
A Path Traversal Graph based Web Navigation Patterns Mining

Theint Theint Aye

University of Computer Studies, Mandalay

theinttheintaye.cu@gmail.com

Abstract

 The evolution of World Wide Web as the main

information source for millions of people

nowadays has imposed the need for new methods

and algorithms that are able to process

efficiently the vast amounts of data that reside on

it. In this paper, we propose an efficient mining

approach to discover the web navigation

patterns by employing the concept of the

maximal forward references. We first propose a

path traversal graph construction algorithm

based on a compact graph structure, to record

information about the navigation paths of

website visitors. We then propose a graph

traverse algorithm to discover the frequent web

navigation patterns. The approach is based on

the path traversal graph algorithm to discover

web user navigation patterns for the navigation

patterns mining phase. The proposed system has

been tested on CTI dataset. These results show

frequent navigation patterns that are more

effective for personalized configuration of

dynamic websites.

Keywords: Navigation Pattern Mining, Graph

Construction and Path Traverse

Algorithm, Frequent sequence

1. Introduction

 Given the rapid growth rate of the Web,

proliferation of e-commerce, Web services, and

Web-based information systems, the volumes of

click streams and user data collected by Web-

based organizations in their daily operations have

reached huge proportions. Substantial increase in

the number of Web sites presents a challenging

task for Webmasters to organize the content of

the Web sites to cater user needs.

 Modeling and analyzing Web navigation

behaviors is helpful in understanding the kind of

information in demand by online users [6]. The

analyzed results from Web navigation behaviors

are indispensable knowledge to intelligent online

applications and Web based personalization

system in improving searching accuracy during

information seeking. In the context of Web usage

mining, the discovery of navigation pattern (NP)

usually aims at finding frequent traversal paths

from a web page to another and their co-

occurrence in user sessions [7]. A single web

navigational pattern cannot provide the big

picture of user navigation behavior. It is hard to

predict the navigation paths or user intention by

those separate patterns. Consider the following

scenario on an education website. PH, PF, PCS, PC,

PAA and PDOC represents the web pages of the

“Home page”, “Faculty”, “Computer Science”,

“Course”, “Advanced Algorithms” and the

requested document. Assume that the traditional

web mining approaches discover WTPs: (1) <

PH, PCS, PC, PAA, PDOC >; (2) < PH, PF, PCS>; (3)

< PF, PCS, PC >. It means that the website users

often visit the website from the home page and

go along the paths <PH, PCS, PC, PAA , PDOC> or<

PH, PF, PCS > or the visitors directly link to PF

from other Web pages and then surf the website

along the path < PF, PCS, PC >. The visitors may

be interested in downloading the document PDOC

according to the subpattern of < PCS, PC, PAA,

PDOC > of the first WTP. Therefore, we can

recommend PDOC to the visitors or provide a list

of personalized interesting hyperlinks to the

visitors when they surf the website along the

paths < PH, PCS, PC, PAA, PDOC>, < PH, PF, PCS>,

or < PF, PCS, PC >. Obviously we can provide the

same services if both paths < PH, PCS, PC, PAA,

PDOC> and < PH, PF, PCS, PC, PAA, PDOC> are

found.

 In this paper, we propose a navigation graph

algorithm by using via-links information based

on a compact graph structure. The path traversal

patterns propose in this paper, such as the

aforementioned pattern < PH, PF, PCS, PC, PAA,

PDOC> proves more effective to predict one-step

forward visit to the next Web page. For example,

we can predict that the website user would visit

PCS if he arrives at PF from PH, and then he

would visit PC according to the NP depend on

via-link. However, in the previous scenario, we

can only predict that the visitor would reach PCS

by the fragmental Web access pattern < PH, PF,

PCS > and then we need to search the other Web

access pattern < PF, PCS, PC > for the prediction

of the next visited Web page. Website operators

can efficiently improve the personalized website

structure and modify the contents of the website

according to the navigation patterns.

The rest of this paper is organized as follows:

Section 2 reviews the related work. Section 3

describes the proposed framework and depicts

the system architecture. Section 4 and 5

describes the navigation graph algorithm based

on a compact graph structure and graph traverse

algorithm and finally, Section 6 concludes the

paper.

2. Related Work

 The system briefly describes some

earlier work of frequent sequence mining

techniques. The issue of sequential pattern

mining was first introduced by Agrawal and

Srikant [8], given a set of sequences, where each

sequence consists of a list of itemsets, and given

a user-specified minimum support threshold (min

support), sequential pattern mining is to find all

frequent subsequences whose frequency is no

less than min support.

