
Query Dependent Ranking based on PCA-based Query

Representation

Pwint Hay Mar Lwin, Nan Sai Moon Kham

University of Computer Studies, Yangon

pwinthaymarlwin.phml@gmail.com,moonkhamucsy@gmail.com

Abstract

Ranking is a crucial part of information

retrieval. Queries describe the users’ search

intent and therefore they play an essential role in

the context of ranking for information retrieval.

The diverse feature impacts on ranking relevance

with respect to different queries. This paper

tends to consider query difference in learning

ranking function by clustering the queries where

each query cluster represents a group of queries

which have the similar set of important features

for measuring ranking relevance. The success of

clustering usually depends on the representation

of the data. The query features are generated

based on the ranking features values of query-

document pair and Principal Component

Analysis (PCA) is used to construct the

representation of query. To cluster the queries,

bisecting k-means clustering algorithm is used.

RankSVM algorithm is used for model

construction.

1. Introduction

 Ranking function is a crucial part of any

information retrieval system, which orders the

retrieved documents according to the decreasing

relevance to the query. Several ranking functions

emerged including the Boolean model, the vector

space model [7] and BM25. They have the

advantage of being fast and produce reasonably

good results. When more features become

available, however, incorporating them into these

models is usually difficult since it requires a

significant change in the underlying model.

Recently machine learning techniques have also

been applied to ranking model construction and

supervised learning to rank algorithms can help

overcome that limitation.

 Learning to rank represents a category of

effective ranking methods for information

retrieval (IR) systems. Given training data, in the

form of a set of queries each associated with a

search results labeled by relevance degree,

learning to rank returns a ranking function that

can be used to order search results for future

queries. Several methods for learning to rank

have been developed. Typical methods include

RankSVM[12], RankBoost[5][6], RankNet[1],

and some improved methods such as MHR[4],

AdaRank[9], and ListNet[4].

 Queries in IR may vary largely in semantics

and the users’ intentions they represent, in forms

they appear, and in number of relevant

documents they have in the document repository.

For example, queries can be navigational,

informational or transactional. If one can

successfully leverage query differences in the

process of learning to rank, one may have the

opportunities to achieve better ranking

performances in both training and test processes

[14].

 So, this paper considers the query diversity in

ranking by clustering the queries and derive

separate model for each cluster.

 The rest of this paper is organized as follows.

Related work is presented in Section 2. Section 3

presents the system architecture. In section 4, the

dataset and evaluation methods that will be used

to determine the performance of the system are

described. Finally, section 5 presents conclusion

of the paper.

2. Related Work

 Jiang Bian et.al[2] proposed the divide

and conquer approach for ranking specialization.

They divided the problem of learning one single

ranking model for all training queries into a set

of sub-problems for learning multiple models.

They also proposed global loss function to learn

multiple ranking models simultaneously. For a

new query, the ranking result is produced by

combining the corresponding ranking results of

the models whose corresponding query topic

hold the H highest correlation values with that

new query.

 Somnath Banejee et.al[3] proposed a local

learning algorithm based on new similarity

measure between queries. Firstly, they defined

the principal components for each query. After

that, they used an offline method to cluster

queries base on their proposed similarity measure

and train a model for each cluster. When a test

query is entered, they used the model from the

most similar cluster.

 Weijian Ni et.al[13] developed a query

dependent ranking approach. In their approach,

the ranking model of each query consists of a

generalizable model and a specific model.

During the learning stage, the generalizable and

specific models are learned through using

structural risk minimization (SRM) inductive

principle. At the inference stage, for each new

query, several of the most favorable specific

models learned from training queries are used to

generate its adaptable ranking model.

 Lian-Wang Lee et.al[10], also proposed a

new framework for query-dependent ranking.

They generated individual ranking models from

each training queries. When a new query is

asked, the retrieved documents of the new query

are ranking according to their scores given by a

ranking model which is a weighted combination

of the models of similar training queries.

 Xiubo Geng et.al[8] developed query-

dependent ranking by using K-Nearest Neighbor

(KNN) method. They create a ranking model for

a given query by using the labeled neighbors of

the query in the query feature space and then

rank the documents with respect to the query

using that model.

3. System Architecture

The system includes preprocessing phase,

training phase and testing phase.

Figure.1 shows the architecture of the system.

