
Formalization of Direct Mapping for Relational  

Data to Semantic Web Representation  

Kyawt Kyawt San, Khin Nweni Tun 

kyawtkyawts@gmail.com, knntun@gmail.com 
 

 

Abstract 
 

The Web is one of the most popular and 

richest sources of information. The source of data for 

a Web page is generally a relational database which 

has been recognized as a key factor in generating 

huge amounts of data for semantic web applications. 

Relational databases and the Semantic Web, in 

particular RDF (Resource Description Framework) 

as its main data representation format, are two 

different approaches for modeling and storing data 

permanently. To be accessible data from these 

relational databases, we have to map relational data 

to RDF. In addition, extracting knowledge, 

transforming and understanding data from tables are 

the interesting problems in the areas of databases. 

The problem of mapping databases to RDF has 

received formal attention from the World Wide Web 

Consortium (W3C).  When mapping relational 

databases into RDF, we can choose mappings which 

preserve relational constraints and still use the 

linking capabilities of RDF. Which approach is the 

most appropriate one depends on the kind of 

applications for which a resulting RDF graph is 

assumed to be used. In this approach, in order to 

transform relational data into Semantic Web 

representation, we apply formalization rules to 

complete our mapping process. We also propose a 

rule to handle blank node which is one of the 

problems of RDF data model. Our main aim is to be 

easily accessible relational data content on Semantic 

web. This is the initial approach for transforming 

relational data and schema items into Semantic Web 

representation. 

 

1. Introduction 
 

Most of the world’s data today are still stored 

in relational databases. The success of the Semantic 

Web hinges on developing methods for making 

relational databases accessible to the Semantic Web. 

Relational databases and the Semantic Web, in 

particular RDF as its main data representation format, 

are two different approaches for modeling and storing 

data permanently. The idea of the semantic web is to 

support semantic interoperability between programs 

exchanging data. Resource Description Framework 

(RDF) is considered as the basic for building 

Semantic web applications. The RDF model is a 

graph-based model based on the concept of resources, 

triples and statements. A resource can be anything 

that can be talked about: a web document, a real 

world entity or an abstract concept and is identified by 

a URI (Uniform Resource Identifier). Thus, 

information on web pages can be represented by using 

RDF as a set of so called triples, where each triple 

states a subject-property-object relationship. As each 

such triple can be understood as a directed edge from 

the subject to the object, where the edge is labeled 

with the respective property, instead of a set of triples 

a corresponding RDF graph is considered. Thus, 

exporting data from relational databases to the 

semantic web using RDF basically means to map the 

relational data into an RDF graph.  

 Taking this objective into account, the 

content of a relational database will be made available 

in RDF, either in the form of results from an RDF 

query language like SPARQL or as RDF documents. 

Many different mapping algorithms are used in order 

to fulfill this objective. Choosing the most appropriate 

approach depends on the kind of applications for 

which a resulting RDF graph is assumed to be used. 

Based on the previous research works, we present a 

simple mapping procedure by using formalization 

rules in order to map relational data to RDF 

documents including the blank node structure 

handling. The structure of the paper is as follows. 

Section 2 presents basics of relational data model and 

RDF data model. Basic conversion procedure and a 

simple example are presented in Section 3. In section 

4, we use formalization rules presented in [2] to 

formalize our direct mapping process and propose a 

rule for handling blank node.  Section 5 concludes the 

paper.  

 

2. Relational Data Model and RDF Data 

Model 
 

A relational database consists of tables, 

which consist of tuples or records. Each tuple 

consists of a set of attribute values. A tuple, 

therefore, is comprised of the contents of its 

attributes, just as an RDF node is nothing but the 

confluence of many property arcs. The 

correspondence between RDF and relational 

databases is:   

• A tuple is an RDF subject.  

• An attribute is an RDF predicate.  

• An attribute value is an RDF object. 

 

As compared to the relational data model, 

RDF has gained great interest in both academia and 

industry as an important language in describing graph 

data. RDF is proposed as a simple data model which 



allows anyone to make statements about any resource. 