Compression is mainly used in pattern-

growth tree projection methods, such as FS-

Miner [5], Pei et al.[1, 2], do mention telescoping

of the FS-tree but do not provide any explanation

or illustration of how it was implemented and its

effect on performance. The OAT (Online

Adaptive Traversal), used for mining MFS is

based on a suffix tree [4]. This work relies on a

generalized suffix tree structure that grows

quickly in size, since inserting a sequence into

the suffix tree involves inserting its entire suffix

into the tree. Whenever the size of the tree

reaches the size of the available memory during

tree construction, pruning and compression

techniques are applied to reduce its size in order

to be able to continue the insertion process of the

remaining sequences from the database.

Eirinaki et al. [3] propose a method that

incorporates link analysis (UPR), such as the

page rank measure, into a Markov model in order

to provide Web path recommendations. If this

approach performs directly to navigation graph,

it would be very expensive in computations and

would require more time. Conversely, we do not

need markov synopses to reduce state complexity

from the navigational graph construction process

after creating the NtG graph. We insert only

potential frequent traversal paths by proposed

graph construction algorithm and then frequent

traversal paths pattern is extracted from frequent

navigation graph by traverse algorithm.

3. System Overview

 Generally, Web can be represented as a

directed Web Graph G (V, E), where each node

V represents a web page and each edge E

represents a set of user transitions from one web

page to another. Each step of processing potions

is illustrated in the figure 1.

Figure 1.Navigation Pattern Mining System

3.1. Data Preprocessing

Generally, data pretreatment in Web usage

mining systems aims to reformat the original

Web server log files to identify all user sessions.

The same basic information is client IP address,

request time, requested URL, HTTP status code,

or referrer. An example of web server logs is

depicted in Table 1.

Table 1.Web Server Log

Date/

Time

IP Method URL

2002-04-

01/

00:00:10

192.

168.

151.
1

Get http://www.cs.depaul.ed

u/courses/syllabilist.asp

2002-04-

01/
00:00:26

192.

168.
151.

2

Get http://www.cs.depaul.ed

u/news/news.asp?

Data pretreatment step consists of three

separate phases. Firstly, the raw web log files

must be cleaned to identify users and sessions.

Secondly, individual user is identified according

to different IP. The third step is to transform into

two fields: user id and sequence of page

references browsed by different user.

After preprocessing, we can get a set of n

pages, P= {p1, p2, …, pn}, and a set of m web

transaction patterns WTP={t1, t2, …,tm}, where

each ti ∈ WTP is a subset of P. We don’t allow

duplicate page can be either backward traversal

or the same page can appear more than once in

the same sequence. The web browsing

transaction illustrated in Table 2.

Table 2. Example of Pretreatment Log

UID web browsing transactions

1 a, b, c, d, e

2 a, c, e, f, g, i, k

3 a, c, e, d, f ,h

4 a, d, e, f, i, k

5 a, c, e, f, i, j

3.2. Navigation Pattern Mining

 In the proposed system, user navigation

patterns are described as the common surfing

characteristics among a group of user. Since

many users may have interests at any point

during their navigation, NP should capture the

overlapping interests or the information needs of

the users. In addition, navigation patterns should

also be capable to discriminate web pages based

on the significance in each pattern.

4. Proposed Navigational Graph

Construction Algorithm

The proposed path traversal graph

construction algorithm is depicted in Figure 2.
To avoid scanning databases repeatedly as well

as generating a huge amounts of candidate

sequences, in this paper we propose a graph

traverse approach to discover navigation pattern

Mining Step

Pretreatment Step

Log Cleaning

User identification

Data transformation

Log

File

Frequent Sequence Paths

Navigational Graph

Construction

Navigation Patterns

by using via-links. First, we devise a graph

structure to retain the user navigation

information. The information of Web browsing

sessions is collected in the proposed path

traversal graph. Then, the graph traverse

algorithm is performed on the graph to find

frequent via-link information.

Figure 2. The Graph Construction Algorithm

 In the construction of navigation graph, the

concept of via-links is introduced in this paper to

record the ‘‘from-to-via’’ information in the

proposed graph, which is unique to the mining of

navigation patterns. Therefore, we propose a

novel data structure called navigational graph

consisting of a set of vertices, edges, and via-

links to store the information from Web

browsing sessions. The compact structure of the

path traversal graph can help improve the

efficiency of mining navigation patterns. The

edge, via-link, and path traversal graph are

formally defined as follows.

Definition 1: An edge <v1, v2> in a Navigational

Graph is a Web traversal path from vertex v1 to

vertex v2, where v1 and v2 represent two

connected Web pages. An edge is frequent if the

support of the edge is not less than the minimum

support threshold.

