
Efficient Query Processing for RDF data Using XML Repository

Win Lai Hnin, Khin Nwe Ni Tun

University Of Computer Studies, Yangon, Myanmar

winlaihnin.84@gmail.com, knntun@gmail.com

Abstract

 The Semantic Web is an extension of the

current Web that will allow to find, share, and

combine information more easily. To harvest

such power requires robust and scalable data

repositories that can store RDF data. Most of the

existing RDF storage techniques rely on relation

model and relational database technologies for

these tasks. The mis-match between the graph

model of the RDF data and the rigid 2D tables of

relational model jeopardizes the scalability of

such repositories and frequently renders a

repository inefficient for some types of data and

queries. In this paper, we propose a system that

can store RDF data in the XML repository and

perform the efficient XML query processing. We

discuss the basic idea of serializing RDF data

into RDF/XML and mapping of RDF/XML to

XML document and then algorithm for the

efficient XML query processing to the

performance of XML query evaluation.

1. Introduction

 Most of the web sites today are designed

for human reading, not for computer

understanding. Computers essentially play a role

in parsing web pages for displaying and

processing jobs. They have no reliable way to

draw the semantics from a page. The Semantic

Web will improve the meaningful content of the

web pages. It is not completely a new generation

of web, but an expansion of the current one. The

meaning in the Semantic Web is mostly

represented by Resource Description Framework

(RDF). RDF encrypts these meanings in the sets

of triples that build meaningful webs about

related things. These are recognized by the

Universal Resource Identifiers (URIs) which tie

meanings to a unique definition so that users can

easily find them and their relationships on the

web.

 As the W3C standard document format

for writing and exchanging information on the

Web, XML (eXtensible Markup Language) is

mostly concerned about syntax. XML is textual

language quickly gaining popularity for data

representation and exchange on the Web. Nested,

tagged elements are the building blocks of XML.

Each tagged element has a sequence of zero or

more attribute/value pairs, and a sequence of

zero or more subelements. These subelements

may themselves be tagged elements or they may

be “tagless” segments of text data. XPath is a

declarative query language for XML that

provides simple syntax for addressing parts of an

XML document. XPath can specify sets of nodes

and sets of paths in an XML document tree.

XML queries are significantly different from the

conventional RDBMS queries in that the former

routinely involve a tree-shaped pattern that is to

be matched against the database, and the queries

are commonly referred to as TPQs (Tree Pattern

Queries). Furthermore, TPQs often contain

redundancies, especially when constraints such

as those induced from the DTD are additionally

considered. Redundancies are detrimental to the

performance of XML query evaluation.

Therefore, studying efficient mechanisms for

TPQ minimization is of great importance for

XML query processing.

 The needs to develop applications on the

Semantic Web and support search in RDF data

call for RDF repositories to be reliable and

robust. As in the context of RDB and XML, the

selection of storage models is critical to a data

repository as it is the dominating factor to

determine how to evaluate queries and how the

system behaves when scales up.

 The rest of this paper is organized as

follows: In the next section, we discuss the

translation from RDF to XML. In section 2.1, we

discuss the RDF data model and then in section

2.2, we describe the serializing from RDF to

RDF/XML and then we describe the XML

document in section 2.3. And then we describe

XPath query language for XML in section 3 and

we describe the algorithm for identify and

remove redundant nodes in section 4.1 and the

conditions for remove redundant nodes are

described in section 4.2. We discuss the

experimental results in section 5. Finally, we

conclude our paper.

1.1 Related Work

 Most of the existing RDF data repositories

[2, 4, 5] rely on relational models for data

storage and evaluate SPARQL queries by

rewriting them into SQL queries and then

executing them in the RDB engine. Among them

there are two major directions:(1) keeping the

simple triple data model of RDF data, e.g. triple

store [6]; and (2) decomposing RDF triples into

relations, either based on predicates, e.g. vertical

partition or based on semantics, e.g. property

table [4].

