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Abstract 

 

 The evolution of World Wide Web as the main 

information source for millions of people 

nowadays has imposed the need for new methods 

and algorithms that are able to process 

efficiently the vast amounts of data that reside on 

it.  In this paper, we propose an efficient mining 

approach to discover the web navigation 

patterns by employing the concept of the 

maximal forward references. We first propose a 

path traversal graph construction algorithm 

based on a compact graph structure, to record 

information about the navigation paths of 

website visitors. We then propose a graph 

traverse algorithm to discover the frequent web 

navigation patterns. The approach is based on 

the path traversal graph algorithm to discover 

web user navigation patterns for the navigation 

patterns mining phase. The proposed system has 

been tested on CTI dataset. These results show 

frequent navigation patterns that are more 

effective for personalized configuration of 

dynamic websites. 
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1. Introduction 

 Given the rapid growth rate of the Web, 

proliferation of e-commerce, Web services, and 

Web-based information systems, the volumes of 

click streams and user data collected by Web-

based organizations in their daily operations have 

reached huge proportions. Substantial increase in 

the number of Web sites presents a challenging 

task for Webmasters to organize the content of 

the Web sites to cater user needs. 

 Modeling and analyzing Web navigation 

behaviors is helpful in understanding the kind of 

information in demand by online users [6]. The 

analyzed results from Web navigation behaviors 

are indispensable knowledge to intelligent online 

applications and Web based personalization 

system in improving searching accuracy during 

information seeking. In the context of Web usage 

mining, the discovery of navigation pattern (NP) 

usually aims at finding frequent traversal paths 

from a web page to another and their co-

occurrence in user sessions [7]. A single web 

navigational pattern cannot provide the big 

picture of user navigation behavior. It is hard to 

predict the navigation paths or user intention by 

those separate patterns. Consider the following 

scenario on an education website. PH, PF, PCS, PC, 

PAA  and  PDOC represents the web pages of the 

“Home page”, “Faculty”, “Computer Science”, 

“Course”, “Advanced Algorithms” and the 

requested document. Assume that the traditional 

web mining approaches discover WTPs: (1) < 

PH,   PCS, PC, PAA, PDOC >; (2) < PH, PF, PCS>; (3) 

< PF, PCS, PC >. It means that the website users 

often visit the website from the home page and 

go along the paths <PH, PCS, PC, PAA , PDOC> or< 

PH, PF, PCS > or the visitors directly link to PF 

from other Web pages and then surf the website 

along the path < PF, PCS, PC >. The visitors may 

be interested in downloading the document PDOC 

according to the subpattern of < PCS, PC, PAA, 

PDOC > of the first WTP. Therefore, we can 

recommend PDOC to the visitors or provide a list 



of personalized interesting hyperlinks to the 

visitors when they surf the website along the 

paths < PH,   PCS, PC, PAA, PDOC>, < PH, PF, PCS>, 

or < PF, PCS, PC >. Obviously we can provide the 

same services if both paths < PH, PCS, PC, PAA, 

PDOC> and < PH, PF, PCS, PC, PAA, PDOC> are 

found.  

 In this paper, we propose a navigation graph 

algorithm by using via-links information based 

on a compact graph structure.  The path traversal 

patterns propose in this paper, such as the 

aforementioned pattern < PH, PF, PCS, PC, PAA, 

PDOC> proves more effective to predict one-step 

forward visit to the next Web page. For example, 

we can predict that the website user would visit 

PCS if he arrives at PF from PH, and then he 

would visit PC according to the NP depend on 

via-link. However, in the previous scenario, we 

can only predict that the visitor would reach PCS 

by the fragmental Web access pattern < PH, PF, 

PCS > and then we need to search the other Web 

access pattern < PF, PCS, PC > for the prediction 

of the next visited Web page. Website operators 

can efficiently improve the personalized website 

structure and modify the contents of the website 

according to the navigation patterns. 

The rest of this paper is organized as follows: 

Section 2 reviews the related work. Section 3 

describes the proposed framework and depicts 

the system architecture. Section 4 and 5 

describes the navigation graph algorithm based 

on a compact graph structure and graph traverse 

algorithm and finally, Section 6 concludes the 

paper. 

2.  Related Work 

 The system briefly describes some 

earlier work of frequent sequence mining 

techniques. The issue of sequential pattern 

mining was first introduced by Agrawal and 

Srikant [8], given a set of sequences, where each 

sequence consists of a list of itemsets, and given 

a user-specified minimum support threshold (min 

support), sequential pattern mining is to find all 

frequent subsequences whose frequency is no 

less than min support. 

