
Dynamic Containment Based Binary String Labeling Approach

For XML Tree

Nyein Nyein Ei

University of Computer Studies, Mandalay

nyeinnyeinei@gmail.com

Abstract

The labeling scheme is used to label the nodes of

an XML tree. Based on the labeling scheme,

XML queries can be processed without accessing

the original XML document. One more important

point for the labeling scheme is to process

updates when nodes are inserted into or deleted

from the XML tree. In this paper, we propose a

node labeling scheme that solves the weak points

of the prefix, prime, interval and containment

based schemes by supporting efficient insert

processing. The weak points of previous

schemes are re-labeling when subtree or node

insert to XML tree, a large number of nodes that

need to be relabeled in the case of an insertion of

XML data, and inefficient processing of

structural joins. To address this weak point,

dynamic containment based binary string

labeling approach for XML tree is proposed in

this paper. This scheme uses containment based

binary string for label dynamic XML tree and

concatenation of binary string and character

sequences for label insertion XML subtree.

1. Introduction

Extensible Markup Language (XML)

nowadays is one of the most important standard

media used for exchanging and representing data

through the Internet. As for the labeling schemes,

if XML is dynamic, how to efficiently update the

labels of the labeling schemes is now becoming

an important research topic [4, 5, 6]. This

research can process the updates (inserts or

deletes nodes) efficiently if the order of XML

elements is not taken into consideration.

The method of assigning labels to the nodes

of an XML tree is called a node labeling (or

numbering) scheme. Based on the labels only,

both ordered and un-ordered queries can be

processed without accessing the original XML

file. The core issue for XML query is to

efficiently determine the following four basic

relationships: ancestor-descendant (A-D), parent-

child (P-C), sibling and ordering relationships.

The existing node labeling schemes, i.e.

containment, prefix and prime number schemes,

are not efficient to determine all the four basic

relationships. For instance, the containment

scheme is very inefficient to determine the

sibling relationship; it needs to search the parent

of a node, and then decide whether another node

is a child of this parent; the search of the parent

needs a lot of parent-child relationship

determinations which is very expensive. The

prefix scheme is efficient to determine all the

four basic relationships if the XML tree is

shallow, however when the XML tree becomes

deeper, the prefix scheme becomes not efficient

because the labels of the prefix scheme become

longer and the comparisons of node labels

become expensive. The prime number scheme

has very large label size and it employs the

modular and division operations to determine the

relationship which is expensive.

It is very important to maintain the document

order when XML is updated; otherwise some

semantics of XML will be lost and the ordered

queries cannot be answered. It is very important

to maintain the document order when XML is

updated. All the existing node labeling schemes,

i.e. containment, prefix and prime number

schemes, have high update cost. The main

contributions of this paper is the new scheme

which does not need re-label any existing nodes

and re-calculate any values when inserting an

order-sensitive node into the XML tree.

The rest of the paper is organized as follows.

Section 2 reviews related work. Section 3

describes theory background, while Section 4

discusses proposed system architecture and then

concludes the paper.

2. Related Works

To support efficient XML query processing,

several node labeling schemes in the XML data

tree were proposed. Several algorithms and index

structures using these schemes for XML query

processing have been studied.

Cohen et al presented algorithms to label the

nodes of an XML tree which was subject to

insertion and deletions of nodes. They labeled

each node immediately when it was inserted and

this label remained unchanged and from a pair of

labels alone, they could decide whether one node

is an ancestor of the other. They proved that their

algorithm assign the shortest possible label

which satisfy these requirements. They presented

algorithms that used the nearly close nodes to

assign shorter labels. They also proved that the

length of their labels was close to the minimum

possible [1].

OrdPath [7] is similar to DeweyID, but it only

uses the odd numbers at the initial labeling.

When an XML tree is updated, it uses the even

number between two odd numbers to concatenate

another odd. OrdPath wastes half of the total

numbers. The query performance of OrdPath is

worse since it needs more time to decide the

prefix levels based on the even and odd numbers.

Wu et al. [10] proposed an approach to label

XML trees with prime numbers shows Prime, in

which the number above each node is the

document order, the label is at the right side of

each node, and the two numbers below each

label are its parent_label and self_label. The root

node is labeled with “1” (integer). Then based on

a top-down approach, each node is given a

unique prime number (self_label) and the label

of each node is the product of its parent node’s

label (parent_label) and its own self_label.

Agrawal et al [9] use a numbering scheme in

which every node is assigned two variables:

“start” and “end”. The insertion of a node may

lead to a re-labeling of all the nodes of the tree.