 The triple store does not scale well as the

evaluation of a complex SPARQL query invokes

many self-joins. Various indexing techniques [1]

were proposed as remedies, at the cost of huge

increase in storage space and decrease in the

scalability and update efficiency. The vertical

partition [2] works well for SPARQL queries

when all predicates in the WHERE clause are

known. Otherwise, all tables have to be accessed

and results unioned. For example, the RDF data

in Fig. 1(a) are stored in five tables. All need to

be accessed to evaluate the SPARQL query

above. The property table incurs small number

of joins for some queries because a selection in

one property table can match multiple simple

access patterns. However it suffers storage

redundancy and large overhead in query

evaluation [2].

 An alternative approach [8] preserves the

graph nature of RDF data by storing RDF graphs

in an object-relational database. However, this

separates the RDF schema and RDF primary

data, which brings difficulties in evaluating

queries containing both schema and data

instances.

 The proposal of serializing RDF graph into

XML trees to utilize existing XML technologies

[3, 7] focused on representing all RDF features

such as blank node in XML, but pays less or no

attention to the efficiency of RDF data storage

and query evaluation. It either leads to XML data

[8] with large redundancy or flat XML data that

cannot take full advantage of XML query

evaluation techniques.

 Mo Zhou and Yuqing Wu [6] proposed

the two RDF-to-XML decomposition algorithms

for the decomposition in two steps: (1) the

schema-level decomposition which maps an

RDF schema to a set of XML schemas and (2)

the data-level decomposition which maps RDF

data to a set of XML documents conforming to

the XML schemas which brings inefficient in

mapping RDF data to a set of XML documents

conforming to the XML schemas in some

applications.

1.2 Overview of the Proposed System

 Specifically we propose to serialize RDF

data into RDF/XML and map RDF/XML to

XML documents in an XML repository and

XPath queries to be evaluated against the XML

data using the latest XML query evaluation

techniques. The desired properties of an XML

storage model to be as follows: (1) preserving

semantics to facilitate efficient evaluation of

XPath queries (2) high performance in evaluating

all XPath queries rather than only some types of

XPath queries (3) high scalability powered by no

or small storage redundancy.
 Our contribution can be summarized as

follows:

 We propose an XML-based RDF

storage that doesn’t depend on the XML

schema.

 We propose serializing from RDF into

RDF/XML and the mapping from

RDF/XML to XML documents.

 We discuss algorithm for efficient XML

query processing to extract information

from XML repositories.

 Mapping

 XML docs

 Result

 Figure 1. System Architecture

 RDF data are significantly different from

XML data in syntax and data model: RDF data

and schema are directed graphs with both nodes

and edges labeled, while XML data are trees

with only nodes labeled. Although our work, as

other RDF storage approaches, is syntax

independent, the difference between the data

models brings substantial challenges to storing

and querying RDF data using XML techniques,

in transforming graphs into trees, keeping

storage efficiency and mapping graph pattern

queries into tree pattern queries.

2. Knowledge Representation

 There are three essential requirements for

arbitrary language used for data interchange on

the web:

 Language should have the ability to

describe any form of data to satisfy all

the potential need.

 The represented data should be easily

accessed by other organizations and its

supported software, such as parsers or

query APIs, should be reusable

(syntactic operability).

 It should have definitions for mappings

between terms in the data (semantic

interoperability).

2.1 RDF

 The vision of the Semantic Web is to allow

everybody to publish interlinked machine-

processable information with the ease of

publishing a web page. The basis for this vision

is a standardized logical data model called

Resource Description Framework (RDF). RDF

data is a collection of statements, called triples of

the form (s, p, o), where s is a subject, p is a

predicate, and o is an object; each triple states the

relation between the subject and the object. A

collection of triples can be represented as a

directed typed graph, with nodes representing

subjects and objects and edges representing

predicates, connecting subject nodes to object

nodes. Basic RDF data model consist of three

objects:

 Resources : an element, a URI, a

 literal,…

 Properties : directed relations between

 two resources

 Statement : combination of a resource,

 a property and a value.

Figure 2. RDF data

RDF data and

summary info

Summary

info

 Serializing RDF/XML

 XML document

ddidocuments

 XML

Repository

 Repository

Query

Evaluation

E

Evaluatio

n

 In this example, one could create triple

with the subject http://qqqfoo.com/staff/corky,

the predicate vCard:FN, and a value as object

which is identified by a literal “Corky Crystal”.