Compression is mainly used in pattern-

growth tree projection methods, such as FS-

Miner [5], Pei et al.[1, 2], do mention telescoping 

of the FS-tree but do not provide any explanation 

or illustration of how it was implemented and its 

effect on performance. The OAT (Online 

Adaptive Traversal), used for mining MFS is 

based on a suffix tree [4]. This work relies on a 

generalized suffix tree structure that grows 

quickly in size, since inserting a sequence into 

the suffix tree involves inserting its entire suffix 

into the tree. Whenever the size of the tree 

reaches the size of the available memory during 

tree construction, pruning and compression 

techniques are applied to reduce its size in order 

to be able to continue the insertion process of the 

remaining sequences from the database. 

Eirinaki et al. [3] propose a method that 

incorporates link analysis (UPR), such as the 

page rank measure, into a Markov model in order 

to provide Web path recommendations. If this 

approach performs directly to navigation graph, 

it would be very expensive in computations and 

would require more time. Conversely, we do not 

need markov synopses to reduce state complexity 

from the navigational graph construction process 

after creating the NtG graph. We insert only 

potential frequent traversal paths by proposed 

graph construction algorithm and then frequent 

traversal paths pattern is extracted from frequent 

navigation graph by traverse algorithm. 

3. System Overview 

 Generally, Web can be represented as a 

directed Web Graph G (V, E), where each node 

V represents a web page and each edge E 

represents a set of user transitions from one web 



page to another. Each step of processing potions 

is illustrated in the figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.Navigation Pattern Mining System 

3.1. Data Preprocessing 

Generally, data pretreatment in Web usage 

mining systems aims to reformat the original 

Web server log files to identify all user sessions. 

The same basic information is client IP address, 

request time, requested URL, HTTP status code, 

or referrer. An example of web server logs is 

depicted in Table 1.  

Table 1.Web Server Log 

Date/ 

Time 

IP Method URL 

2002-04-

01/ 

00:00:10 

192.

168.

151.
1 

Get http://www.cs.depaul.ed

u/courses/syllabilist.asp 

 

2002-04-

01/ 
00:00:26 

192.

168.
151.

2 

Get http://www.cs.depaul.ed

u/news/news.asp? 

 

Data pretreatment step consists of three 

separate phases. Firstly, the raw web log files 

must be cleaned to identify users and sessions. 

Secondly, individual user is identified according 

to different IP. The third step is to transform into 

two fields: user id and sequence of page 

references browsed by different user.  

After preprocessing, we can get a set of n 

pages, P= {p1, p2,  …, pn}, and a set of m web 

transaction patterns WTP={t1, t2, …,tm}, where 

each ti ∈ WTP is a subset of P. We don’t allow 

duplicate page can be either backward traversal 

or the same page can appear more than once in 

the same sequence. The web browsing 

transaction illustrated in Table 2. 

  

Table 2. Example of Pretreatment Log 

UID web browsing transactions 

1 a, b, c, d, e 

2 a, c, e, f, g, i, k 

3 a, c, e, d, f ,h  

4 a, d, e, f, i, k 

5 a, c, e,  f, i, j 

3.2. Navigation Pattern Mining  

 In the proposed system, user navigation 

patterns are described as the common surfing 

characteristics among a group of user. Since 

many users may have interests at any point 

during their navigation, NP should capture the 

overlapping interests or the information needs of 

the users. In addition, navigation patterns should 

also be capable to discriminate web pages based 

on the significance in each pattern. 

 

4. Proposed Navigational Graph 

Construction Algorithm 
 

The proposed path traversal graph 

construction algorithm is depicted in Figure 2. 
To avoid scanning databases repeatedly as well 

as generating a huge amounts of candidate 

sequences, in this paper we propose a graph 

traverse approach to discover navigation pattern 

Mining Step 

Pretreatment Step 

  
Log Cleaning 

User identification  

Data transformation 

  
 

Log 

File 

Frequent Sequence Paths 

Navigational Graph 

Construction 

Navigation Patterns 



by using via-links.  First, we devise a graph 

structure to retain the user navigation 

information.  The information of Web browsing 

sessions is collected in the proposed path 

traversal graph. Then, the graph traverse 

algorithm is performed on the graph to find 

frequent via-link information. 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Graph Construction Algorithm 

 

 In the construction of navigation graph, the 

concept of via-links is introduced in this paper to 

record the ‘‘from-to-via’’ information in the 

proposed graph, which is unique to the mining of 

navigation patterns. Therefore, we propose a 

novel data structure called navigational graph 

consisting of a set of vertices, edges, and via-

links to store the information from Web 

browsing sessions. The compact structure of the 

path traversal graph can help improve the 

efficiency of mining navigation patterns. The 

edge, via-link, and path traversal graph are 

formally defined as follows. 

