

DOCUMENT ENGINEERING :

BUILDING SCALABLE DOCUMENT BY REUSING COMPONENTS

Win Pa Pa Htun

 University of Computer Studies(Mandalay)

papawin009@googlemail.com

ABSTRACT

Building a new document needs the

preparation of required information and finding

the related written parts that have already

identified from existing documents. In this paper,

we outline the importance of structuring documents

in order to facilitate the reuse of their content. We

show how explicit structure representation

facilitates the understanding of the original

documents, identification of reusable existing parts

and propose techniques to facilitate the

configuration of the desired document. Our

approach is based on Semantic Web Technologies,

in particular, Variability Modelling reasoning with

ontologies, and the idea of Active Documents

extended with the adopted methods from Software

Product Lines Engineering respectively.

Keywords: Active Documents, Software Product

Lines Engineering, Semantic Web Techniques,

Semantic Labels.

1.INTRODUCTION

Today, Building a new document needs the

preparation of required information and finding the

related written parts that have already identified

from existing documents in order to save time and

cost. Document Engineering provides us with

procedures and algorithms how to specify, design,

and implement sets of data into knowledge

repositories which are called documents. Those

documents contain different kinds of knowledge

(such as marketing or advertisement, technical

description or user tutorials), and they are

represented in various formats (presentation, XML,

Word documents) and very often not well-

structured or formalized technical systems.

The use of XML allows for flexible

elaboration of advanced algorithms with detailed

document analysis, modification, partial reuse and

adaptation. Further, the formats can be extended to

serve special needs and are thus very flexible. The

approach of Active Documents, raised in [3],

assumes that a document contains both data and

software (e.g., scripts, macros). As a result,

documents can be manipulated interactively, for

instance, they react immediately on user changes

(hot updates), and can be derived automatically

from a set of reusable components. It needs to

indentify the proper methods for knowledge

modelling, acquisition and automated techniques

for data reuse that has hindered the development in

the areas of document engineering and knowledge

management. Knowledge management systems are

designed to allow users to access and utilize the

rich sources of data, information and knowledge

stored in different forms, but also to support

knowledge creation, knowledge transfer and

continuous learning for the knowledge workers [8].

Our paper is organized as follows: first, we

present the related works with this paper. Second,

we introduce theory for the Document engineering

and Reusing, and next, we represent the

architecture style (abstract metamodel) for the

document, which is called here Active Document.

The architecture provides a fixed structure and

separation of concerns, supporting reuse

procedures to map with variability modeling to

represent the available active documents. The

actual intention is to fill the gap between user

requirements and an increasing number of available

resources. We also introduce the light-weight

formal modeling technique, called Semantic

Labels, for each Active Document based on

Semantic Web ontologies. A Semantic Label is a

keyword on a meta-description of the documents,

supported with certain ontology behind. Third, we

present the system overview briefly. At the end, we

summarize the proposed techniques, and the

introduced architecture style, the modeling of

available documents, and application of Semantic

Labels.

2. RELATED WORKS

Sangpachatanaruk [3] described the design and

implementation of architecture to support

discovery, advertizing and fusion of multimedia

information on the Internet. The basic tenet of the

proposed architecture is a metadata abstraction,

referred to as adlet. Based on this abstraction, a

document dynamically built metadata, advertised

itself to other active documents on the Internet, and

eventually joined groups of documents of the same

interest. The proposed architecture supported the

creation and composition of adlets, and the

negotiation and communications protocols required

to manage adlet groups of common interests.

In [4] Uwe Assmann also presented an idea

and proposed techniques to facilitate the generation

of documents in collaborative team or distributed

environment based upon the notion of Semantic

Labels, which are realized as simple markup

elements of the data and text, but represented in a

logic-based manner. Thus, it provided platform-

independent techniques and formal methods to

describe a structure of the ultimate document, to

compose reusable elements identified by semantic

labels and fill out the semantically structured

templates for the required document.

Karl Trygve Kalleberg [6] introduced a new

approach for describing variable requirements for

software product lines exploring the relationship

between feature models and ontologies. First,

examined how previous extensions to basic feature

modeling move it closer to richer formalisms for

specifying ontologies such as MOF and OWL.

