
Chemical Structure Searching in Chemical Compound Graph

Databases

Aye Nwe Thaing

University of Computer Studies, Yangon

ayenwethaing@gmail.com

Abstract

In chemical informatics, the structure of

chemical compound can be represented as graph

with atoms as nodes and bonds as edges. Exact

structural graph matching (automorphism),

exact substructure graph matching (subgraph

isomorphism) and graph similarity searching are

important research areas of chemical

informatics. In this paper, we develop the system

for efficient exact graph matching and graph

similarity searching using the edge code. The

structural information of chemical graph is

generated as the edge code. To improve the

precision of exact graph matching, we use our

novel edge code index structure to find the

automorphic graph in the database. For

similarity searching, we utilize the fuzzy query

similarity graph matching based on the edge

code to improve the computational speed.

Finally, we conduct an extensive set of

experiments on chemical compound database to

demonstrate the efficiency of our approach for

efficient exact graph matching and similarity

searching.

1. Introduction

 Chemistry is the science of matter, especially

its chemical reactions but also its composition,

structure and properties[11]. Chemistry is

concerned with atoms and their relative

interactions with other atoms and particularly

with the properties of chemical bonds. A

chemical compound is a substance with a

particular ratio of atoms of particular chemical

elements which determines its composition, and

a particular organization which determines

chemical properties. For example, water is a

compound containing hydrogen and oxygen in

the ration of two to one, with the oxygen atom

between the two hydrogen atoms. Compounds

are formed and inter-converted by chemical

reactions [11].

Development of chemical structure databases

for use in research and development area is a

well-established activity in the pharmaceutical

and chemical industries. There are three

categories of useful tasks in the development of

chemical compound databases. These are

interactive search and retrieval of structures in

such databases including exact structure

searching, substructure searching and similarity

searching. A better solution is appropriate to

offer the user that would automatically find

molecules containing structures nearly match the

original query, and structures or substructures

exact match the query [2].

For similarity searching, instead of searching

for all molecules containing a given substructure,

the users search for molecules “similar” to a

given target molecule. Structurally similar

molecules are expected to exhibit similar

properties or biological activities. For

substructure searching, the users would interest

in finding the database since it contains a

substructure isomorphic to the query structure. In

exact structure matching, the users interest to

find all molecules in the compound which are

identical at some level of description.

In this paper, we develop a system to process

exact graph matching and graph similarity

searching efficiently. The edge code is used to

powerfully match exact graph structure. Fuzzy

query similarity graph searching [9][5] is used to

search the similar graph and faster query

processing time based on the edge code.

The rest of the paper is organized as follows.

Section 2 presents the related work of the

proposed system. In Section 3, we present the

preliminary concepts of labeled graph, exact

graph matching, exact subgraph matching,

similarity graph searching and about of edit

distance. Section 4 discusses the representation

of chemical structures into graph data model.

Section 5 discusses about our proposed system.

Section 6 describes exact graph matching over

chemical compound database. In Section 7, we

discuss graph similarity searching over chemical

compound database. In Section 8, we discuss the

experimental result of our proposed system.

Section 9 concludes of our paper.

2. Related Work

 The notion of chemical similarity is one of

the most important concepts in chemical

informatics[1][10]. It plays an important role in

modern approaches to predicting the properties

of chemical compounds, designing chemicals

with a predefined set of properties and

especially, in conducting drug design studies by

screening large databases containing structures

of available chemicals. Recently, various graph

indexing methods have been designed to capture

the intrinsic similarity of graphs to do the various

queries in an efficient way[9][3][7][4][6].

In [11], a novel kernel-based similarity

measurement has been developed to measure

similarity of graph represented chemicals. G-

hash method is used to support new graph kernel

function, efficient storage and fast search. The

utility of G-hash achieves state-of-the-art

performance for k-nearest neighbor

classification. Moreover, the similarity

measurement and the index structure are scalable

to large chemical databases with smaller

indexing size and faster query processing time.

A new way of indexing a large database of

graphs and processing exact subgraph matching

and approximate graph matching queries is

proposed in [3]. Each graph in the database is

represented by its graph signature. During query

processing, a query graph is mapped into its

signature. To improve the precision of exact

subgraph matching, a new method based on the

concept of line graphs is proposed. The graph

edit distance over graph signatures is developed

for approximate graph matching. GiS can also

provide a scalable and efficient disk-based

solution for indexing and querying graphs. GiS

can also outperform state-of-the-art techniques.