Figure 1. System Architecture

Query

Clusters M1

Testing

queries

Testing

Phase

Preprocessing

Module
PCA-based

query features

Training

queries

Training

Phase

Ranking

Results

Selected

Cluster

Clustering

Module
Training

Module

Cluster

Selection

Module

M2

M3

Mn

Ranking

Score

Computation

Module

Preprocessing

Phase

3.1. Preprocessing Phase

A query is associated with a list of

retrieved documents, each of which can be taken

as an observation about the query. The ranking

features of query-document pair of (q,di) are

defined as a feature vector

 where m is the

number of ranking features.

Figure 2. Sample Dataset

Figure 2 shows the sample data of the

dataset for query 1 and its associated retrieved

documents. The first attribute describes the

relevance score of the document. The second

attribute shows the query id and the remaining

attributes are the ranking features of the

document for the query.

According to the figure, each query is

represented by its retrieved documents with their

associated ranking features. In the original

dataset, each query contains about 1000 retrieved

documents and so each query is represented with

1000 records. In order to represent the query

with only one record, the scores of each ranking

feature is sorted and used only top-h highest

scores of each feature in data preprocessing.

Principal Component Analysis is a standard

technique for data preprocessing which reduces

the number of dimensions as much variance as

possible. The query represent with top-h highest

scores is applied to PCA. Figure 3 describes the

processing step of PCA.

Figure 3. Processing Steps of PCA

The mean value of the feature vectors

which are produced by PCA is taken as PCA

based query feature and now each query can be

represented with one record. After this step both

the number of dimensions and the number of

records can be reduced.

3.1. Training Phase

 Training phase consists of clustering module

and training module.

3.1.2. Clustering Module

 After the query features are generated,

bisecting k-means clustering algorithm is applied

to identify the query clusters.

 The bisecting k-means algorithm is a

straight forward extension of the basic k-means

algorithm that is based on a simple data: to

obtain k clusters, split the set of all points into

two clusters, select one of these clusters to split,

and so on, until k clusters have been produced.

The main experimental question is, will

clustering make it easier to locate the best cluster

from which to use the trained model, and

whether clustering will smear together queries

Step 1 : Get the input data (the query represents

with top-h highest scores of each feature

dimension)

Step 2 : Subtract the mean value from each of the

data dimension

Step 3: Calculate the covariance matrix.

Step 4 : Calculate the eigenvectors and

eigenvalues of the covariance matrix

Step 5 : Choosing components and forming a

feature vector

Step 6 : Deriving the new data set

that are not quite similar enough, so as to reduce

the efficiency of cluster models for any specific

test query.

Figure 4. Bisecting k-means Clustering

Algorithm

3.1.3. Training Module

 Ranking model for each query is constructed

by using RankSVM[12]. Ranking SVM is a

generalization of classical SVM formulation that

learns over pairwise preferences, rather than

binary labeled data. Pairwise preferences can

implicitly encode the structure of ranking

problems, and therefore learning an SVM over

such pairwise preferences is typically more

effective when used for ranking since its

objective function tends to more in line with

standard information retrieval metrics, such as

precision, mean average precision and F1 score,

which is the harmonic mean of precision and

recall.

 Formally, the ranking SVM is formulated as

a quadratic programming problem that has the

following form:

 (1)

where w is the weight vector being fit, is the

set of pair-wise preferences used for training, and

C is a tunable parameter that penalizes

misclassified input pairs. Once a weight vector w

is learned, we can score the documents for

unseen queries. These scores can then be used to

rank documents.

3.2. Testing Phase

 Testing phase consists of clustering selection

module and ranking score computing module.

In cluster selection module, the most

suitable cluster for the test query is identified by

finding the closest centric c. To find the closest

centroid for the test query the system use the

Euclidian distance.

 (2)

where x-i is the centroid of ith cluster and

i=1,2,…k.

 (3)

After the closest cluster is found, the

system retrieves the model with respect to that

cluster and computes the ranking scores for the

test query by using the retrieved model.

4. Dataset and Performance Metric

 The accuracy of the ranking models will be

evaluated on the LETOR benchmark dataset[11].

The evaluation tools provided by LETOR are

utilized to evaluate the effectiveness of the

proposed system.

Begin

Clist cluster containing all points

Repeat

{

 pick a cluster C from Clist

 for i=1 to num-of-trials

{

 bisect C using basic K-means

}

Clist two clusters from the bisection which

have

the lowest SSE

}Until the desired number of clusters is reached

End

4.1. Dataset

 The experiments will be evaluated on TREC

2003, TREC 2004 and OHSUMED, which are

included in LETOR 3.0 dataset [11]. The

statistics of the datasets from the LETOR 3.0 is

described in table 1.