RDF offers the concept of blank nodes (also

known as anonymous resources). Blank nodes

allow the creation of resources without needing a

URIref, since the node itself provides the

necessary connectivity between the various other

parts of the graph. In Figure (2), one could create

another triple with the subject

http://qqqfoo.com/staff/corky, the predicate

vCard:N and the blank node that represents the

data type properties vCard:Family and

vCard:Given. The range of Family and Given

properties is of type string. The RDF database

integrates vocabulary from different namespaces,

i.e. the standard RDF namespace rdf, a user-

defined namespace vCard, as well as the

namespaces foaf, dc and dcterms. The standard

namespace rdf provides some basic vocabulary

with predefined semantics, such as rdf:type used

for typing URIs. Next, foaf provides domain-

specific vocabulary to describe persons in a

uniform way and dc and dcterms provide

predefined vocabularies for describing

bibliographic entities.

2.2 Serializing from RDF to RDF/XML

 RDF/XML is the widespread serialization

format for RDF graphs. RDF/XML is the

normative syntax for writing RDF. The success

of RDF/XML lies in its early availability and the

number of tools that support RDF/XML

processing. Therefore, RDF/XML is the

recommended syntax for applications to

exchange RDF information. The basic principle

of RDF/XML files is the mapping of RDF nodes

and arcs into XML elements, attributes, element

content, and attribute values. Probably the most

prominent serialization format is RDF/XML

which allows encoding RDF databases as XML

trees. The basic idea behind RDF/XML is to split

the RDF graph into small, tree-structured chunks,

which are then described in XML with the help

of predefined tags and attributes. The RDF/XML

format was primarily designed to be processed

by computers. We propose pseudo code for

serializing from RDF into RDF/XML is:

Input Subject, Predicate, Object

Output Serializing RDF/XML

IF (Subject is root node)

 THEN display root node in the about attribute

of the Description element and then display

predicate and object.

 ELSEIF (Object is BagID)

 THEN display Bag Element and then

 display its properties and value

 ELSE IF (Object is SeqID)

 THEN display Seq Element and then

 display its properties and value

 ELSE IF (Object is AltID)

 THEN display Alt Element and then

 Display its properties and

 value

 ENDIF

 ENDIF

 ENDIF

 END

 Pseudo code for serializing RDF/XML

 An RDF graph can be considered as a

collection of paths of the form- node, predicate

arc, node, predicate arc, node, predicate arc …

node, which cover the entire graph. In

RDF/XML, these turn into sequences of

elements inside elements which alternate

between elements for nodes and predicate arcs.

This has been called a series of node/ arc stripes,

where the node at the start of the sequence turns

into the outermost element; the next predicate arc

turns into a child element, and so on.

Example :

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf =

"http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:vCard =

"http://www.w3.org/2001/vcard-rdf/3.0#">

 <rdf:Description rdf:about =

"http://qqqfoo.com/staff/corky" >

 <vCard:FN> Corky Crystal </vCard:FN>

 <vCard:N rdf:parseType="Resource">

 <vCard:Family> Crystal

</vCard:Family>

 <vCard:Given> Corky

</vCard:Given>

 </vCard:N>

</rdf:Description>

</rdf:RDF>

RDF/XML for Figure (2)

 In this example, the outer rdf:RDF XML

element encloses the scope of the RDF/XML.

The inner rdf:Description element is the “frame-

style” block of properties, all about the resource

with URI http://qqqfoo.com/staff/corky. Here the

element vCard:FN represents the property with

the value “Corky Crystal”. This element encodes

for the URI reference that is defined by the

namespace name (URI) for “vCard” which in

this case is http://www.w3.org/2001/vcard-

rdf/3.0#/ concatenate with the local name of the

element (FN) giving the URI

http://www.w3.org/2001/vcard-rdf/3.0#/FN.

When a property has a URI value, an

rdf:resource attribute is used on the empty

property element with the URI as the attribute

value. A property value can have an XML

content when the parseType=”Resource”

attribute is used on the property element

2.3 XML

 XML is a meta-language that enables

designers to create their own customized tags to

provide functionality not available with HTML.

