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Abstract 

 

Ranking is a crucial part of information 

retrieval. Queries describe the users’ search 

intent and therefore they play an essential role in 

the context of ranking for information retrieval. 

The diverse feature impacts on ranking relevance 

with respect to different queries. This paper 

tends to consider query difference in learning 

ranking function by clustering the queries where 

each query cluster represents a group of queries 

which have the similar set of important features 

for measuring ranking relevance. The success of 

clustering usually depends on the representation 

of the data. The query features are generated 

based on the ranking features values of query-

document pair and Principal Component 

Analysis (PCA) is used to construct the 

representation of query. To cluster the queries, 

bisecting k-means clustering algorithm is used. 

RankSVM algorithm is used for model 

construction.  

1. Introduction 

 Ranking function is a crucial part of any 

information retrieval system, which orders the 

retrieved documents according to the decreasing 

relevance to the query. Several ranking functions 

emerged including the Boolean model, the vector 

space model [7] and BM25. They have the 

advantage of being fast and produce reasonably 

good results. When more features become 

available, however, incorporating them into these 

models is usually difficult since it requires a 

significant change in the underlying model. 

Recently machine learning techniques have also 

been applied to ranking model construction and 

supervised learning to rank algorithms can help 

overcome that limitation.  

 Learning to rank represents a category of 

effective ranking methods for information 

retrieval (IR) systems. Given training data, in the 

form of a set of queries each associated with a 

search results labeled by relevance degree, 

learning to rank returns a ranking function that 

can be used to order search results for future 

queries. Several methods for learning to rank 

have been developed. Typical methods include 

RankSVM[12], RankBoost[5][6], RankNet[1], 

and some improved methods such as MHR[4], 

AdaRank[9], and ListNet[4].  

 Queries in IR may vary largely in semantics 

and the users’ intentions they represent, in forms 

they appear, and in number of relevant 

documents they have in the document repository. 

For example, queries can be navigational, 

informational or transactional. If one can 

successfully leverage query differences in the 

process of learning to rank, one may have the 

opportunities to achieve better ranking 

performances in both training and test processes 

[14]. 

 So, this paper considers the query diversity in 

ranking by clustering the queries and derive 

separate model for each cluster. 

 The rest of this paper is organized as follows. 

Related work is presented in Section 2. Section 3 

presents the system architecture. In section 4, the 



dataset and evaluation methods that will be used 

to determine the performance of the system are 

described. Finally, section 5 presents conclusion 

of the paper. 

 

2. Related Work 

 

  Jiang Bian et.al[2] proposed the divide 

and conquer approach for ranking specialization. 

They divided the problem of learning one single 

ranking model for all training queries into a set 

of sub-problems for learning multiple models. 

They also proposed global loss function to learn 

multiple ranking models simultaneously. For a 

new query, the ranking result is produced by 

combining the corresponding ranking results of 

the models whose corresponding query topic 

hold the H highest correlation values with that 

new query. 

 Somnath Banejee et.al[3] proposed a local 

learning algorithm based on new similarity 

measure between queries. Firstly, they defined 

the principal components for each query. After 

that, they used an offline method to cluster 

queries base on their proposed similarity measure 

and train a model for each cluster. When a test 

query is entered, they used the model from the 

most similar cluster. 

 Weijian Ni et.al[13] developed a query 

dependent ranking approach. In their approach, 

the ranking model of each query consists of a 

generalizable model and a specific model. 

During the learning stage, the generalizable and 

specific models are learned through using 

structural risk minimization (SRM) inductive 

principle. At the inference stage, for each new 

query, several of the most favorable specific 

models learned from training queries are used to 

generate its adaptable ranking model. 

 Lian-Wang Lee et.al[10], also proposed a 

new framework for query-dependent ranking. 

They generated individual ranking models from 

each training queries. When a new query is 

asked, the retrieved documents of the new query 

are ranking according to their scores given by a 

ranking model which is a weighted combination 

of the models of similar training queries. 

 Xiubo Geng et.al[8] developed query-

dependent ranking by using K-Nearest Neighbor 

(KNN) method. They create a ranking model for 

a given query by using the labeled neighbors of 

the query in the query feature space and then 

rank the documents with respect to the query 

using that model. 

 

3. System Architecture 

 

The system includes preprocessing phase, 

training phase and testing phase. 

Figure.1 shows the architecture of the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. System Architecture 
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3.1. Preprocessing Phase 

 

A query is associated with a list of 

retrieved documents, each of which can be taken 

as an observation about the query. The ranking 

features of query-document pair of (q,di) are 

defined as a feature vector  

  where m is the 

number of ranking features.  

 
Figure 2. Sample Dataset 

Figure 2 shows the sample data of the 

dataset for query 1 and its associated retrieved 

documents. The first attribute describes the 

relevance score of the document. The second 

attribute shows the query id and the remaining 

attributes are the ranking features of the 

document for the query. 

According to the figure, each query is 

represented by its retrieved documents with their 

associated ranking features. In the original 

dataset, each query contains about 1000 retrieved 

documents and so each query is represented with 

1000 records. In order to represent the query 

with only one record, the scores of each ranking 

feature is sorted and used only top-h highest 

scores of each feature in data preprocessing. 

Principal Component Analysis is a standard 

technique for data preprocessing which reduces 

the number of dimensions as much variance as 

possible. The query represent with top-h highest 

scores is applied to PCA. Figure 3 describes the 

processing step of PCA.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Processing Steps of PCA 

The mean value of the feature vectors 

which are produced by PCA is taken as PCA 

based query feature and now each query can be 

represented with one record. After this step both 

the number of dimensions and the number of 

records can be reduced. 