Then, explored the idea of feature models as views

on ontologies. Based on that idea, proposed two

approaches for the combined use of feature models

and ontologies : view derivation and view

integration. Finally, gave some ideas about tool

support for these approaches.

Pohl and Metzger [7] provided a systematic

approach for creating a diversity of similar

products at low cost, in short time, and with high

quality by explicitly modeling and managing

variability, software product line engineering. This

focused on the two principle differences of

software product line engineering when compared

to single systems development: the differentiation

of two key development processes (domain

engineering and application engineering) and the

explicit representation and management of

variability. And then, they characterized the two

processes and their main activities and introduced

the orthogonal variability modeling approach

(OVM). Finally, illustrated the OVM approach in

the product line requirements engineering and

product line testing activities.

3. BACKGROUND THEORY

3.1. Document Engineering

Document Engineering helps us specify,

design, and implement these documents and the

processes that create and consume them. It

synthesizes complementary ideas from information

and systems analysis, electronic publishing,

business process analysis, and business informatics

to ensure that the documents and processes make

sense to the people and applications that need them.

A document-centric philosophy unifies these

different analysis and modeling perspectives.

Using patterns for document exchanges and

document components ensures we can build

applications and services that are robust but

adaptable when technology or business conditions

change.

3.2. Reuse

Reuse is not a new concept, and the use of

reuse to improve document quality and

productivity has been investigated for some years

now. [9]Reuse is defined as the “Use of work

component without modification in the

development of other document.” Another kind of

reuse is leveraged reuse, which is modifying

existing work components to meet specific system

requirements. The current build-from-scratch

techniques of systems must give way to techniques

that build systems by reusing building parts. These

building parts can be the reuse of some design that

solves some kind of problem. Other systems can

use the same design to solve the same problem. By

reusing

 Leads to higher quality of the work

products

 Increases the productivity of the

developers

 Does not necessarily shorten time-to-

market (TTM), the chain of activities that

determine the total project duration.

But there are two problems for this:

 Lack of pieces to build on or the problems

connected to find these pieces.

 Chosen parts do not fit well together. This

problem is called the Architectural

Mismatch.

3.3. Architecture of the Document

Each document is comprised from a set of

building blocks called Active Document

Components (ADC). An ADC is a predefined piece

of text or/and software, which is properly

structured using XML and identified with several

keywords (such as, “Introduction”, “Lecture”,

“CS”), later called as Semantic Labels. Each ADC

can be either atomic or composed from other

building blocks. The actual composition task for

ADCs is very dependent on the architecture styles

and principles on which it relies. The architecture

style for Active Documents separates the building

block into four levels: context part (the actual text),

syntactic XML structure (based on either

OpenXML or ODF formats), formal model (see

Semantic Label chapter below), and representation

constraints (responsible for the representation of

the text due to its XML structure and formal

model). This architecture is expressed as an upper

level XML tags extension of existing formats. As it

is shown in Figure 1, the common platform for

each document is a template. A template is the

initial building block allowing actual embedding

into it. The function of the template is to support

reuse of the documents and their components, to

simplify complex configuration tasks. Thus, each

template is a parameterized Active Document

Component (i.e. a component for a desired

document).

3.4.Variability Modeling with Software

Product Lines Engineering

 Software product lines engineering is widely

used for the efficient development of variable

software products, based on a common platform.

Two important kinds of activities are performed in

software product line engineering:

1. The developers identify and describe where the

applications of the product line vary in terms of

the features.

2. The developers create reusable artifacts of a

product line these artifacts are sufficiently

adaptable (variable).