In RDF, each data entity has a Unique Resource 

Identifier (URI) and each relationship between two 

data entities is described via a triple within which the 

items take the roles of subject (S), predicate (or 

property)(P) and object(O). In order to express such a 

description, RDF uses a number of triples (n3 

notation):  

 

<Subject> <Predicate> <Object>  

The above is equivalent to:  

<Resource> <Property> <Property Value>  

 

This triple is expressed in the form of an 

RDF statement which can easily be represented as a 

directed graph in which a node represents the subject, 

another node for the object and a connecting arc for 

the predicate, directed from the subject node towards 

the object node. Graphical representation of this triple 

can be represented as a graph as shown in Figure. 

 

RDF Data Model 
 

U: set of URIs 

B: set of blank nodes 

L: set of literals 

(s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L) is called an 

RDF triple 

A set of RDF triples is called an RDF graph. 

 

          U 

 

 

 

 

 

 

     U              B                        U       B        L 

 

Figure2.1. Representation of RDF Graph 

 

2.1 Mapping Approaches for RDB2RDF 
 

Despite many efforts helping to realize 

Semantic Web application, the actual semantic web 

still lacks of enough semantic data. Most information 

is still modeled and stored in relational databases and 

thus out of reach for many Semantic Web 

applications. As a consequence, a technology to map 

relational data to the Semantic Web is required, which 

enables the user to create arbitrary mappings to 

Semantic Web ontologies, without having to adopt a 

novel mapping language. Additionally, this mapping 

technique should take the characteristics of relational 

databases into account, particularly data and schema 

evolution, i.e. enable users to access the databases 

transparently using Semantic Web techniques, without 

having to repeat the data translation process every 

time a modification occurs. Using such a technique, a 

user is rapidly able to provide Semantic Web 

applications with semantic rich data, which is actually 

stored in a relational database. Mapping database 

schema directly to RDF is much faster, cheaper and 

usually more suitable for generation of Semantic Web 

content. 

The creation of mappings between RDB and 

RDF can be classified into two categories according   

to the survey of W3C Incubator Group: 

1. Automatic Mapping Generation: In this mapping, 

 A RDB record is a RDF node 

 The column name of a RDB table is a RDF 

predicate 

 A RDB table cell is a value 

In this direct mapping, the database content 

and its SQL schema are directly translated to 

representations in Semantic Web languages i.e. RDF 

and OWL. Although these automatically generated 

mappings often do not capture complex domain 

semantics that are required by many applications, 

these mappings can serve as a useful starting point to 

create more customized, domain-specific mappings. 

 

 

 

 

                                        

 

 

 

 

 

 

 

 

 

Figure2.2. Direct Mapping of a Relational 

Database to the Semantic Web 

 

2. Domain Semantics-driven Mapping Generation: 

This approach generates mappings from RDB to RDF 

by incorporating domain semantics that is often 

implicit or not captured at all in the RDB schema. 

Additionally, a mapping generated by using domain 

semantics also reduces the creation of triples for 

redundant or irrelevant knowledge.  

 
Figure2.3. Relational Database to Ontology 

Mapping 

Semantic Web Query Engine 

Schema Meta 

Data 

Table 

Content 

Mapping Domain 

Ontology 

RDF 

Subject Object 
Predicate 

s

RDF 

Semantic Web Query Engine 

Schema 

MetaDat

a 

T

Table 

Content Translate 

s

SPARQ

L 

SQL 

Local 

Ontology 
genera

te 



Undoubtedly, a default way to translate 

relational databases into RDF (that is, without any 

input from the user on how the relational data should 

be translated) is the use of direct mapping. In this 

approach, we use simple direct mapping method. The 

direct mapping defines an RDF graph representation 

of the data in any relational database. The direct 

mapping takes as input a relational database (data and 

schema) and generates an RDF graph that is called the 

direct graph. 

 

3. Basic Transforming Procedure 
 

The basic process is illustrated in Figure 3.1 

which shows a much simplified version of the 

transformed process. 

