
Performance Isolation Framework for Virtualized Server

Applications

Hlaing May Tin

University of Computer Studies, Yangon, Myanmar

hlaingmaytin1982@gmail.com

Abstract

 Recently, most IT organizations are

transforming their data centers to smaller

virtualized ones with the help of server

virtualization. In virtualized servers, multiple

applications are consolidated into a physical

server by sharing and multiplexing their physical

resources. For such environment, performance

isolation among consolidated applications is the

desirable thing to meet Service Level Agreements

(SLAs) of those applications. This paper

describes the way to control the total amount of

CPU resource consumption in privileged and

driver domains of each virtual machine (VM). By

limiting the CPU resource usage of each VM in

both domains, performance isolation among co-

hosted application can be achieved. To

accomplish this purpose, state space

representation of Multi-Input Multi-Output

(MIMO) controller is designed. The proposed

framework is implemented and tested on a

testbed which used Xen virtualization

environment as an ongoing work.

1. Introduction

 Today’s data centers host a variety of

business-critical applications such as web

hosting, e-commerce sites and enterprise

systems. Such application owner pay for renting

server resources, and in return, the data center

provider pays guarantees on resources

availability and performance by means of SLAs.

To meet these SLAs, data center must provision

sufficient resources to applications as their need.

Such provisioning can be based either on a

dedicated or a shared platform. In a dedicated

environment, some numbers of cluster nodes are

dedicated to each application and provisioning

technique must determine how many nodes to

allocate to the application. In a shared

environment, an application can share resources

of physical node or server with other applications

and the provisioning technique needs to

determine how to partition resources on each

physical server among competing applications.

Since physical resources are shared, providing

guarantees and isolation to the performance of

applications in the shared data center model is

more complex.

 Several issues need to be addressed for

virtualized servers such as mapping of resource

requirements from physical to virtual

environment, placement policies for virtual

machines, dynamic resource provisioning,

workload monitoring, and migration among

VMs. Performance isolation of co-hosted

applications in virtual execution environment, is

another important goal [10]. Performance

isolation means ensuring the performance

requirement of one application should not impact

the performance of another applications running

in the same host.

 The key contribution of this paper is to

effectively control the total CPU consumption of

each VM in both privileged and driver domains.

Firstly, the system relates the desired

performance of each application request or

workloads to the required amount of resource to

handle that workload. Next, the system

accurately measures the resource consumption,

including work done on behalf of a particular

VM in Xen’s driver domains. Finally, by using

aggregate VM resource consumption in

allocating CPU that is collected from the Credit

Scheduler, the MIMO controller limits the total

amount of resources consumed in both domains

without violation SLAs.

 The rest of the paper is structured as follow;

Section 2 describes the related work of various

researches on performance isolation of VM. In

section 3, a brief overview about server

virtualization technology and Xen that is used as

our testbed architecture is stated. Knowledge of

State Space Model is described in section 4.

Section 5 explores the MIMO controller that is

used to control the CPU consumption of running

VMs in each host is presented. In section 6,

block diagram representation of testbed

architecture is shown. Section 7, concludes the

paper and our future work is described.

2. Related Work

 Within the last decade, data centers have

started employing virtualization solutions to

consolidate multiple server applications on the

same platform [6]. There have been a few studies

on measurement and characterization of

consolidation effects. For example, Cherkasova

and et.al [4] measure the CPU and I/O overheads

of virtualization.

 In [5], the design and evaluation of a set of

primitives implemented in Xen to address

performance isolation issue is presented. In their

work, they implemented XenMon to accurately

measure the per-VM resource consumption and

used SEDF-DC scheduler. In our work, the credit

scheduler is used.

 Adamczyk and et.al [1] proposed an idea on

how to modify Xen back-end drivers to improve

the network performance isolation. They found

that by taking the aggregate CPU consumption

into consideration, the performance isolation

would be increased.

 In [7], design of a performance isolation

benchmark that quantifies the degree to which a

virtualization system limits the impact of a

misbehaving virtual machine on other well-

behaving virtual machines running on the same

physical machine is presented. They showed that

without resource control, there would no

evidence of isolation.

3. Overview of Server Virtualization

Server Virtualization, also referred to as

platform virtualization, is abstraction of server

resources (i.e., physical servers). A physical

server is divided into multiple virtual server

environments. Each virtual server environment is

known as a Virtual Machine and the software

used to divide the physical server is known as

Virtual Machine Monitor/Hypervisor. The

Virtual Machine creates an impression to the

user of owning a complete physical server.

3.1. Models for Server Virtualization

 There are three main models of server

virtualization [2]:

 Full Virtualization: In full virtualization, the

guest OS is fully abstracted (completely

decoupled) from the underlying hardware by the

virtualization layer. As a result, the guest OS is

not aware that it is being virtualized and requires

no modification. No support is sought from

underlying hardware as well. The hypervisor

translates all the privileged instructions issued by

the operating system on they while unprivileged

user level instructions run unmodified on the

processor. VMware's Server and Microsoft's

Virtual Server are examples of full virtualization.