Definition 2: A via-link <v1, v2, v3> in a

navigational graph is a Web traversal path from

vertex v1 to vertex v3 by vertex v2. <v1, v2, v3>

consists of two edges <v1, v2> and <v2, v3>. A

via-link is frequent if its support is not below the

minimum support.

The log files have been preprocessed and

separated into distinct user sessions as shown in

Table 2. While a website visitor is browsing the

Web page v2, we can predict that the visitor will

probably surf the Web page v3 by the frequent

via-link <v1, v2, v3> if he came from v1.

Table 3. The Vertices for path traversal graph

Vertex Edge/ Via-Link

a

<a, b>, <a, c> ,<a, d>

<a, b, c>, <a, c, e> <a, d, e>

b <a, b, c>

c <b, c, d> <a, c, e>

d <c, d, e> <e, d, f>

e <c, e, f> <c, e, d> <d, e, f>

f <e, f, g> <d, f, h>

i <f, i, k> <f, i, j> <g, i, k>

Definition 3: A navigational graph NtG

comprises a set of vertices v1, v2, . . ., vn, a set of

edges (vs, vt) and a set of via-links (vi, vj, vk)

where 1 < s, t, i, j, k < n, s ≠ t, i ≠ j, j ≠ k. A

Algorithm: Graph Construction
Input: A collection of browsing sessions D and the

min-sup ξ

Output: The frequent path traversal graph G
(1) dSize=D.size();

(2) D.size= ∑S€Dlen(s) // the number of session

(3) while (!D.eof()){
(4) s=D.getline(); // s=<v1,v2,..,vn> is a web

browsing session

(5) if (s.size()≥2) {// the length of s is greater than
equal two

(6) for (i=0; i<s.size-1 ; i++){

(7) v1=s[i]; // first vertex
(8) v2=s[i+1]; //second vertex

(9) G.setEdge(v1,v2); // create an edge or increase
(10) }

(11) if (s.size()<n-2){

(12) v3=s[i+2]; // third vertex
(13) G.setVialink (v1,v2,v3);

(14) }

(15) }
(16) else {

(17) dSize--; // discard the path having length less

than two
(18) }

(19) }

(20) while(e=G.getEdge()){ // for each edge e in G
(21) if ((e.getsupport()/dSize) < ξ) // if the

frequency of e is less than ξ

(22) G.removeEdge(e); // delete e from G
(23) }

(24) while(l=G.getViaLink()) { // for each via-link l

in G
(25) if ((l.getsupport()/dSize) < ξ) // if the frequency

of e is less than ξ

(26) G.removeViaLink(l); // delete l from G
(27) }

(28) while ((v=G.getVertex()).isUnconnected()){

(29) G.deleteVertex(v))

(30) }

navigational graph G is frequent if the edges and

via-links contained in G are all frequent.

The path traversal graph is illustrated in

figure 3, corresponding to the five Web browsing

sessions in Table 2 where the notations and

represent edges and via-links respectively. For

simplicity, the edges of the vertices except vertex

a are omitted. Suppose the minimum support is

50%. After all the edges and via-links with

supports below the minimum support are

removed and those vertices unconnected by any

edge or via-link are deleted, the remainder is the

frequent path traversal graph. Each Web

browsing session in D is retrieved and

decomposed into edges and via-links, as shown

in table 3 and then the edges and via-links are

added to the path traversal graph G, as shown in

figure 3(a). The frequent path traversal graph is

shown in figure 3(b).

a

cb

f

c

i

d

h g

j k

a

c

c

i

f

k

d

(a) (b)

edge Via-link

Figure 3. (a) The initial navigational graph,

3(b) The frequent navigational graph

5. Proposed Graph Traverse

Algorithm

In this session, graph traverse algorithm is

presented for discovering the all frequent

traversal paths from navigational graph as shown

in figure 4.

Figure 4. The Graph Traverse Algorithm

We present and analyze the graph traverse

algorithm for mining navigation patterns by

using via-links information. Definition 4

formally defines the navigation pattern.