XML is a restricted version of SGML, designed

especially for Web documents. SGML allows

document to be logically separated into two: one

that defines the structure of the document (DTD),

other containing the text itself. XML retains key

SGML advantages. XML is not intended as a

replacement for SGML or HTML. It is a data

format for exchanging data on the web, between

databases and elsewhere. Elements or tags are

most common form of markup. First element

must be a root element, which can contain other

(sub) elements. XML document must have one

root element. Element begins with start-tag and

end-tag. XML element is case-sensitive.

Attributes are name-value pairs that contain

descriptive information about an element. A

given attribute may only occur once within a tag,

while (sub) elements with same tag may be

repeated.

 In this paper, we map the RDF/XML to

XML document. RDF/XML has an XML syntax

that has a specific meaning. Every Description

element describes a resource. Every attribute or

nested element inside a Description is a property

of that resource. Tags and attributes have a

specific meaning and we can refer to resources

by using URIs. The following is an example of

XML-tagged document, contained in the file

staff.xml.

<?xml version=”1.0”?>

<Staff id=”corky”

xmlsn:vCard="http://www.w3.org/2001/vcard-

rdf/3.0#"

 <vCard:FN> Corky Crystal </vCard:FN>

 <vCard:N>

 <vCard:Family> Crystal

</vCard:Family>

 <vCard:Given> Corky </vCard:Given>

 </vCard:N>

</Staff>

 staff.xml document for Figure (2)

3. XPath Query Language

 XPath is designed for XML documents. It

provides a single syntax that we can use for

queries, addressing and patterns. Fundamentally,

an XPath is an expressing. Evaluating an XPath

expression results in one of the following:

 A node set

 A Boolean

 A floating-point number

 A String of Unicode character

 Specifically, identity constraints require the

resultant node set to contain only elements or

attributes. Fragment identifiers restrict the

resultant node set to contain only elements.

 Location paths nominally provide the

grammar for typical XPath expressions for XML

schemas. In an XML schema, all location paths

are either relative to an enclosing component (for

identity constraints) or relative to an entire XML

document (for locating schema components).

One of the general features of a location path is

the ability to navigate along a number of axes.

An axis specifies a direction of movement in the

node tree. For example, you might specify a

child node, an attribute node, an ancestor node,

or a descendant node. The XPath

Recommendation defines 13 axes. An identity

constraint is limited to containing only the axes

child, attribute, and descendant-or-self.

Furthermore, an identity constraint can only use

the shortcut notation for these axes. Predicates

are very powerful, but slightly confusing when

first encountered. A predicate is strictly a filter.

A predicate filters out desired nodes from a node

set.

 The easiest way to demonstrate a predicate

is to discuss two similar expressions along

multiple axes. Examples of XPath queries

against staff.xml document are the following:

(1) /Staff/N/Family (selects Family element that

 children of N element that is children of the

 root element Staff).

(2) ///Family (selects Family element in the

 document.

(3) /Staff/* (selects all child elements of the

 root element Staff

(4) /Staff[@id] (selects the id attribute of the

 Staff element

4. Identify and Remove Redundant

 Nodes

4.1 Algorithm

 XML queries are significantly different

from the conventional RDBMS queries in that the

former routinely involve a tree-shaped pattern

that is to be matched against the database, and

the queries are commonly referred to as TPQs

(Tree Pattern Queries). Furthermore, TPQs often

contain redundancies. Redundancies are

detrimental to the performance of XML query

evaluation. So, we consider the query

minimizing algorithm. To abstract from existing

query languages for XML, we express queries as

tree patterns where nodes are types and edges are

parent-child or ancestor-descendant

relationships. Among all the nodes of a query Q,

one is designated as the output node, denoted by

output (Q), corresponding to the output of the

query.

 Our query minimizing algorithm is given

below:

Algorithm query-minimization Q

input: Q

output: minimized query – Q

begin

1. for i= 1 to n do

2. {_if i= output(Q) then cii := 1;

3. else if i is a leaf then{ for j= 1 to n do if

 (i)= (j)

 then ci j := 1;}

4. else

5. { let i1, i2,…., ik be the children of i;

6. for j= 1 to n do

7. if j exists do

8. {_if (i)= (j) then

9. { _if for each child edge (i,il)(1≤

 l≤ k),

 f(i,il,j) return true and

10. for each descendant edge

 (i,il)(1≤ l ≤k), g(i,il,j)return

 true

11. then ci j := 1;}}}

12. let j1,j2,..,jh be the nodes that cover i;