This problem may be alleviated if we increase

the interval size with some values unused.

However, it is not so easy to decide how large

the interval size should be. Small interval size is

easy to lead to re-labeling, while large interval

size wastes a lot of values which causes the

increase of storage.

They proposed the nested tree structure that

eliminates the disadvantages and takes advantage

of the previous node labeling schemes. The

nested tree structure makes it possible to use the

dynamic interval-based labeling scheme, which

supports XML data updates with almost no node

relabeling as well as efficient structural join

processing. Experimental results show that their

approach is efficient in handling updates with the

interval-based labeling scheme and also

significantly improves the performance of the

structural join processing compared with recent

methods. But their proposed algorithm could be

more complex because of computation of space

between start and end position. And their system

is not fair to insert internal node in XML tree

structure [11].

3. Theoretical Background

3.1. eXtensible Markup Language(XML)

XML is a set of rules for encoding documents

in machine-readable form [12].The eXtensible

Markup Language (XML) is a representation

language as well as an exchange language. In the

definition of XML, one element is allowed to

refer to another; therefore theoretically an XML

is a graph [13]. However for simplicity process

queries over XML data those conform to an

ordered tree-structured data model. With the tree

model, data objects, e.g. elements, attributes, text

data, etc., are modeled as the nodes of a tree, and

relationships are modeled as the edges to connect

the nodes of the tree. Without loss of generality,

all queries are based on the ordered tree

structured representation of XML data.

3.2. Labeling Schemes

Most node labeling schemes are based on the

node-labeled data model. In a node-labeled data

tree; there are two main objects, namely, nodes

and edges. Nodes can be further classified into

(1) Element Node (2) Attribute Node and (3)

Value Node. Element Nodes correspond to the

tags in the XML document, such as book, title,

and chapter and so on. The Attribute Nodes and

Value Nodes each correspond to attributes and

data values in the XML document, such as the

attribute 'id' under the book elements and the

value 'XML Overview' between the title opening

and closing tags respectively.

 Labeling schemes have been developed to

optimize query retrieval, since they provide a

quick way to determine the type of relationships

that are present among the nodes. According to

[2], a labeling scheme for a document tree D is a

decentralized structural summary of a specific set

of tree relations in D. Each node in D is assigned

a typically unique node label, so that any of these

relations between the nodes in D can be inferred

from their labels, without access to remote parts

of D or to a global representation of the entire

document tree. Edges in XML data trees

represent structural relationships between data

nodes. To answer XML queries, structural

relationships, or more specifically reachability

between any pair of nodes in XML data trees is

compared. For example, in order to answer a

path query 'A//B', given any pair of A-tagged

node and B-tagged node, say (a, b), in a data

tree, we need to determine whether there exists a

path from a to b.

3.2.1. Subtree Labeling

 This category is the simplest, where the label

of a given document node v in D encodes the

position and the extent of the subtree Dv of D that

is rooted in v, by means of offsets in the

sequence of nodes resulting from traversing (at

least a part of) the document tree in a specific

order [2]. While the exact representation of the

subtrees varies accordingly, for the given nodes

v, w in D, their Ascendant-Descendent and

Parent-Child relationships are always determined

by testing whether Dv contains Dw. The label of a

node is usually concise in this group of labeling

scheme. Nevertheless, performance degrades in

an update intensive environment, as the labels

usually need to be regenerated. The subtree

labeling can be further broken down into three

subclasses: interval encoding, containment

encoding and region encoding. We will use

containment encoding.

3.3. Binary String

In this section, we firstly introduce the

definition of lexicographical order for binary

strings each symbol of the binary string is stored

with 1 bit [14]. A binary string is a sequence of

bytes. We will define a binary string as a linear

sequence of bipolar states. Zero and One (or One

and Minus One) are the commonest form in

which binary strings exist in computers. Presence

or absence of anything could constitute a bipolar

state and, as such, strings are widespread

throughout real and imaginary spaces. In a

computer, these values are stored as binary

numbers, e.g. decimal number 5 will be stored as

binary number 101.

4. Proposed System Architecture

In the system flow, the input data is XML

document to be label and output is XML

document with labeled nodes using

lexicographical order with binary string. First,

the system builds XML document as XML DOM

tree structure. Second, the system labels to this

XML tree with binary string using

lexicographical order. The system label root

node to leaf node go through down. If you want

to insert leaf node or internal node or nested tree,

the system labels to the nested tree or leaf or

internal nodes as the second step. And then, the

system concatenates the label of these inserted

nodes with the Equation (1) character sequence.