Table 1. Statistics of the datasets from

LETOR

 Queries Rel: levels features

TREC 2003 350 2 64

TREC 2004 225 2 64

OHSUMED 106 3 45

4.2. Evaluation Measures

 The experimental results will be conducted

using three common IR evaluation measures

supported by LETOR.

(i) Precision

For a given query, its precision of the

top n results of the ranking lists is defined as:

 (4)

(ii) Mean Average Precision(MAP)

Given a query, its average precision can

be computed as follows:

 (5)

where N is the number of retrieved documents

and rel(n) is either 1 or 0, indicating that nth

document is relevant or not to the query. MAP

for a set of queries is the mean of the average

precision scores for each query.

 (6)

where Q is the number of queries.

(iii) Normalized Discounted Cumulative Gain

(NDCG)

For a query, the NDCG of its ranking

list at position m is calculated as follows:

 (7)

where r(j) is the rating of the jth document in the

ranking list, and the normalization constant Zn is

chosen so that the perfect list gets a NDCG score

of 1.

5. Conclusion and Discussion

 In this paper, instead of learning a single

model for all training queries, individual model

is developed for each query group that consists

of the subset of training queries which have the

similar feature for ranking. By using separate

model for each query cluster we can use separate

features and training data for learning the

ranking model for each query cluster. As a result,

useful information of the similar queries can be

applied and avoiding negative effect of dissimilar

ones. So the better ranking performance can be

achieved for each query cluster without hurting

others. On the other hand, the ranking accuracy

of the system depends on how the queries are

clustered and the success of a clustering

application usually depends critically on the

representation of the data. Therefore it is very

important that how the queries are represented.

 PCA constructs a set of uncorrelated

directions that are ordered by their variance. In

many cases, the directions with the most variance

are the most relevant to the clustering. By

applying PCA to represent the query before

clustering, it can be possible that the clustering

quality can be improved and therefore the overall

ranking performance of the system can also be

improved.

References

[1] B. Chris, S. Tal, R. Erin, L. Ari, D. Matt, H.

Nicole, H. Greg , “Learning to rank using Gradient

Descent”, Proceeding of the 22nd International

Conference on Machine learning, Bonn, Germany,

2005.

[2] B. Jiang, L. Xin, L. Fan, Z. Zhaohui, Z. Hongyuan,

“Ranking Specialization for web search: A Divide-

and-Conquer Approach by using Topical RankSVM”,

WWW 2010, Raleigh, North Carolina, USA, April 26-

30.

[3] B.Somnath, D.Avinava , M. Jinesh, C. Soumen,

“Efficient and accurate local learning for ranking”,

copyright 2009 ACM.

[4] C. Zhe, Q. Tao, L.Tie-Yan, T. Ming-Feng, L.Hang,

“Learning to Rank: From Pairwise Approach to

Listwise Approach” , Proceedings of 24th International

Conference on Machine Learning, Corvallis, 2007.

[5] D. Kevin , K. Katrin, “Learning to rank with

partially-labeled data”, SIGIR’08, Singapore , July20–

24,2008.

[6] F. Yoav, I. Raj, E. S. Robert, “an efficient

boosting algorithm for combining preferences”,

Journal of machine learning research 4 (2003) 933-

969.

[7] G.Salton, M.J.McGill, “Introduction to Modern

Information Retrieval”

[8] G. Xiubo, L. Tie-Yan, Q .Tao, “Query Dependent

Ranking Using K-Nearest Neighbor”, SIGR’08,

Singapore, July 20-24, 2008

[9] Jun Xu, Hang Li, “AdaRank: A Boosting

Algorithm for Information Retrieval”, SIGR’07, July

23-27, 2007 ,The Netherlands.

[10] L. Lian-Wang, J. Jung-Yi, W. ChunDer, L. Shie-

Jue, “A Query-Dependent Ranking approach for

search engines”,2009 Second international workshop

on Computer Science and Engineering.

[11] L.Tie-Yan, X.Jun, Q.Tao, X.Wening, L.Hang ,

“LETOR: Benchmark Dataset for Research on

Learning to Rank for Information Retrieval”.

[12] M.Donald, K.Tapas, “Machine Learned Sentence

Selection Strategies for Query-Biased Summarization”

[13] N. Weijian, H. Yalou, X. Maoqiang, “A Query

Dependent Approach to Learning to Rank for

Information Retrieval” , The Ninth International

Conference on Web-Age Information Management,

copyright 2008 IEEE.

[14] T.Yan Liu, “Learning to Rank for Information

Retrieval”, Springer.