PERSON (ID, NAME): ID is the primary key 

 

STUDENT (RNO, DEGREE, ID): RNO is the 

primary key; ID is a foreign key to ID in PERSON 

The following instances are considered 

according to the schema: 

 

Table1. PERSON 

 

ID NAME 

111 Tin Tin 

112 Yi Yi 

113 Mon Mon 

 

 

Table2. STUDENT 

 

RNO DEGREE ID 

1 CS 111 

2 CS 112 

3 CT 113 

 

Interest in transformation of relational data 

into RDF reaches a peak at present, and the W3C has 

recently set up an Incubator Group to work on it. In 

this section, using database instances described above 

basic conversion procedure is shown as follows. 

The subject and property of an RDF triple 

must both be resources with URIs, whilst the object 

may be either a URI or a literal string, If the object is 

a literal, as in the basic translation process described 

above, it automatically becomes a “leaf” node at the 

edge of the RDF graph, as it cannot be a subject node 

without a URI. 

 

(a) 

 

 

 

 

is derived from the database as follows: 

 

(b) 

where the “attribute” is a URI derived directly from 

the database field or column name, and the “value” is 

the content of the field and is represented as a literal 

value as a basic transformation process. Then, we 

have one of the triples from the database instances 

described above: 

 

(c) 

 

 

 

 

 

 

Figure3.1. Simple Transforming from Relational 

Tuples to RDF 

 

The predicate URI is derived by the 

“Column as Predicate” method.  

 

4. Formalization of Direct Mapping to 

Translate Relational Data into RDF 
 

There are two main approaches of exporting 

relational data to Semantic web data like RDF. In the 

first case data are stored in a database like RDF triples 

and there is system, which can query these data 

directly in RDF way. Other approach is when data are 

stored in classic relational schema and there is some 

mapping to RDF. As far as the most of data today are 

stored in classic relational schema, our work is 

focused to the latter approach. The data used for this 

work is based on the University relational database 

schema. The schema of this database is shown below 

and we use this schema throughout this section.  

 

PERSON (ID, NAME): ID is the primary key 

STUDENT (RNO, DEGREE, ID): ROLLNO is the 

primary key; ID is a foreign key to ID in PERSON 

PROFESSOR (ID, TITLE) 

DEPT (CODE, NAME) 

SEMESTER (SNO, YEAR, SESSION)  

COURSE (CNO, TITLE, CODE) 

OFFER (ONO, CNO, SNO, PID, CONO) 

STUDY (ONO, RNO, GRADE): (ONO, RNO) is the 

primary key 

REG (SID, SNO): (SID, SNO) is the primary key. 

 

 We use relational schema and databases 

instances of this schema as input and RDF graph is 

produced as output. We describe how the input is 

specified as shown below and these predicates are 

used to store a relational schema: The problem of 

translating relational data to RDF is solved by using 

formalization rules presented in [2] as follows: 

 

Rel(r): r is a relation name 

Example: Rel(DEPT), Rel(COURSE) 

Attr(a, r ): a is an attribute of relation r 

Example: Rel(ONO,OFFER) 

Subject Object 
Predicate 

row_key Value 
Attribute 

STUDENT#

RNO=1 

Tin Tin 

: name 



PKn (a1, . . . , an, r ): (a1, . . . , an) (n ≥ 1) is a primary 

key in r 

PK1(CODE,DEPT) 

FKn (a1, . . . , an, r , b1, . . . , bn, s): (a1, . . . , an) (n ≥ 

1) is a foreign key in relation r that references to (b1, . 

. . , bn) in relation s  

FK1(RNO, STUDENT, ID, PERSON) 

 

This predicate is used to store the tuples in a 

database instance:  

Value (v, a, t, r): v is the value of attribute a in a 

tuple with identifier t in relation r 

 

Example: The STUDENT table is stored by using the 

following facts: 

Value (1, Rno, t1, Student) 

Value (CS, Degree, t1, Student) 

Value (111,ID, t1, Student) 

Value (2, Rno, t2, Student) 

Value (CS, Degree, t2, Student) 

Value (112, ID, t2, Student) 

Value (3, Rno, t3, Student) 

Value (CT, Degree, t3, Student) 

Value (113, ID, t3, Student) 

 

In the following section, we will show how 

to generate URIs for the RDF resources. 