The system can avoid re-computation or re-

labeled the last labels in the tree by using this

method.

XML Document

Build XML DOMTree

Structure

Label XML Tree

Insertion node

or subtree Y/N

Label XML

sbutree or node

Alphabetic Character

Sequences

Labeled

XML Tree

End

End

Start

No

Yes

Figure 1. System Flow of Labeling XML Tree

<books>

<book id="11210" category="fiction">

<author id="a1" sex="m">M. John</author>

<name>Computer Science 101</name>

</book>

<book id="11211">

<author>A. Mark</author>

<name>Applied Math 101</name>

<subject>Math</subject >

</book></books>

Figure 2. Example of XML document

Books

Book Book

Id “11210” Category

“fiction”
author name Id “11210” author subjectauthor

Id “a1”
Sex “m” M. John CS 101

Applied

Maths 101
A. Mark Maths

1,11001

10.1100 1101,

11000

11.11
100,100 101,1001

1001,

1011

1110,

1110
1111,

10001

10010,

10100
10101,

10111

110,110
111,

111

1000,

1000
1010,

1010

10000,

10000

10011,

10011

10110,

10110

Figure 3. Example of labeling method

4.1. Insert processing

The XML data insertion can be processed by

adding a subtree into the original XML data tree.

For internal leaf node insertion, the system labels

the node with right sibling’s label concatenate

the character from the following figure 4. For

subtree insertion, the system labels this insert

subtree from right sibling start label with

lexicographical order.

Figure 3. Proposed Node Labeling Algorithm

And then the whole inserted subtree labels

with the concatenation from figure (4). The

sequence can be expanded in both the directions

left and right. By using this sequence the

problem of re-labeling is avoided. The sequence

will produce enough number of labels for any

large size document. The combination of the

upper and lower aliphatic characters is made

efficiently. Also this proposed system will

reduce the length of the labels. Using both

lowercase and uppercase letters will produce a

lot of label values with minimum storage. If the

Procedure Generating Label (T)

Input : XML document (D) with the root node(r)

to be labeled

Output : XML Documents(D) with labeled

nodes using lexicographical order for Binary

String

1. T is the tree

2. Start s denotes the start of ith node using

lexicographical order for Binary String

3. End e denotes the end of ith node using

lexicographical order for Binary String

4. Begin

5. For each node n of T do

6. LV(I) = get the sequence to the

concatenation of start and end in the

lexicographical order

7. End For

8. If the nested tree exists to be insert

9. Call the procedure InsertTree (ST,

position)

10. End.

label size is reduced, the index size will

automatically be reduced. Thus it will improve

the performance of the query processing system.

We propose an insert algorithm based on the

nested tree structure to handle the above cases.

Figure 4. Alphabetic Character Sequences

We generate the above sequence of alphabetic

character by combination of upper and lower

alphabetic characters. The number to

combination may be the following equation.

N = 52 + 52C2+ 78C3+ 104C4 + ... + 26nCn (1)

Where N = total number of combinations

n = number of alphabetic

The containment labeling scheme cannot

support the dynamic update of XML data

efficiently because it takes the sequential

numbers as the labels of nodes and there is the

interval property between the start and end

positions for each node. When a new node is

inserted, re-labeling of the existing nodes is

indispensable. In order to solve this problem in

Figure (6), it is possible to add one or more

character with the label of these inserted subtrees

for future XML data insertions.

<book>

<author>Ms. Smith</author>

<name>Computer Science 102</name>

</book>

Figure 5. Example of Insertion XML

document
1,11001

Books

Book

Id “11210” author subjectauthor

Applied

Maths 101
A. Mark Maths

?

?
? ? ?

? ?
?

Book

Id “11210” Category

“fiction”
author name

Id “a1”
Sex “m” M. John CS 101

10.1100

11.11
100,100 101,1001

1001,

1011

110,110
111,

111

1000,

1000
1010,

1010

Book

author

Ms.

Smith CS 102

name

?

Figure 6. Insertion subtree problem

1,11001

Books

Book

Id “11210” author subjectauthor

Applied

Maths 101
A. Mark Maths

1101,

11000

1110,

1110
1111,

10001

10010,

10100
10101,

10111

10000,

10000

10011,

10011

10110,

10110

Book

Id “11210” Category

“fiction”
author name

Id “a1”
Sex “m” M. John CS 101

10.1100

11.11
100,100 101,1001

1001,

1011

110,110
111,

111

1000,

1000
1010,

1010

Book

author

Ms.