Definition 1: An edge <v1, v2> in a Navigational 

Graph is a Web traversal path from vertex v1 to 

vertex v2, where v1 and v2 represent two 

connected Web pages. An edge is frequent if the 

support of the edge is not less than the minimum 

support threshold. 

Definition 2: A via-link <v1, v2, v3> in a 

navigational graph is a Web traversal path from 

vertex v1 to vertex v3 by vertex v2. <v1, v2, v3> 

consists of two edges <v1, v2> and <v2, v3>. A 

via-link is frequent if its support is not below the 

minimum support.  

The log files have been preprocessed and 

separated into distinct user sessions as shown in 

Table 2. While a website visitor is browsing the 

Web page v2, we can predict that the visitor will 

probably surf the Web page v3 by the frequent 

via-link <v1, v2, v3> if he came from v1. 

 

Table 3. The Vertices for path traversal graph 

Vertex Edge/ Via-Link 

a 

 

<a, b>, <a, c> ,<a, d> 

<a, b, c>, <a, c, e> <a, d, e> 

b <a, b, c> 

c <b, c, d> <a, c, e> 

d <c, d, e> <e, d, f> 

e <c, e, f> <c, e, d> <d, e, f> 

f <e, f, g> <d, f, h> 

i <f, i, k> <f, i, j> <g, i, k> 

 

Definition  3: A  navigational graph NtG 

comprises a set of vertices v1, v2, . . ., vn, a set of 

edges ( vs, vt) and a set of via-links (vi, vj, vk) 

where 1 < s, t, i, j, k < n, s ≠ t, i ≠ j, j ≠ k. A 

Algorithm: Graph Construction  
Input: A collection of browsing sessions D and the 

min-sup ξ 

Output: The frequent path traversal graph G 
(1) dSize=D.size();  

(2) D.size= ∑S€Dlen(s)  //   the number of session 

(3)  while (!D.eof()){ 
(4)  s=D.getline(); // s=<v1,v2,..,vn> is a web 

browsing session 

(5)  if (s.size()≥2) {// the length of s is  greater than  
equal two  

(6)   for (i=0; i<s.size-1 ; i++){ 

(7) v1=s[i]; // first vertex 
(8)      v2=s[i+1]; //second vertex 

(9)  G.setEdge(v1,v2); // create an edge  or  increase  
(10)   } 

(11) if (s.size()<n-2){ 

(12) v3=s[i+2]; // third vertex 
(13) G.setVialink (v1,v2,v3); 

(14) } 

(15)         }       
(16)    else { 

(17) dSize--; // discard the path having length less 

than two 
(18) } 

(19)     } 

(20)  while( e=G.getEdge( )){ // for each edge e in G 
(21)    if ((e.getsupport( )/dSize) < ξ  ) // if the 

frequency of e is less than ξ 

(22)        G.removeEdge(e); // delete e from G 
(23)    } 

(24)  while( l=G.getViaLink()) { // for each via-link l 

in G 
(25)  if ((l.getsupport()/dSize) < ξ ) // if the frequency 

of e is less than ξ 

(26)        G.removeViaLink(l); // delete l from G 
(27)    } 

(28)  while (( v=G.getVertex()).isUnconnected( )){ 

(29)     G.deleteVertex(v)) 

(30) } 



navigational graph G is frequent if the edges and 

via-links contained in G are all frequent. 