 

4.1 Generating URIs 

 
In this section, an URI is created for RDF 

instances. Generating suitable URIs for the RDF 

“resources” is one of the key issues. An essential 

component of RDF graphs is URIs. URIs should be 

generated for relations, attributes and tuples. Assume 

given a base URI (http://www.ucsy.edu.mm/). The 

following is the rules for generating URIs for 

relations, attributes and tuples respectively. 

 

(1) URIs for Relations 

 

RelationURI(X, Y) ← Rel(X), Concat2 

(http://www.ucsy.edu.mm//, X, Y) 

Example: http://www.ucsy.edu.mm/PERSON and 

http://www.ucsy.edu.mm/STUDENT 

 

(2)URI s for Attributes 

 

URIs for attributes (n>= 1) 

AttrURIn (X1. . . Xn, Y, Z) ← Rel(Y ),Attr(X1, Y ), . . 

. ,Attr(Xn, Y), 

Concat2+2n (http://www.ucsy.edu.mm/, Y, "#", X1, 

",", X2, ",", . . . , ",", Xn, Z) 

 

Example: 

http://www.usy.edu.mm/Student#Rno,Name, Id is 

generated from relation Student. 

 

(3) URIs for Tuples 

 

URIs for tuples (n ≥ 1): 

TupleID(X, Y, Z) ← Rel(Y),PKn (X1, . . . , Xn, Y ), 

Value(V1, X1, X, Y ), . . . ,Value(Vn, Xn, X, Y ), 

Concat2+4n (http://www.ucsy.edu.mm/,Y,"#", X1, 

"=", V1, ",",X2, "=", V2, . . . , ",", Xn, "=", Vn, Z) 

 

Example: http://www.ucsy.edu.mm/Student#Rno=1 

is generated. 

One extra case is for tuples that does not have a 

primary key. 

HasPK(X) ← PKn (X1,. . ., Xn, X) (n ≥ 1) 

TupleID(X, Y, Z) ← Rel(Y), Value(V, A, X, Y ), 

¬HasPK(X), 

Concat3 (:, Y ,-, X, Z) 

 

Example: If student does not have a primary key, 

then the following blank node would be the identifier 

of tuple t1: 

      -: Student-t1 

 

Blank nodes enable indirect referencing, 

which is close to the human way of thinking, where 

not everything is precisely identified, but rather 

expressed by unspecified words (pronouns) as 

“somebody”, “something” and others. The RDF graph 

generated in the translation process identifies each 

tuple in the source relational database by means of a 

URI. If the tuple contains a primary key, then this 

URI is based on the value of the primary key. If the 

tuple does not contain such a constraint, then a blank 

node is used to identify it in the generated RDF graph. 

 

4.2 Problems with the RDF Data Model 
 

In RDF, there are three types of nodes – URI 

references, blank nodes and literals. URI references 

identify resources, blank nodes represent anonymous 

resources that are not assigned a URI, and literals 

denote values such as numbers or dates. The subject 

of an RDF triple may be a URI reference or a blank 

node, the predicate must be a URI reference, and the 

object may be of all three kinds (URI references, 

literals, blank nodes). When combined together, RDF 

triples form a direct, labeled graph. Subjects and 

objects of RDF triples become nodes in an RDF 

graph, and predicates become arcs connecting them. 

The RDF model is based on a simple idea, 

but it has problems that make it unnecessarily 

complicated, thus decreasing its value. These 

problems can be divided into three categories: 

 the existence of nodes that have no name 

 problems associated with the literals 

 the lack of a unique concept of the node 

We intend to tackle the problem of the 

existence of node that has no name which is known as 

blank node. The difficulty of using bnode is that they 

are blank. This means that sub-graphs cannot be 



straightforwardly linked using them, so each one is 

separate even when they really need to be merged. We 

avoid a lot of error prone work by simply generating 

URIs so that nodes are automatically merged when 

appropriate. In the next section, we briefly describe 

about the blank node. 