 

3.1. Training Phase 

  

 Training phase consists of clustering module 

and training module. 

 

3.1.2. Clustering Module 

 After the query features are generated, 

bisecting k-means clustering algorithm is applied 

to identify the query clusters. 

 The bisecting k-means algorithm is a 

straight forward extension of the basic k-means 

algorithm that is based on a simple data: to 

obtain k clusters, split the set of all points into 

two clusters, select one of these clusters to split, 

and so on, until k clusters have been produced. 

The main experimental question is, will 

clustering make it easier to locate the best cluster 

from which to use the trained model, and 

whether clustering will smear together queries 

Step 1 : Get the input data ( the query represents 

with top-h highest scores of each feature 

dimension) 

Step 2 : Subtract the mean value from each of the  

data dimension 

Step 3:  Calculate the covariance matrix. 

Step 4 : Calculate the eigenvectors and 

eigenvalues of the covariance matrix 

Step 5 : Choosing components and forming a 

feature vector 

Step 6 : Deriving the new data set 



that are not quite similar enough, so as to reduce 

the efficiency of cluster models for any specific 

test query. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Bisecting k-means Clustering 

Algorithm 

3.1.3. Training Module 

  

 Ranking model for each query is constructed 

by using RankSVM[12]. Ranking SVM is a 

generalization of classical SVM formulation that 

learns over pairwise preferences, rather than 

binary labeled data. Pairwise preferences can 

implicitly encode the structure of ranking 

problems, and therefore learning an SVM over 

such pairwise preferences is typically more 

effective when used for ranking since its 

objective function tends to more in line with 

standard information retrieval metrics, such as 

precision, mean average precision and F1 score, 

which is the harmonic mean of precision and 

recall. 

 Formally, the ranking SVM is formulated as 

a quadratic programming problem that has the 

following form: 

 

 

              (1) 

where w is the weight vector being fit,  is the 

set of pair-wise preferences used for training, and 

C is a tunable parameter that penalizes 

misclassified input pairs. Once a weight vector w 

is learned, we can score the documents for 

unseen queries.  These scores can then be used to 

rank documents.   

 

3.2. Testing Phase 

 

 Testing phase consists of clustering selection 

module and ranking score computing module. 

In cluster selection module, the most 

suitable cluster for the test query is identified by 

finding the closest centric c. To find the closest 

centroid for the test query the system use the 

Euclidian distance. 

 

                    (2) 

 

where x-i is the centroid of ith cluster and 

i=1,2,…k. 

 

    (3) 

 

After the closest cluster is found, the 

system retrieves the model with respect to that 

cluster and computes the ranking scores for the 

test query by using the retrieved model.  

 

4. Dataset and Performance Metric 

 

 The accuracy of the ranking models will be 

evaluated on the LETOR benchmark dataset[11]. 

The evaluation tools provided by LETOR are 

utilized to evaluate the effectiveness of the 

proposed system. 

 

 

 

Begin 

Clist         cluster containing all points 

Repeat 

{ 

    pick a cluster C from Clist 

   for i=1 to num-of-trials 

{ 

    bisect  C using basic K-means 

} 

Clist           two clusters from the bisection which 

have   

the lowest SSE 

}Until the desired number of clusters is reached 

End 



4.1. Dataset 

 

 The experiments will be evaluated on TREC 

2003, TREC 2004 and OHSUMED, which are 

included in LETOR 3.0 dataset [11]. The 

statistics of the datasets from the LETOR 3.0 is 

described in table 1. 

Table 1. Statistics of the datasets from 

LETOR 

 Queries Rel: levels features 

TREC 2003 350 2 64 

TREC 2004 225 2 64 

OHSUMED 106 3 45 

 

 

4.2. Evaluation Measures 

  

 The experimental results will be conducted 

using three common IR evaluation measures 

supported by LETOR. 

 

(i) Precision 

For a given query, its precision of the 

top n results of the ranking lists is defined as: 

 

     (4) 

 

(ii) Mean Average Precision(MAP) 

Given a query, its average precision can 

be computed as follows: 

       (5) 

where N is the number of retrieved documents 

and rel(n) is either 1 or 0, indicating that nth 

document is relevant or not to the query. MAP 

for a set of queries is the mean of the average 

precision scores for each query. 

 

                                       (6) 

 

where Q is the number of queries. 

 

(iii) Normalized Discounted Cumulative Gain   

(NDCG) 

For a query, the NDCG of its ranking 

list at position m is calculated as follows: 

 

                    (7) 

 

where r(j) is the rating of the jth document in the 

ranking list, and the normalization constant Zn is 

chosen so that the perfect list gets a NDCG score 

of 1. 

 

5. Conclusion and Discussion 

 

 In this paper, instead of learning a single 

model for all training queries, individual model 

is developed for each query group that consists 

of the subset of training queries which have the 

similar feature for ranking.  By using separate 

model for each query cluster we can use separate 

features and training data for learning the 

ranking model for each query cluster. As a result, 

useful information of the similar queries can be 

applied and avoiding negative effect of dissimilar 

ones. So the better ranking performance can be 

achieved for each query cluster without hurting 

others. On the other hand, the ranking accuracy 

of the system depends on how the queries are 

clustered and the success of a clustering 

application usually depends critically on the 

representation of the data. Therefore it is very 

important that how the queries are represented.  

 PCA constructs a set of uncorrelated 

directions that are ordered by their variance. In 

many cases, the directions with the most variance 

are the most relevant to the clustering. By 

applying PCA to represent the query before 

clustering, it can be possible that the clustering 



quality can be improved and therefore the overall 

ranking performance of the system can also be 

improved.  
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