13. set dipl = 1 for each pl , where pl is the parent

of jl (1≤_ l ≤h);

14. let {q1…….qm} be a set such that each node in

it is an ancestor of some jl. Set aiql= 1 for each q1

(1≤_ l ≤m);

15. if there is a sibling of i satisfying the

condition specified below in (ii), remove i and its

descendants;

 end

 In line 7, we check whether a node is

already deleted. If it is the case, the

corresponding computation will not be

performed, leading to sometime reduction. In

addition, some work in line 13 and 14 can also

be saved. In line 15, we remove i if it can be

removed according to the condition (ii) given

below.

4.2 Conditions for Remove Redundant

 Nodes

 The query Q can be minimized by doing

the following conditions with each node v

 (i) Let v1, v2,……,vk be the children of v;

 (ii) For each vi,

 if (v,vi) is a child edge and there exists

vj (j such that (v,vj) is a child edge and

cvivj=1, then remove the subtree rooted at vi if

vj has not been removed;

 if (v,vi) is a descendant edge and there

exists vj (j such that (v,vi) is a child or

descendant edge and cvivj=1 or avivj=1, then

remove the subtree rooted at vi if vj has not

been removed.

5. Experimental Results

 In this section, we show and discuss the

results obtained from five queries, as

implemented in the query minimization

algorithm. We show the performance of the

algorithm in Table 1 with five queries.

 As a result of the table, percentage for the

performance of the query is depended on the

number of the redundant nodes. When the

number of redundant nodes is increased, the

percentage for the performance of the query is

decreased. And also the number of nodes is

important role to calculate the percentage of the

performance. Table 1 shows the performance of

the query minimizing algorithm with five

queries.

Table 1. Performance of the algorithm

 Query

 1
Query

 2
Query

 3

Query

 4

Query

 5

Number of
nodes

8

 8

 10

 9

 9

Number of

redundant
nodes

3

 2

 4

 4

 3

Number of
remaining

nodes

5

 6

 6

 5

 6

Percentage

for the
performance

of the query

(%)

63%

75%

 60%

 56%

 67%

6. Conclusion

 To answer the increasing demands on

RDF repository, we carefully studied the

existing RDF data management systems,

identified the preferred properties of an RDF

repository and proposed to take advantage of

the latest XML data storage and efficient query

processing techniques. We identified the system

that serializing from RDF into RDF/XML and

the mapping from RDF/XML to XML

documents. In addition, our approach is

efficient for time consuming in translation from

RDF to XML documents for supporting

Semantic Web applications in various domains.

References

[1] C. Weiss, et al. “Hexastore: sextuple indexing

for semantic web data management”, PVLDB,

1(1):1008–1019, 2008.

[2] D. J. Abadi, et al. “Scalable Semantic Web Data

Management Using Vertical Partitioning”, In

VLDB, 2007.

[3] D. Beckett. “RDF/XML syntax specification

(revised)”, W3C Recommendation, February

2004.

[4] J. J. Carroll, et al. “Jena: implementing the

semantic web recommendations” , 2004.

[5] L. Sidirourgos, et al. “ Column-store support for

RDF data management: not all swans are white”,

PVLDB, 1(2):1553–1563, 2008.

[6] M. Zhou and W. Yuqing. “XML-Based RDF

Data Management for Efficient Query

Processing”, 2010.

[7] Norman Walsh. “Rdf twig: accessing rdf graphs

in xslt. In Proc. Extreme Markup Languages”,

2003.

[8] S. Alexaki, et al. “The ICS-FORTH RDFSuite:

Managing Voluminous RDF Description Bases”,

2001.

[9] S. Bischof, S. Decker, K. Thomas, N. Lopes, A.

Polleres. “Mapping Between RDF and XML

with XSPARQL”, April 2011.

[10] S. Battle.“Gloze: XML to RDF and back again”,

http://www.hpl.hp.com/personal/steve-battle.

[11] T. Neumann, et al. “The RDF-3X engine for

scalable management of RDF data”, VLDB J.,

19(1):91–113, 2010.

[12] Y. Chen and D. Chen. “Efficient Processing of

XML Tree Pattern Queries”, 2006.