Substructure similarity search using indexed

features in graph databases has been developed

in [12]. Grafil filters many graphs without

performing pair-wise similarity computations by

transforming the edge relaxation ratio of a query

graph into the maximum allowed missing

features. By examining the effect of different

feature selection mechanisms, a multi-filter

composition strategy is developed where each

filter uses a distinct and complementary subset of

the features. Grafil can also be applied to

searching approximate non-consecutive

sequences, trees, and other complicated

structures as well.

In [8], a mechanism is proposed that can

check whether two graphs are automorphic or

not. Storing the graphs into large databases is a

challenging task as it deals with efficient space

and time management. A proficient F-GAF

algorithm is designed that efficiently detects and

avoids the same graph getting stored into the

database based on grid code representation of a

graph. The computational time is substantially

reduced compared to the canonical labeling

approach used in frequent subgraph discovery

algorithm.

3. Preliminaries

This section describes the formal graph

definitions and notations used for this work.

Definition 1 (Labeled Graph) A labeled graph G

is defined as a 4-tuple, (V,E,Lv,Le,l) where V is the set

of vertices, E∈V ×V is the set of edges, Lv and Le

are the set of labels for vertices and edges and l

is a labeling function assigning a label to a vertex

l: V Lv or an edge l:E Le.

Definition 2 (Exact Graph Matching): Given a

query graph Q, an exact graph matching query

finds the graph in the database that is

automorphic to Q.

Definition 3 (Exact Subgraph Matching):

Given a query graph Q, an exact subgraph

matching query finds the graphs in the database

that contain a subgraph that is isomorphic to Q.

Definition 4 (Similarity Graph searching):

Given a query graph Q and a distance d,

similarity graph matching finds the graphs in the

database whose edit distance with Q is at most d.

Definition 5 (Edit Distance): The edit distance

d is the number of edits (insertions, deletions,

and substitutions) required to transform a string

(A) into another string (B). In graph similarity

searching, the graphs returned from the database

are within a user-specified edit distance d from a

query graph.

4. Representation of Chemical

Structures into graph data model

 A model is a simplified approximation of

reality. Scientific models are simplified but

useful representations of something real (for

example, 3D structures chemical compounds).

However, the models are not always physical

entities. Sometimes they are sets of ideas instead.

But it is required to represent these scientific

models to get exact structure as much as

possible.

There has been a tremendous increase in our

understanding of the physical world, but much of

that understanding is based on extremely

complicated ideas and mathematics. The

application of the most sophisticated forms of

these modern ideas is difficult and not very

useful to those of us who are not well trained in

modern physics and high-level mathematics.

Therefore, scientists have developed simplified

models for visualizing, explaining, and

predicting physical phenomena.

In this paper, we propose the system that

combines scientific model and high-level

mathematics to develop useful representation and

querying of chemical compounds in graph data

structure in the area of chemical informatics.

Figure 1 shows the example of chemical

compound paracetamol with 2D and 3D

structures and graph structure of paracetamol.

 (a)Paracetamol 3D structure

(b)Paracetamol 2D structure

(c)Graph structure of Paracetamol(GPara)

Figure 1. An example illustration of

Paracetamol compound

5. Proposed System

 We have developed a system that can index

and query labeled, undirected graphs. The system

is designed for the chemical compound graphs in

the area of chemical informatics. The purposes of

our proposed system are described as follows:

(1) we can verify the substances contained in the

medical products that have the sufficient amount

of chemical elements in definite proportion by

weight

(2) we can search the chemical compounds that

are nearly similar to the compounds with respect

to either structural or functional qualities already

defined in pharmaceutical and chemical

industries.

 Our key technical contributions in this work

are:

 (1) exact graph structure matching using edge

code index structure to improve the precision of

graph matching

(2) graph similarity searching based on fuzzy

query graph similarity matching over edge code

to improve computational speed

 The architecture of our proposed system is

shown in figure 2. The main components of our

proposed system are edge dictionary, edge code

generating engine and graph matching engine.

 When the graph G enters into the graph

database, the edge list of G is retrieved from the

database. The edge dictionary contains the edges

in the database with unique identifiers. The edge

code generating engine generates the edge code

which contains the nearest neighbor edges in the

graph. Then the edge codes are stored in the disk

storage. When a query graph Q enters into the

system, the edge code of the query graph is

generated and inputs to the edge code matching

engine. The matching engine can process two

types of queries: exact structure graph query and

similarity search query. According to the user

defined query mode, the matching engine

processes the query and the results are displayed

to the user. Table 1describes the notations used

in the algorithms for our proposed system.