 Paravirtualization: In paravirtualization a

virtual machine is provided with an interface

similar but not identical to the underlying

hardware. Paravirtualization involves modifying

the guest OS kernel to replace nonvirtualizable

instructions with hypercalls that communicate

directly with the virtualization layer hypervisor.

Paravirtualization provides better performance

guarantees than full virtualization. Xen supports

paravirtualization model of virtualization.

 Hardware-assisted virtualization: This

approach requires support for virtualization from

the underlying hardware. Guest OSes run

unmodified in this model. Intel VT and AMD-V

are the architectures supporting virtualization. In

these architectures, some new instructions and a

new privilege level, “Ring_1", is provided. The

hypervisor can run in this new privilege level

while guest OSes run unmodified in Ring 0.

3.2. Xen

 Xen is a virtualization system supporting

both paravirtualization and hardware-assistant

full virtualization. Its name comes from neXt

gENeration virtualization. It is open source and

initially created by University of Cambridge

Computer Laboratory.

Domain 0
DomU

PV Guest

DomU

HVM Guest

Xen Hypervisor

xend

HardwareDisk NIC VGA

Processor

Memory

xm

Figure 1. The architecture of xen

virtualization

 The above figure [11] shows the internal

architecture of Xen. The core of Xen, which is

responsible for control over all virtual machines,

is a tiny operating system called Xen Hypervisor.

Its main tasks are CPU scheduling, memory

assignment and interrupt forwarding. Domain 0

is responsible for the creation and management

of guest VMs via xm. It also interacts with Xen

hypervisor by using xend (Xen daemon). There

are two elements in Xen which may influence

performance isolation, namely the CPU

scheduler and the network IO scheduler.

3.2.1. CPU Schedulers in Xen

 Xen is unique among VM platforms because

it allows users to choose among different CPU

schedulers. According to [3], three different CPU

schedulers were introduced, all allowing users to

specify CPU allocation via CPU shares

(weights). They are

 Borrowed Virtual Time (BVT): It is a

fair-share scheduler based on the

concept of virtual time, dispatching the

runnable VM with the smallest virtual

time first.

 Simple Earliest Deadline First

(SEDF): It provides weighted CPU

sharing in an intuitive way and uses

realtime-algorithms to ensure time

guarantees.

 Credit Scheduler: It is a proportional

fair share CPU scheduler built from the

ground up to be work conserving on

SMP hosts.

 Among these three schedulers, the credit

scheduler is chosen in our work. In credit

scheduler, each domain (including Host OS) is

assigned a weight and a cap. The weight defines

how much CPU time a domain gets comparing to

other virtual machines. A domain with a weight

of 512 will get twice as much CPU as a domain

with a weight of 256 on a contended host. Legal

weights range from 1 to 65535 and the default is

256 [12]. The cap parameter is optional and

describes the maximum amount of CPU a

domain can consume. The cap optionally fixes

the maximum amount of CPU a domain will be

able to consume, even if the host system has idle

CPU cycles. The cap is expressed in percentage

of one physical CPU: 100 is 1 physical CPU, 50

is half a CPU, 400 is 4 CPUs, etc. The default, 0,

means there is no upper cap. Using these two

parameters the number of credits for each VM

can be calculated.

4. State Space Model

 In control engineering, a state space

representation is a mathematical model of a

physical system as a set of input, output and state

variables related by first-order differential

equations. State-space models use state variables

in two ways [9]. The first is to describe dynamics

by showing how x (k + 1) evolves from x (k).

The second is to obtain the measured output y (k)

from the state x (k). They provide a scalable

approach to modeling MIMO systems, those

with a multiple inputs and outputs. Specifically,

if there are mn inputs and mO outputs, then there

are mn × mO transfer functions but only two

state-space equations.

)()()(

)()()1(

kDukCxky

kBukAxkx





 (1)

 In equation (1), the first-order differential

equation is known as the state equation of the

system and x (k) is the state vector and u (k) is

the input vector. The second equation is referred

to as the output equation. A is called the state

matrix, B is the input matrix, C is the output

matrix, and D the direct transition matrix. In our

work, the state vector x (k) is the usage of CPU

in each VM. The input vector is the performance

requirement of each application workload. The

output values are actual resource need to handle

that workload.

5. MIMO Controller

 Modern control theory utilizes the time-

domain state space representation, a

mathematical model of a physical system as a set

of input, output and state variables related by

first-order differential equations [9]. A control

system must always have some robustness

property and must adapt changes according to

dynamical behavior of input. The process of

determining the equations that govern the

model's dynamics is called system identification.

There are two main designs in the control

system: SISO (Single-Input, Single-Output) and

MIMO (Multiple-input, Multiple-Output).