Definition 4: A pattern P = <v1, v2, . . . , vn> is a

Web navigation pattern composed of one starting

edge <v1, v2> and (n - 2) via-links <v1, v2, v3>,

<v2, v3, v4>,. . ., and <vn_2, vn_1, vn>, where <v1,

Algorithm: Graph Traverse

Input: A frequent path traversal graph G

Output: All navigation patterns

(1) while (v=G.getVertex ()){

(2) G.markUnselected (v);

(3) }

(4) while (l=NP.getViaLink()){// for each via-link l

in all mined

NPs

(5) G.markTraced(l); // mark l untraced

(6) }

(7) while (v=G.getUnselectedVertex()) {

(8) while (e=G.getEdge(v){ // e=<v,u>)

(9) if (G.unTraced(e) &&

!G.LastcomponentVL(e)) {// e is untraced

and not contained in any via-link of v

(10) G.markTraced(e);

(11) NP.initialized();

(12) NP.push_back(e.front())// append v to NP;

(13) G.markselect(v); // mark v selected

(14) }

(15)}

(16) while (l=G.getViaLink(v)){ // l=<p,v,q>

(17) if (G.untraced(l)) { l has not been traced in

stage one

(18) NP.initialized();

(19) NP.push_back(l.middle())

(20) G.markselect(v); // mark v selected

(21) e=l.getBackEdge(); // e=<v, q>

(22) }

(23) }

(24) trace(e,NP);

(25)}

v2>, <v1, v2, v3>,<v2, v3, v4>,. . ., and <vn-2, vn-1,

vn> are all frequent. P' = <vi, vi+1, . .<., vj>,

where 1 ≤ i < j ≤ n, is called a subpattern of P,

denoted by P' P.

Figure 5. The trace() function

The algorithm discovers all frequent NP by

selecting suitable starting edges and traversing

frequent path traversal graph in DFS order. The

function trace() adopts a DFS approach to

traverse the frequent path traversal graph as

shown in figure 5. It uses two stacks for non-

recursive. A data set consists of 20 web browsing

sessions as shown in Table 4.

Table 4. The data set of 20 web browsing

sessions

SID

Web

browsing

session

SID

Web

browsing

session

001 a b c 011 c g j

002 a c 012 c d e

003 a c 013 c g l q

004 a d e f 014 a c g j

005 a c d e g 015 a d e f i j

006 a h 016 c d e f

007 a c d f 017 a c d e

008 a i j k l 018 a

009 a h 019 a b

010 d g 020 c g j l

Table 5. The frequent via-links

Vertex Via-link

c <a, c, d> ,<a, c, g>

d <a, d ,e>, <c, d , f> ,<c, d, e>

e <d, e, f> ,<d, e, g>

f <e, f, i>

g <c, g, j> ,<c, g, l>

i <a, i, j> ,<f , i, j>

j <i, j, k>, <g, j, l>

k <j, k, l>

l <g, l, q>

The via-links are listed in Table 5. For

simplicity, the edges of vertices expect vertex a

are omitted. After edges and via-links with

support below min-sup are removed, the

remainders of frequent via-links are presented.

Those vertices unconnected by any edge or via-

link are deleted, the frequent path traversal graph

remains, as shown in figure 6(a) ,termed the

corresponding initial path traversal graph and

figure 6(b) shows the frequent path traversal

void trace (Edge startE, vector<char> eNP)

(1) UnstracedStack.push(stratE.back());

(2) x=startE.front();

(3) while(!UnstracedStack.empty()) {

(4) countVialink=0;

(5) w=UntracedStack.pop();

(6) eNP.push_back(w);

(7) G.markSelect(w);

(8) e=new Edge(x,w);

(9) While(l.G.getViaLink(w)) {

(10) if((l.getFrontedge()==e)

&&(!eNP.exit(e))){

(11) countViaLink++;

(12) UntracedStack.push(l.back());

(13) G.markTraced(l);

(14)}

(15)}

(16) if(countViaLink>=2) {

(17) for (i=0; i<countviaLink-1; i++)

(18) BacktrackStack.push(eNP.index(w));

(19)}

(20) elseif(countVialink==0){

(21) outpattern<<eNP;

(22) if (!BacktrackStack.empty()) {

(23) index=BacktrackStack.pop();

(24) for(iter=eNP.begin+index;iter<eNP.end()-

2;iter++){

(25) G.unmarkSelected(*iter);

(26)G.unmarkTrack(ViaLink(*iter,*(iter+1),

 *(iter+2)));

(27) }

(28) G.unmarkSelected(*iter,2);

(29) eNP.remove(index+1.eNP.size()-index-1)

(30) w=eNP.back();

(31)}

(32)}

(33) x=w;

(34)}

graph respectively. The contents of

UntracedStack, BacktrackStack, and NPs for all

iterations in the mining processes are illustrated

in figure 7.

a

c d

g e

j f

bh

jq i

l

a

c d

g e

j f

(a) (b)