The path traversal graph is illustrated in 

figure 3, corresponding to the five Web browsing 

sessions in Table 2 where the notations and 

represent edges and via-links respectively. For 

simplicity, the edges of the vertices except vertex 

a are omitted. Suppose the minimum support is 

50%. After all the edges and via-links with 

supports below the minimum support are 

removed and those vertices unconnected by any 

edge or via-link are deleted, the remainder is the 

frequent path traversal graph. Each Web 

browsing session in D is retrieved and 

decomposed into edges and via-links, as shown 

in table 3 and then the edges and via-links are 

added to the path traversal graph G, as shown in 

figure 3(a). The frequent path traversal graph is 

shown in figure 3(b). 

a

cb

f

c

i

d

h g

j k

a

c

c

i

f

k

d

(a) (b)

edge Via-link

Figure 3. (a) The initial navigational graph, 

3(b) The frequent navigational graph 

5. Proposed Graph Traverse 

Algorithm 

In this session, graph traverse algorithm is 

presented for discovering the all frequent 

traversal paths from navigational graph as shown 

in figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  The Graph Traverse Algorithm 

We present and analyze the graph traverse 

algorithm for mining navigation patterns by 

using via-links information. Definition 4 

formally defines the navigation pattern. 

Definition 4: A pattern P = <v1, v2, . . . , vn> is a 

Web navigation pattern composed of one starting 

edge <v1, v2> and (n - 2) via-links <v1, v2, v3>, 

<v2, v3, v4>,. . ., and <vn_2, vn_1, vn>, where <v1, 

Algorithm: Graph Traverse 

Input: A frequent path traversal graph G 

Output: All navigation patterns 

(1) while (v=G.getVertex ( )){  

(2) G.markUnselected (v);    

(3)   } 

(4) while (l=NP.getViaLink()){// for each via-link l 

in all mined 

NPs 

(5)    G.markTraced(l); // mark l untraced 

(6)  } 

(7) while (v=G.getUnselectedVertex( )) { 

(8) while (e=G.getEdge(v){ // e=<v,u>) 

(9) if (G.unTraced(e) && 

!G.LastcomponentVL(e)) {// e is untraced 

and not contained in any via-link of v 

(10)     G.markTraced(e);  

(11)    NP.initialized( ); 

(12)     NP.push_back(e.front( ))// append v to NP; 

(13)     G.markselect(v); // mark v selected 

(14)   } 

(15)} 

(16) while (l=G.getViaLink(v)){ // l=<p,v,q> 

(17) if (G.untraced(l)) { l has not been traced in 

stage one 

(18)      NP.initialized( ); 

(19)      NP.push_back(l.middle( )) 

(20)       G.markselect(v); // mark v selected 

(21)       e=l.getBackEdge(); // e=<v, q>  

(22)    } 

(23)  } 

(24)  trace(e,NP); 

(25)} 



v2>, <v1, v2, v3>,<v2, v3, v4>,. . ., and <vn-2, vn-1, 

vn> are all frequent. P' = <vi, vi+1, . .<., vj>, 

where 1 ≤ i < j ≤ n, is called a subpattern of P, 

denoted by P' P. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The trace() function 

The algorithm discovers all frequent NP by 

selecting suitable starting edges and traversing 

frequent path traversal graph in DFS order. The 

function trace() adopts a DFS approach to 

traverse the frequent path traversal graph as 

shown in figure 5. It uses two stacks for non-

recursive. A data set consists of 20 web browsing 

sessions as shown in Table 4. 

Table 4. The data set of 20 web browsing 

sessions 

SID 

Web 

browsing 

session 

SID 

Web 

browsing 

session 

001 a b c 011 c g  j 

002 a c 012 c d e 

003 a c 013 c g l q 

004 a  d e f 014 a c g j 

005 a c d e g 015 a d e f i j 

006 a h 016 c d e f  

007 a c d f  017 a c d e 

008 a i j k l 018 a 

009 a  h 019 a b 

010 d g 020 c g j l 

 

Table 5. The frequent via-links 

Vertex Via-link 

c <a, c, d> ,<a, c, g> 

d <a, d ,e>, <c, d , f> ,<c, d, e> 

e <d, e, f> ,<d, e, g> 

f <e, f, i> 

g <c, g, j> ,<c, g, l> 

i <a, i, j> ,<f , i, j> 

j <i, j, k>, <g, j, l> 

k <j, k, l> 

l <g, l, q> 

The via-links are listed in Table 5. For 

simplicity, the edges of vertices expect vertex a 

are omitted. After edges and via-links with 

support below min-sup are removed, the 

remainders of frequent via-links are presented. 