Figure 2.Architecture of the proposed system

d 13 3

11

s

C

C

8

s

C

H O
s

1

2

s

10

9
5 4

s

s

H

s d C

C

C

N

6

C

7

d

s

12

s

d

C

O

C

Input Graph G

Graph Database

Edge

Dictionary

Edge List

(G)

Query Graph Q

Edge Code

Generating

Engine

Edge Code

Disk Storage

Edge Code Query

Edge Code

Edge Code

Matching

Engine

Result

Table 1. Notations used in the system

Notation Definition

GDB Graph database

Gi Graph in the GDB

EC(Gi) Edge code of Gi

De(Gi) Distinct edge in Gi

eadj Adjacent edge of an edge e

simmin Minimum similarity value for Gi

Simedit Similarity between Gi and Gq

5.1. Edge Dictionary

The edge dictionary contains the distinct

edges in the graph database. When a graph

introduces to the database, the graph may contain

the same edges and needs to find distinct

edges(De) in this graph. The edge dictionary

contains the unique edges to represent the same

edges in the database. Each edge in the database

can be assigned with the global unique identifier

from the edge dictionary for further graph

processing. Therefore, it is efficient to retrieve

the equivalent edge came along in the graph. In

the edge dictionary, an edge is defined as a 3-

tuple where (l(u),l(u,v),l(v)) and l(u) and l(v) are the

labels of the vertices and l(u,v) is the label of the

edge itself. Table 2 shows constructing the edge

dictionary using the graph shown in figure 1(c).

Table 2. Edge dictionary

ID Edge

1 H,s,O

2 O,s,C

3 C,d,C

4 C,s,C

5 C,s,N

6 H,s,N

7 C,d,O

5.2. Edge Code Generating Engine

 A graph is transformed into an edge code that

captures the structural representation of the

graph. The edge code generating engine

computes adjacent edge information of each edge

appeared in the graph. Every edge in the graph is

assigned with global unique identifier already

defined in the edge dictionary. For each edge

e=(l(u),l(u,v),l(v)) , we finds the adjacent edges of e

in the graph where the identifiers of the adjacent

edges are the global edge identifiers in the edge

dictionary. Furthermore, the edge code

representation of each graph is in the form of

string for further string comparisons efficiently.

Figure 3 describes algorithm for generating edge

code.

Algorithm GenerateEdgeCode(Gi)

Input: GDB {G1,G2,…,Gn}, EDict

Output: ECstore {EC(G1), EC(G2),…, EC(Gn)}

∀De(Gi) ∈ Gi

Find all eadj for De(Gi)

 Substitute each eadj with corresponding ID

 in edge dictionary

 EC(Gi):=all eadj of De(Gi)

 ECstore:= ECstore+EC(Gi)

Return ECstore

Figure 3.GenerateEdgeCode algorithm

Table 3 shows adjacent edge information in

the given graph in figure 1(c). Table 4 illustrates

the detail information of adjacent edges for each

edge in the graph with corresponding edge ID in

Edge Dictionary.

Table 3. Adjacent edge information of (GPara)

Edge ID in

dictionary
Edge Edge ID in

the graph

1 H,s,O 1

2 O,s,C 2

3 C,d,C 3,5,7

4 C,s,C 4,6,8,12

5 C,s,N 9,11

6 H,s,N 10

7 C,d,O 13

Table 4. Adjacent edge information of (GPara)

using IDs in edge dictionary

Edge ID in

the graph
Adjacent edge information

1 {2}

2 {1,3,4}

3 {2,4,4},{4,4,5},{4,4}

4 {3,3},{3,3,5},{3,3,2},{7,5}

5 {3,4,5,6},{7,4,5,6}

6 {5,5}

7 {4,5}

Therefore, the edge code of the graph GPara is

defined in term of string and describes as

follows.