Figure 6. (a) The initial navigational graph,

6(b) The frequent navigational graph

c g g g g j

d e f

{ }

{ } { } 1 1 1 { } 2

a a

c

a

c

d

a

c

d

e

a

c

d

e

f

a

c

g

a

c

g

j

BacktrackStack

UntracedStack

P1 P2

I1 I11 I16I12 I13 I14 I15

Figure 7. The Mining Process of Navigation

Patterns

The graph traverse algorithm is executed as

follows. In the first iteration I1, the vertex a (the

home page of the website) is picked and attached

to P1. Then, one of the starting edges associated

with vertex a, namely <a, c>, is picked and the

function trace() is called with arguments <a, c>

and P1. In trace(), vertex c is pushed on

UntracedStack and then popped for further

processing in iteration I11.While the vertex c is

popped, it is attached to P1 and its descendent, g

and d, obtained from via-links <a, c, g> and <a,

c, d> are pushed on UntracedStack. Because

there are two successive vertices, the index value

1 of vertex c in P1 is pushed on BacktrackStack

once. Then d is popped and attached to P1 in

iteration I12. Vertex e, the only successor of d, is

pushed on UntracedStack. The following vertices

are pushed and popped on UntracedStack and

attached to P1 as shown in figure 8. As the

vertex f is popped and attached to P1 in iteration

I14, the current Navigation pattern <a, c, d, e, f>

is terminated and a new NP is created by copying

the prefix of the first two vertices in P1. The

index value 1 of prefix vertices to be copied is

recorded on BacktrackStack. Therefore, vertices

a and c in P1 form the prefix of the new NP P2 is

mentioned above. Two navigation patterns for a

data set of 20 web browsing sessions are shown

in table 6.

Table 6. Two navigation patterns identified

from the data set in Table 4.

PID Navigation Pattern

P1 a c d e f

P2 a c g j

Precision is defined as the ratio of mined

Web traversal patterns to all NP. Recall is

defined as the ratio of mined Web traversal

patterns to the Web traversal patterns contained

in the data set. Both equations of the precision

and recall are listed below.

precision
NP ofnumber

NPin WTPofnumber
 (1)

recall
Set Datain WTPofnumber

NPin WTPofnumber
 (2)

6. Conclusion and Future Work

In this paper, two algorithms presented in the

problem of mining Web navigation patterns are

the effectiveness and the efficiency of the mining

approaches. We proposed the path traversal

graph algorithm and then graph traverse

algorithm to increase the efficiency of mining

navigation patterns. The research results show

that navigation patterns are more effective for

personalized configuration of dynamic websites.

In addition, according to web surfing features

and user browsing depth, we improved and

optimized the navigational graph algorithm. In

contrast to existing algorithm, this algorithm

achieves certain effectiveness in improving

prediction accuracy and reducing space

complexity. In the future, we will evaluate and

analyze the performance of our approach by

establishing a unified evaluation model. And we

will combine our algorithm with practical

application in order to adapt actual work better.

References
[1] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U.

Dayal, M. Hsu, “ FreeSpan: frequent pattern-projected

sequential pattern mining”, Proceedings of the Sixth

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Boston, MA,

USA, 2000, pp. 355–359.

[2] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q.

Chen, U. Dayal, M. Hsu, “PrefixSpan: mining

sequential patterns efficiently by prefix-projected

pattern growth”, Proceedings of the 17th International

Conference on Data Engineering, Heidelberg,

Germany, 2001, pp. 215–224.

[3] M. Eirinaki, M. Vazirgiannis, and D. Kapogiannis,

“Web Path Recommendations Based on Page Ranking

and Markov Models,” Proc. Seventh Ann. ACM Int’l

Workshop Web Information and Data Management

(WIDM ’05), pp. 2-9, 2005.

[4] M. S. Chen, J. S. Park, and P. S. Yu. “Efficient

Data Mining for Path Traversal Patterns. Knowledge

and Data Engineering, 10(2):209{221, 1998.

[5] Maged El-Sayed, Carolina Ruiz, Elke A.

Rundensteiner, Web mining and clustering, “ FS-

Miner: efficient and incremental mining of frequent

sequence patterns in web logs”, Proceedings of the 6th

annual ACM international workshop on Web

information and data management, November 2004.

[6] Mehrdad Jalali et al., “WebPUM: A Web-based

recommendation system to predict user future

movements”,Expert Systems with Applications 37

(2010) 6201–6212.

[7] Mobasher, B., Cooley, R., & Srivastava, J. (2000).

“Automatic personalization based on Web usage

mining”, Communications of the ACM, 43(8), 142–

151.

[8] R. Agrawal and R. Srikant, Mining Sequential

Patterns, Proc. 1995 Int’l Conf. Data Eng. (ICDE ’95),

pp.3-14, Mar. 1995.