Smith CS 102

name

1101,

10011A

1110,

10000A

10001,

10011A

1111,

1111A

10010,

10010A

Figure 7. An example of nested tree structure

Figure 8. Proposed Insertion Node or Subtree

Labeling Algorithm

 This system solve the weak point as a large

number of nodes that need to be relabeled in the

case of an insertion of XML data, huge space

requirements for node labels, and inefficient

processing of structural joins. The label of the

existing tree does not need to re-label by joining

the character and label of the inserted tree.

Although XML tree is larger, node labels do not

require the huge space due to our scheme uses

only start and end position. In this system, the

Procedure InsertTree(ST, position)

Input : XML document (D) with the root

node(r) to be labeled

Output : XML Documents(D) with labeled

nodes using lexicographical order for Binary

String

1. ST is the inserted subtree

2. Position is the (start position, end

 position) pair of the node under which

 the subtree is inserted

3. Start s denotes the start of ith node using

lexicographical order for Binary String

4. End e denotes the end of ith node using

 lexicographical order for Binary String

5. Begin

6. For each node n of ST do

7. LV(I) = get the sequence to the

concatenation of start, end and

position in the lexicographical order

8. Position is retrieved from the

sequence in the Figure (4)

9. End For

10. End.

A;B;C; … Z : a; b; c; d; … ; z; Aa; … ; Zz;

za: … ; zz; Azz; … ;Zzz; …

concatenation of the inserted tree is not adding

any character to every node. Therefore, this

system can get more efficient.

5. Conclusion and Future Works

When an order-sensitive node is inserted into

the XML tree, the present node labeling schemes

need to re-label the existing nodes or re-calculate

some values to keep the document order which is

costly in considering either the number of nodes

for relabeling (re-calculation) or the time for re-

labeling (re-calculation). To address this

problem, we propose a node labeling scheme,

which need not re-label any existing nodes and

need not re-calculate any values when inserting

order-sensitive nodes into the XML tree.

In the future, we will further study how to

efficiently process the delimiters of this schemes

and decrease the label size, as well keep the low

label update cost. We will compare performance

of our scheme with another scheme in the

literature and analyst for our proposed system.

We will retrieve and query XML document

stored in relational database. The system will

translated XQuery queries into SQL statements.

The retrieved results will reconstruct as XML

hierarchical format and return to the user.

References

[1] E. Cohen, H. Kaplan and T. Milo, “Labeling

dynamic XML trees”, Proceedings of PODS.

[2] H. Su-Cheng, L Chien-Sing, “Node Labeling

Schemes in XML Query Optimization: A Survey and

Trends”, Volume 26, Issue 2, 2009, pp. 88-100

[3] J. Paramasivam, T. Angamuthu, “An Enhanced

Way of Labeling Nodes in Dynamic XML”, European

Journal of Scientific Research, ISSN 1450-216X

Vol.55 No.3, 2011, pp.348-354

[4] J. Paramasivam, T. Angamuthu, “A New Scheme

of Generating Persistent Labels for Dynamic XML

Data”, INTERNATIONAL JOURNAL OF

COMPUTATIONAL COGNITION, Vol. 9, No. 1,

March 2011

[5] J. Paramasivam, T. Angamuthu, “A New Method

of Generating Index Label for Dynamic XML Data”,

Journal of Computer Science 7 (3): 421-426, 2011,

ISSN 1549-3636

[6] L. Chang Qing and L. Tok Wang, “An Improved

Prefix Labeling Scheme: A Binary String Approach

for Dynamic Ordered XML”

[7] P. E. ONeil, et al., “ORDPATHs: insert-friendly

XML node labels”, International Proceedings of the

ACM SIGMOD 2004, pp. 903–908.

[8] Q. Li, B. Moon, “Indexing and querying XML data

for regular path expressions”, International

Proceedings of the VLDB 2001, pp. 361–370.

[9] R. Agrawal, A. Borgida, H. V. Jagadish, “Efficient

Management of Transitive Relationships in Large

Data and Knowledge Bases” SIGMOD Conference

1989: 253-262

[10] X. Wu, M. Lee, L. Hsu,“ A prime number

labeling scheme for dynamic ordered XML trees”, In:

Proceedings of the ICDE 2004, pp. 66–78.
[11] Y. Jung-Hee Yun, C. Chin-Wan, “Dynamic

interval-based labeling scheme for efficient XML

query and update processing”, The Journal of Systems

and Software 81 (2008) 56–70.

[12] http : // en.wikipedia.org/wiki/XML

[13]http:// www. XML Query (XQuery)

Requirements.htm

[14] http:// en.wikipedia.org / wiki / String_ (computer

_ science)