EC(GPara)=1{2},2{1,3,4},3{{2,4,4},{4,4,5},{4,4

}},4{{3,3},{3,3,5},{3,3,2},{7,5}},5{

 {3,4,5,6},{7,4,5,6}},6{5,5},7{4,5}

5.3. Graph Matching Engine

 The proposed system supports two types of

queries over chemical compound graph

databases, namely, exact graph matching and

graph similarity searching. By inputting a query

graph based on exact graph matching, we can

identify those molecules in the database that is

symmetric to the query graph. On the other hand,

given a query graph Q and a minimum similarity

value simmin, graph similarity searching or

approximate graph matching finds all molecules

in the database whose similarity values with Q is

greater than or equal to simmin based on the edge

code representation of Q and the database

graphs.

 Our proposed system relies on the properties

of edge codes over chemical graphs during query

processing. The edge code is represented as

string so that operations on strings can be

performed in linear time.

6. Exact Graph Matching over

Chemical Compound Database

 First, the idea of our proposed system is to

verify the substances contained in the drug that

have the sufficient amount of chemical elements

in definite proportion by weight as described in

section 5. The proposed algorithm for exact

graph matching is described in figure 4. Figure 5

shows the example illustration of exact graph

query in chemical compound database.

Algorithm ExactGraphSearch(Gq)

result:= Ø
EC(Gq):=GenerateEdgeCode(Gq)

∀ EC(Gi) ∈ ECstore

 If |Gq| = |Gi| then

 If EC(Gq)= EC(Gi) then

 result:=Gi
 End if

 End if

Return result

Figure 4.ExactGraphSearch algorithm

Figure 5.An example illustration of exact

graph query in chemical graph database

Exact graph query

Result
Graph database

7. Graph Similarity Searching over

Chemical Compound Database

 Second, other fact of our proposed system is

to search chemical similarity. Chemical

similarity is also one of the most important

concepts in chemical informatics. It plays an

important role to predicting the properties of

chemical compounds, designing chemicals with a

predefined set of properties and especially, in

conducting drug design studies by screening

large databases containing structures of available

chemicals. Similarity compounds have similar

properties.

 Fuzzy query string search method is used to

find the similarity compounds for the given

graph query Q. The fuzzy similarity

measurement is based on the Levenshtein edit

distance (LED) algorithm. The Levenshtein

distance is a string metric for measuring the

amount of difference between two sequences.

The distance d between two strings is the

minimum number of edits needed to transform

one string to other, with the allowable edit

operations such as insertion, deletion, or

substitution of a single character. The

Levenshtein matrix is used to compare two

strings for similarity. String similarity increases

as LED decreases. Measuring string similarity

with LED is precise. To find the similarity

between two strings, we define the similarity

formula as follows:

 Simedit=1/(1+d(x,y)) (1)

Where d(x,y) is the minimum number of

operations needed to transform one string to

another. The Simedit is in the range between 0 and

1.The algorithm for graph similarity searching is

described in figure 6. An illustration example of

chemical similarity searching is demonstrated in

figure 7.

Algorithm GraphSimilaritySearch(Gq, simmin)

resultset:= Ø
EC(Gq):=GenerateEdgeCode(Gq)

∀ EC(Gi) ∈ ECstore

 If |Gq| = |Gi| then

 distance=d(EC(Gq) , EC(Gi))

 simedit=1/(1+distance)

 If simedit >= simmin then

 resultset:=resultset+Gi
 End if

 End if

Return resultset

Figure 6.ExactGraphSearch algorithm

Figure 7.An example illustration of graph

similarity query in chemical graph database

 For the example query in figure 7 with simmin

=0.75, the system retrieves the database graphs if

their simmin is greater than or equal to 0.75.

8. Experimental Results

 The performance of the generating edge

codes is tested on different types of chemical

graphs such as sparse, dense and complete

graphs. We experienced our proposed work

using chemical compound dataset from

http://pubchem.ncbi.nlm.nih.gov/. Then graph

index construction time was measured for

different types of graphs in second. All

experiments were made using a 3GHz Intel Core

2 Duo CPU with 1 GB memory and Microsoft

Windows XP.

Exact graph query

Result set Graph database

 Figure 8 shows a comparison of graph index

construction time for three types of graphs:

sparse, dense and complete graphs. The results

are obtained using chemical graph data sets by

varying the graph size from 10 to 25. From the

empirical analysis, it is found that the time of

execution varies for sparse, dense, and complete

graphs. This is because our proposed work is

based on edge based representation. It takes

considerable time for complete graphs when

compared to sparse and dense graphs.

 Figure 9 shows the querying time of exact

graph matching over different query sizes. The

edge codes of the graphs are strings and the

comparisons between strings are proficient.