 

4.2.1 Blank Nodes 

 
Being part of the RDF specification, blank 

nodes are a core aspect of Semantic Web technology. 

The standard semantics for blank nodes denotes the 

existence of some unnamed resource. Blank nodes 

focus on representing resources which do not have a 

natural URI. A blank node can perform two roles in 

an RDF graph; it can be the object in one RDF 

statement and the subject in another.  

Although adoption of RDF is growing (quite) 

fast, one of its core features—blank nodes—has been 

sometimes misunderstood, sometimes misinterpreted, 

and sometimes ignored by implementers, other 

standards, and the general Semantic Web community. 

This lack of consistency between the standard and its 

actual uses calls for attention. 

Due to the absence of a name (URI), 

manipulating data containing blank nodes is much 

harder – they make otherwise trivial operations far 

more complex. They complicate the lives of data 

consumers, especially if data changes in the future. 

Blank nodes add a lot of complexity to the standards 

built upon them, and the implementations consuming 

them. They are poorly understood and difficult for 

beginners. When graphs are merged, their blank nodes 

must be kept distinct if meaning is to be preserved; 

this may call for re-allocation of blank node 

identifiers. Such blank node identifiers are not part of 

the RDF abstract syntax, and the representation of 

triples containing blank nodes is entirely dependent 

on the particular concrete syntax used. 

 

4.2.2 Our Rule for Handling Blank Nodes 
 

The resource represented by a blank node is 

called an anonymous resource for which a URI or 

literal is not given.  This leads to the difficulties in 

linking subgraphs when they really need to be 

merged. In theory the conversion of RDB to RDF 

process could arrange to merge blank nodes when it 

was certain that the data item was the same, but can 

avoid a lot of errorprone work by simply generating 

URIs instead, so that nodes are automatically merged 

when appropriate. We simply use formalization rules 

presented in [2] to generate URI for blank node in this 

way we avoid the problem in merging sub graphs. We 

simply concatenate our generated URI to blank node. 

 

HasPK(X) ← PKn(X1, . . . , Xn, X) (n ≥ 1) 

 

TupleID(X, Y , Z) ← Rel(Y ),Value(V, A, X, Y ),  

¬HasPK(X), 

Concat3 (http://www.ucsy.edu.mm/, Y, - , X, Z) 

 

If, for example, the table student has no 

primary key, we will simply concatenate the base URI 

with the table name following with the tuple 

identifier. 

 

Example: http://www.ucsy.edu.mm/Student-t1 

When we have all the necessary URIs, we 

have to generate three triples in order to complete our 

mapping process in the following section. 

 

4.3 Generating Triples 
 

Through this section, we use a University 

relational database schema as a running example. We 

adopt Formalization rules presented in [2] to complete 

the conversion process. Three triples are generated 

during the direct mapping process such as: 

 Table triples: For each relation, store the tuples that 

belong to it. 

 Literal triples: For each tuple, store the values in 

each of its attributes 

 Reference triples: Store the references generated by 

foreign keys 

 

(1) Table Triples 

 

Triple(S, rdf:type,O) ← 

Rel(X),Value(V, A, Y , X), 

TupleID(Y , X, S),RelationURI(X,O) 

The following triples are generated for relation 

Student. 

Triple 

(http://www.ucsy.edu.mm/STUDENT#RNO=1,rdf:ty

pe, http://www.ucsy.edu.mm/STUDENT) 

Triple 

(http://www.ucsy.edu.mm/STUDENT#RNO=2,rdf:ty

pe, http://www.ucsy.edu.mm/STUDENT) 

Triple 

(http://www.ucsy.edu.mm/STUDENT#RNO=2,rdf:ty

pe, http://www.ucsy.edu.mm/STUDENT) 

 

(2) Literal Triples 

 

Triple(S, P, O) ← 

Rel(X), Value (O, A, Y , X), 

TupleID(Y, X, S), AttrURI(A, X, P) 