Variability modeling, which is used to

document the variability of the product line, is a

powerful tool for managing the complexity that is

involved with the above kinds of activities. This is

also applicable for documents: each feature

addresses the possible potential requirement,

assuming atomic or composed functionality

behind. Numerous variability modeling approaches

exist today to support domain and application

engineering activities. Here, we follow an approach

called Orthogonal variability modeling approach

(OVM-A), in which the assets model and the

variability model are kept separate. The variability

model relates to different parts of the assets model

using artifact dependencies. The central concepts

used in OVM are variation points (VP)) and

variants (V). A VP documents a variable item and

a V its possible instances. Both VPs and Vs can be

either optional or mandatory. Optional variants of

the same VP are grouped together by an alternative

choice. An optional variant may be part of at most

one alternative group. To determines how many Vs

may be chosen in an alternative choice, the

cardinality notation [min..max] is used. OVM also

supports the documentation of Vs belonging to

different VPs. Simple constraints between nodes

(mutex or require) can be graphically represented

and can be applied to relations between Vs, but

also to VP-V and VP-VP relations.

Figure 1. An Example of Variability Model

The configuration task is performed by

collecting user requirements about the desired

document and mapping them to features from the

variability model. Mapping comprises expansion of

requirements due to the information from the

ontology and relating them with known variants

and variation points. Then, by following the graph

model, needed additional features are added or

otherwise excluded from the particular

configuration. After completing the design of the

specific document model (architecture), the

embedding is based on automated integration of

existing documents. It is achieved because of using

semantic interoperability between variants in the

configuration of the document and Semantic

Labels as models or proxies of existing ADCs.

3.5. Semantic Labeling

Obviously, current open standards for

document specification will profit from the

extension with formal models based on semantics.

We propose to support current techniques of the

open document idea instead of thinking about new

“semantic related” models. Our approach is based

on the notion of Semantic Label, which is a mark-

up element, applied to the part of the document that

is assumed to be reused in the future (ADC). An

ADC could be a definition of a theorem, a value of

a variable expected for later calculations, a figure,

or a structural element, e.g. heading or special

paragraph. A Semantic Label itself is a keyword,

sentence or set of words (without any meaning),

and it is identified during document preparation, or

at the time of ultimate document planning. After

creation, each label is registered on the server side

in the repository, hence all users can see existing

labels and their properties. The repository is

organized as an ontology-based system, which

means that a label becomes automatically a class or

an instance of the class of the related ontology. The

ontology is responsible for the definition of the

label and formal semantics. Once the user provides

a definition for his environment or domain, the

Semantic Label is becoming a part of it.

As an example, consider this paper, which

can be described with keywords: “Software

Product Lines”, “Semantic Web Techniques”; by

authors responsible for creation of the document;

date, and a related event: the conference on

Document Engineering. Also, the information

about the used template can be significant, but in

our case ,this is already predefined on variability

level as a requirement relation between variant

“DocEng 2007” and template of proceedings –

“ACM”. Later, when identifying relevant

documents to be somehow reused and integrated

into the prepared template, theontology plays a key

role. It provides an inferencing base for the

expansion of calling constructs: for instance, the

call for paper prepared on topic of “Document

Engineering” and written with the use of ACM

template will result in the paper prepared for

“DocEng conference” .

Figure 2. Ontology Example

3.6. Reuse Detection

Components that are reused in different

documents would result in duplicate components in

the repository. Reuse detection is used to avoid

these duplicates an approach is the vector-space

model, which treats a document as a bag-of-words.

Similarity is commonly determined by the cosine

similarity measure. The approach represents each

document as a vector in an n-dimensional space.

Document similarity to another document is then

defined as the distance between the two vectors:

 (1)

where αi is the weight associated with the

occurrence of the it h word and F(D) (size n) is the

frequency vector. Fi (D) is the number of

occurrences of word wi in text fragment D. To

illustrate the similarity computation, consider a

registered text fragment R=”a b c” and new text

fragmentsS1 =”a b c” and S2 =”c d e”. Using the

cosine similarity measure for the example and

assuming uniform weights for words (α = 1),

 (2)

 (3)

Identical text fragments have a similarity value 1,

while text fragments that do not have much overlap

have a low value (e.g. 0,3 in the example). The

approach has been extended to incorporate term

frequencies, document, and term frequency/inverse

document frequency weighting. Such extensions

improve the effectiveness of similarity

comparisons[15].