Moreover, the average querying times is

significantly less than a second. Figure 10

describes the exact graph matching times over

different database sizes varying from 100 to 500

graphs. The graphs contained in the database are

the average number of sparse, dense and

complete graphs with average graph size 15. We

Figure 8. Graph index construction time for

different types of graphs

tested the graph matching times using the query

graph size 15. Although the index generating

time over different graphs is significantly high,

the query processing time over different graphs

is less than a second.

Figure 9. Exact graph querying time over

different query sizes

0.01

0.03

0.05

0.07

0.09

100 200 300 400 500

pr
oc

es
si

ng

ti
m

e
in

 m
s(

'0
00

)

Database Size

sparse dense complete

Figure 10. Exact graph querying time for

different types of graphs (query size=15)

Figure 11 shows the querying time of

similarity graph searching over different query

sizes including 15, 20 and 25 with simmin=0.75.

The execution time for both types of queries is

based on the edge codes in term of strings.

However, the execution time for similarity graph

searching is slightly higher than exact graph

matching. Figure 12 shows the execution time

over various database sizes. Chemical graphs

were obtained randomly from the set of all

molecular structures that are represented in the

dataset with average size 15.

Figure 11. Similarity graph querying time

over different query sizes (simmin=0.75)

0.01

0.03

0.05

0.07

0.09

0.11

100 200 300 400 500

pr
oc

es
si

ng

ti
m

e
in

 m
s(

'0
00

)

Database Size

sparse dense complete

Figure 12. Similarity graph querying time for

different types of graphs (query size=15,

simmin=0.75)

From our experimental result, the execution

time is more effective and efficient for sparse

and non-sparse graphs rather than complete

graphs with irrespective of vertices in the graphs

because our proposed work is based on edge-

based representation.

9. Conclusion

 Our goal is to find similarity and exact

structures of chemical compound using graphs

more efficiently. The proposed system uses the

edge dictionary to generate the edge code. The

edge code incorporates the structural information

of chemical graph. In this paper, we develop the

system for efficient exact graph matching and

graph similarity searching using the edge code.

The edge code improves the precision of exact

graph matching. From the experimental result,

the querying time is less than a second using the

edge code. Moreover, similarity graph searching

using fuzzy string matching also improves the

computational speed. Our proposed system is

more effective for molecular compounds where

the potential drug formulas are automatically

tested for a desired activity in faster query

processing time.

References
[1]A. Gide, “The Structure of Matter and the

Chemical Element”, 2007.

[2]C. Borgelt, M. R. Berthold,”Mining Molecular

Fragments: Finding Relevant Substructures of

Molecules”, 2003.

[3] D. Pal and P.R. Rao, “A Tool for Fast Indexing

and Querying of Graphs”, ACM, India, April 2011.

[4]D. Pavlov and I. Shturts, “Chemical

Substructure Search Screening with Fingerprints Built

with Subgraph Enumeration”, 2009.

[5]D. Lin, “An Information-Theoretic Definition of

Similarity”, University of Manitoba, 2007.

[6]G. D. Fatta and M. R. Berthold, “ High

Performance Subgraph Mining in Molecular

Compounds”, Springer’s LNCS Proc. Of the 2005 Int.

Conf. on High Performance Computing and

Communications, Sorrento, Italy, September 21-24,

2005.

[7]Levenshtein,” The Levenshtein-Algorithm”.

[8] R. Vijayalakshmi, R. Nadarajan, P. Nirmala

and M. Thilage, “A Novel Approach for Detection and

Elimination of Automorphic Graphs in Graph

Database”, Int. J. Open Problems Compt. Math., Vol.

3, No. 1, March 2010.

[9]S. Sakr and G. AI-Naymat, “ An Efficient

Features-Based Processing Technique for Supergraph

Queries”, ACM, 2010.

[10]W. Wang, C. Wang, Y. Zhu, B. Shi, J. Pei, X.

Yan and J. Han, “GraphMiner: A Structural Pattern-

Mining System for Large Disk-based Graph Databases

and Its Applications”, ACM, 2005.

[11] X. Wang, J. Huan, A. Smalter and G.H.

Lushington, “Application of Kernel Functions for

Accurate Similarity Search in Large Chemical

Databases”, International conference on

Bioinformatics and Biomedicine, IEEE, Washington

DC, USA. November 2009.

 [12] X. Yan, P.S. Yu and J. Han, “Substructure

Similarity Search in Graph Databases”, 2005.