 

The following triples are generated from facts 

Value (1, RNO, t1, STUDENT) and  

Value (CS, DEGREE, t1, STUDENT): 

 

Triple 

(http://www.ucsy.edu.mm/STUDENT#RNO=1, 

http://exa.org/STUDENT#RNO, 1) 

 

Triple 

(http://www.ucsy.edu.mm/STUDENT#RNO=1, 

http://exa.org/STUDENT#DEGREE, CS) 



(3) Reference Triples 

 

This family of rules is used to generate 

reference triples (n ≥ 1): 

Triple(S, P, O) ← 

FKn (X1, . . . , Xn, X, Y1, . . . , Yn, Y), 

Value (V1, X1,U, X), . . . ,Value(Vn, Xn,U, X), 

C(V1), . . . ,C(Vn), Value(V1, Y1,W, Y ), . . . 

,Value(Vn, Yn,W, Y ), TupleID(U, X, S), 

AttrURI(X1, . . . , Xn, X, P),TupleID(W, Y ,O)  

 

Recall that attribute ID is a foreign key in 

relation STUDENT that references the attribute ID in 

relation PERSON. Then from the facts Value (1, 

RNO, t1, STUDENT) and Value (111, ID, t3, 

PERSON), the following triple is generated: 

Triple 

(http://www.ucsy.edu.mm/STUDENT#RNO=1, 

http://www.ucsy.edu.mm/STUDENT#ID, 

http://www.ucsy.edu.mm/PERSON#ID=111) 

That mapping does not depend on the 

schema of the database: it defines a general mapping 

of any relational database structure into RDF; only a 

base URI has to be specified for the database, 

everything else is generated automatically. 

 

5. Conclusion and Future Work 
 

In this paper, we propose the solution to 

tackle the blank node problem in RDF model by 

assigning a URI to blank node and present the 

formalization rules for direct mapping of relational 

data to RDF data. Our main aim is to be easily 

accessible relational data content on Semantic web. 

This is the initial approach for transforming relational 

data and schema items into Semantic Web 

representation. During the mapping process, we take 

relational schema and database instances as input and 

generate an RDF document as output. We adopt this 

mapping as such a mapping from database schema 

directly to RDF is much faster, cheaper and usually 

more suitable for generation of Semantic Web 

content.  

In future, we intend to extend our mapping 

process to handle more complex mapping. 

 

References 

 
[1] “RDF Primer”, W3C Recommendation 10 

February 2004, http://www.w3.org/TR/2004/REC-

rdf-primer-20040210/ 

 [2] A.Marcelo, “Data Exchange in the Relational and 

RDF Worlds”, Pontificia Universidad Cat´olica de 

Chile. 

[3] B.Kate, “Relational Database to RDF Translation 

in the Cultural Heritage Domain”, School of 

Informatics, University of Edinburgh, 

http://www.ltg.ed.ac.uk/ 

[4] F.S.Juan, H.T.Syed, “Direct Mapping  SQL 

Databases to the Semantic  Web: A Survey”. 

[5] K.Madhab,“Retaining Semantics in Relational 

Databases by Mapping them to RDF”, Netaji 

Subhas Institute of Technology, Delhi, India 

[6] M.Alejandro, A.Marcelo, H.Aidan, P.Axel, “ On 

Blank Nodes”, Department of Computer Science, 

Pontificia Universidad Católica de Chile, Chile 

[7] S. Martin, J.Ivan, “Two Layer Mapping from 

Database to RDF”, Czech Technical University, 

Prague, Karlovo namesti 13, 121 35 Praha 2, 

Czech republic 

[8] S.H.Tirmizi, J.Sequeda, D.Miranker, “ Translating 

SQL Applications to the Semantic Web”, 

Department of Computer Sciences, The University 

of Texas at Austin, USA 

[9] S.Leo, “Cool URIs for the Semantic Web”, 

February 2007 

[10] T.Leon, S.Andreea, “Relational Databases and 

Resource Description Framework”, Volume LIV, 

Number 2, 2009 

 