Those vertices unconnected by any edge or via-

link are deleted, the frequent path traversal graph 

remains, as shown in figure 6(a) ,termed the 

corresponding initial path traversal graph and 

figure 6(b) shows the frequent path traversal 

void trace (Edge startE, vector<char> eNP) 

(1)  UnstracedStack.push(stratE.back()); 

(2)  x=startE.front(); 

(3)  while(!UnstracedStack.empty()) { 

(4) countVialink=0; 

(5) w=UntracedStack.pop( ); 

(6) eNP.push_back(w); 

(7) G.markSelect(w); 

(8) e=new Edge(x,w); 

(9) While(l.G.getViaLink(w)) { 

(10) if((l.getFrontedge( )==e) 

&&(!eNP.exit(e))){ 

(11) countViaLink++; 

(12) UntracedStack.push(l.back()); 

(13) G.markTraced(l); 

(14)} 

(15)} 

(16) if(countViaLink>=2) { 

(17)  for (i=0; i<countviaLink-1; i++) 

(18) BacktrackStack.push(eNP.index(w)); 

(19)} 

(20) elseif(countVialink==0){ 

(21) outpattern<<eNP; 

(22)  if (!BacktrackStack.empty()) { 

(23) index=BacktrackStack.pop(); 

(24) for(iter=eNP.begin+index;iter<eNP.end()-

2;iter++){ 

(25) G.unmarkSelected(*iter); 

(26)G.unmarkTrack(ViaLink(*iter,*(iter+1), 

    *(iter+2))); 

(27) } 

(28) G.unmarkSelected(*iter,2); 

(29) eNP.remove(index+1.eNP.size()-index-1) 

(30)  w=eNP.back(); 

(31)} 

(32)} 

(33)  x=w; 

(34)} 



graph respectively. The contents of 

UntracedStack, BacktrackStack, and NPs for all 

iterations in the mining processes are illustrated 

in figure 7. 
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Figure 6. (a) The initial navigational graph,          

6(b) The frequent navigational graph 
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Figure 7. The Mining Process of Navigation 

Patterns 

The graph traverse algorithm is executed as 

follows. In the first iteration I1, the vertex a (the 

home page of the website) is picked and attached 

to P1. Then, one of the starting edges associated 

with vertex a, namely <a, c>, is picked and the 

function trace() is called with arguments <a, c> 

and P1. In trace(), vertex c is pushed on 

UntracedStack and then popped for further 

processing in iteration I11.While the vertex c is 

popped, it is attached to P1 and its descendent, g 

and d, obtained from via-links <a, c, g> and <a, 

c, d> are pushed on UntracedStack. Because 

there are two successive vertices, the index value 

1 of vertex c in P1 is pushed on BacktrackStack 

once. Then d is popped and attached to P1 in 

iteration I12. Vertex e, the only successor of d, is 

pushed on UntracedStack. The following vertices 

are pushed and popped on UntracedStack and 

attached to P1 as shown in figure 8. As the 

vertex f is popped and attached to P1 in iteration 

I14, the current Navigation pattern <a, c, d, e, f> 

is terminated and a new NP is created by copying 

the prefix of the first two vertices in P1. The 

index value 1 of prefix vertices to be copied is 

recorded on BacktrackStack. Therefore, vertices 

a and c in P1 form the prefix of the new NP P2 is 

mentioned above. Two navigation patterns for a 

data set of 20 web browsing sessions are shown 

in table 6. 

Table 6. Two navigation patterns identified 

from the data set in Table 4. 

PID  Navigation Pattern 

P1 a c d e f 

P2 a c g j 

 

Precision is defined as the ratio of mined 

Web traversal patterns to all NP. Recall is 

defined as the ratio of mined Web traversal 

patterns to the Web traversal patterns contained 

in the data set. Both equations of the precision 

and recall are listed below.  

precision  
NP ofnumber 

NPin   WTPofnumber 
      (1) 



recall
Set Datain   WTPofnumber 

NPin   WTPofnumber 
     (2) 

6. Conclusion and Future Work 

In this paper, two algorithms presented in the 

problem of mining Web navigation patterns are 

the effectiveness and the efficiency of the mining 

approaches. We proposed the path traversal 

graph algorithm and then graph traverse 

algorithm to increase the efficiency of mining 

navigation patterns. The research results show 

that navigation patterns are more effective for 

personalized configuration of dynamic websites. 

In addition, according to web surfing features 

and user browsing depth, we improved and 

optimized the navigational graph algorithm.  In 

contrast to existing algorithm, this algorithm 

achieves certain effectiveness in improving 

prediction accuracy and reducing space 

complexity. In the future, we will evaluate and 

analyze the performance of our approach by 

establishing a unified evaluation model. And we 

will combine our algorithm with practical 

application in order to adapt actual work better. 
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