Figure 2. Architecture for MIMO controller

 In our work, MIMO design is chosen to

control CPU resource allocation to virtual

machine in performance isolation way. Figure

(2) shows example of controlling two VMs

running in a host using MIMO controller. The

credit scheduler is used to calculate CPU

resource requested for each VM to meet

performance requirement of dynamic workloads.

According to information provided by scheduler,

the requested CPU credit of each VM is fed into

the controller in terms of Rcvm1 and Rcvm2. Then,

the controller gives the actual allocated amount

of CPU resource to each VM in terms of Acvm1

and Acvm2.

6. Testbed Architecture

Xen VMM

VM1

VM2

P
h

y
s
ic

a
l
S

e
rv

e
r1

P
h

y
s
ic

a
l
S

e
rv

e
r2

Client1 Client2 Client4Client3

Domain0

Xen VMM

VM1

VM2

Domain0

P
h

y
s
ic

a
l
S

e
rv

e
r2

Hardware Hardware

Workload Generator

Figure 3. Block diagram of testbed

 In our testbed, there are two physical server

machine and one workload generator machine. In

workload generator machine, four VMs running

httperf tool [8] is created. These clients generate

dynamic web service workload to two physical

machines. In each physical machine or host, xen

enabled hypervisor is installed. In Xen, domain0

is the most privileged domain to control the other

VMs running in each host. Initially, our proposed

system starts with two VMs running in each host.

In each VM, CPU resource estimator in meeting

application performance is included. A MIMO

controller is presented in each host. It controls

the aggregate CPU usage of virtual machines in

that host. It takes CPU credits of each VM

running as input matrix. According to workload

variation of each application, controller tunes the

Rcvm1

Rcvm2

Acvm1

Acvm2

MIMO

 VM2

Workload

Workload

 VM1

aggregate CPU limits for each VM in

performance isolation fashion. It controls the

total CPU usage of each VM in their driver

domains and privileged domain to handle various

workloads without violation SLAs.

7. Conclusion and Future Work

 In this paper, performance isolation

framework for the virtualized data center

application is described with its related

theoretical background and required

technologies. The overall testbed environment of

our work has also been described. The detailed

implementation of our CPU resource controller

will be described in our future work. The

proposed framework will be implemented and

evaluated with various workload benchmark

scenarios in future as our ongoing work.

References

[1] B. Adamczyk and A. Chydzinski, “On the

performance isolation across virtual network adapters

in Xen”, CLOUD COMPUTING 2011: The Second

International Conference on Cloud Computing,

GRIDs, and Virtualization.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T.

Harris, A. Ho, R. Neugebauery, I. Pratt, and A.

Warfield, “Xen and the art of virtualization”, In

Proceedings of the 19th ACM Symposium on

Operating Systems Principles, October 2003.

[3] L. Cherkasova, D. Gupta, and A. Vahdat,

“Comparison of Three CPU Schedulers in Xen”, ACM

SIGMETRICS Performance Evaluation Review

(2007), Volume: 35, Issue: 2, Publisher: Citeseer,

Pages: 42-51.

[4] R. Gardner and L. Cherkasova, “Measuring CPU

overhead for I/O processing in the Xen virtual

machine monitor”, in Proceedings of the USENIX

Annual Technical Conference, April 2005.

[5] D. Gupta, L. Cherkasova, R. Gardner, A. Vahdat,

“Enforcing Performance Isolation Across Virtual

Machines in Xen”, in Proceedings of the 7th

ACM/IFIP/USENIX Middleware Conference

(November 2006).

[6] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P.

Apparao, and D. Newell, “VM3: Measuring, modeling

and managing VM shared resources”. Computer

Networks, 53(17):2873 {2887, 2009}.

[7] J. N. Matthews, W. Hu, M. Hapuarachchi, T.

Deshane, D. Dimatos, G. Hamilton, M. McCabe, and

J. Owens, “Quantifying the Performance Isolation

Properties of Virtualization Systems”, in Proceeding

of the 2007 Workshop on Experimental Computer

Science, San Diego, CA, Jun. 13 - 14, 2007.

[8] D. Mosberger and T. Jin, “httperf---a tool for

measuring web server performance”, ACM

SIGMETRICS Performance Evaluation Review

(1998), Volume: 26, Issue: 3, Publisher: ACM, Pages:

31-37.

[9] S. Parekh, D. M. Tilbury, J. L. Hellerstein, and

Y. Diao, Feedback control of computin g systems,

John Wiley and Sons, Inc, 2004.

[10] G. Somani and S. Chaudhary, “Application

Performance Isolation in Virtualization”, in

Proceedings of 2009 IEEE International Conference

on Cloud Computing.

[11] Z. Shepherd, W. Hu, “Introduction to the Open

Source Xen Hypervisor”.

[12]http://wiki.xensource.com/xenwiki/CreditSchedul

er.html

