
    
 

Result set Graph database 



  Figure 8 shows a comparison of graph index 

construction time for three types of graphs: 

sparse, dense and complete graphs. The results 

are obtained using chemical graph data sets by 

varying the graph size from 10 to 25. From the 

empirical analysis, it is found that the time of 

execution varies for sparse, dense, and complete 

graphs. This is because our proposed work is 

based on edge based representation. It takes 

considerable time for complete graphs when 

compared to sparse and dense graphs. 

 Figure 9 shows the querying time of exact 

graph matching over different query sizes. The 

edge codes of the graphs are strings and the 

comparisons between strings are proficient. 

Moreover, the average querying times is 

significantly less than a second. Figure 10 

describes the exact graph matching times over 

different database sizes varying from 100 to 500 

graphs. The graphs contained in the database are 

the average number of sparse, dense and 

complete graphs with average graph size 15. We 

Figure 8. Graph index construction time for 

different types of graphs 

 

tested the graph matching times using the query 

graph size 15. Although the index generating 

time over different graphs is significantly high, 

the query processing time over different graphs 

is less than a second. 

Figure 9. Exact graph querying time over 

different query sizes 
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Figure 10. Exact graph querying time for 

different types of graphs (query size=15) 

Figure 11 shows the querying time of 

similarity graph searching over different query 

sizes including 15, 20 and 25 with simmin=0.75.  

The execution time for both types of queries is 

based on the edge codes in term of strings. 

However, the execution time for similarity graph 

searching is slightly higher than exact graph 

matching. Figure 12 shows the execution time 

over various database sizes. Chemical graphs 

were obtained randomly from the set of all 



molecular structures that are represented in the 

dataset with average size 15. 

Figure 11. Similarity graph querying time 

over different query sizes (simmin=0.75) 
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Figure 12. Similarity graph querying time for 

different types of graphs (query size=15, 

simmin=0.75) 

 

From our experimental result, the execution 

time is more effective and efficient for sparse 

and non-sparse graphs rather than complete 

graphs with irrespective of vertices in the graphs 

because our proposed work is based on edge- 

based representation.   

9. Conclusion 

 

      Our goal is to find similarity and exact 

structures of chemical compound using graphs 

more efficiently. The proposed system uses the 

edge dictionary to generate the edge code. The 

edge code incorporates the structural information 

of chemical graph. In this paper, we develop the 

system for efficient exact graph matching and 

graph similarity searching using the edge code. 

The edge code improves the precision of exact 

graph matching. From the experimental result, 

the querying time is less than a second using the 

edge code. Moreover, similarity graph searching 

using fuzzy string matching also improves the 

computational speed. Our proposed system is 

more effective for molecular compounds where 

the potential drug formulas are automatically 

tested for a desired activity in faster query 

processing time. 
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