4.SYSTEM OVERVIEW

 Our system starts with some an inspiration

from already read documents, acquiring some parts

of a context to be revised, adopted and adapted to

the particular ideas, and further filled into the

template. Usually, the document being created

belongs to the same domain (e.g., particular topic

of research, or account of a manager) and needs

mechanisms for keeping information about its

content, available topics, purposes for creation of

new documents, etc.

 From the knowledge about a certain

domain, we obtain a template and structure,

manually write a plan for the context, and keep in

mind what we can use and reference. Thus, we are

making several contributions for facilitating the

initial stage of document creation and planning.

And then acquiring parts are labeled by semantic

storing in repository when creation of new

documents, adjust with variability modeling. But,

storing parts are not to be duplicate, is calculated

by the vector-space model.

Figure 3. Overview of System

As we can see, semantic label together with

the whole supporting framework can be a well-

defined model of the component. But an

application of semantic labels on components

involves a large variety of information from

different application domains and of various

categories, like terms and definitions, behavior

rules, probability relations, and temporal properties

during the knowledge generation can be processed

with various inference machines, and in particular

with Prolog. Thus, it seems to be the obvious to

choose the most expressive logical formalism that

is capable to formulate and formalize the entire

needed information. But, doing so very likely

results in severe decidability problems and

exponentially growing up computation time.

5. CONCLUSION

Addressing today’s challenges in document

engineering to already known methods of software

engineering can solve a lot of problems, and

improve already existing methods and techniques.

By using properly suited modeling, easy search and

identification of documents is possible without

retrieving their context, which turns to be very

critical, time-consuming and costly to build.

The proposed approach needs a proper

framework, where the central part is based on the

use of different heterogeneous models to derive a

needed solution. The core part of the architecture is

built on Prolog processing user requirements, a

formal variability model, Semantic Labels and

ontologies as domain description, interoperating on

various models. As a result, configuration,

identification and composition tasks are performed

as classical inferencing problems. The later use of

the Java Prolog Library [16] allows the integration

of this core functionality into any Java-

environment and provides flexibility in building

new document processing tools.

REFERENCES

[1] OpenDocument Format (ODF),

http://en.wikipedia.org/wiki/OpenDocument.

[2] Open XML,

http://en.wikipedia.org/wiki/Open_XML.

[3] Chatree Sangpachatanaruk,Taieb F. Znati, and S. K.

Chang, “An Architecture for a Personalized Web of

Active Documents”, Department of Computer Science,

Department of Information Science and

Telecommunication, University of Pittsburgh,

Pittsburgh, PA 15260

[4] Mikhail Roshchin, and Uwe Assmann, “Semantic

Labeling for Active Documents”,TU Dresden Germany

[5] Glushko R.J., McGrath T. “Document Engineering:

Analyzing and Designing Documents for Business

Informatics and WebServices”, MIT Press, November

2005.

[6] W. Cohen and L. Jensen, “A structured wrapper

induction system for extracting information from semi-

structured documents”, 17th International Joint

Conference on Artificial Intelligence, Workshop on

Adaptive Text Extraction and Mining, Seattle, USA,

2001.

[7] M. Henzinger and S. Lawrence, “Extracting

knowledge from the World Wide Web”, in Proceedings

of the National Academy of Science, USA, 101: 5186-

5191, 2004.

[8] Razmerita L., Angehrn A., Maedche A. “Ontology-

based User Modeling for Knowledge Management

Systems.”

[9] W. C. Lim: “Effects of Reuse on Quality,

Productivity and Economics”, in: IEEE Software, 9,

1994

[10] D. Garlan, R. Allen and J. Ockerbloom:

“Architectural Mismatch: Why Reuse Is So Hard”, in:

IEEE Software, 11, 1995

[11] G. Carenini, R. T. Ng, and E. Zwart, “Extracting

knowledge from evaluative text”, in Proceedings of the

3rd International Conference on Knowledge Capture,

Banff, Canada, 2005, pp. 11-18.

[12] W. R. Cyre, “Knowledge Extractor: A Tool for

Extracting Knowledge from Text”, in Proceedings of

Fifth International Conference on Conceptual Structures

(ICCS), Seattle, USA, 1997, pp. 607-610.

[13] M. Vargas-Vera, E. Motta, J. Domingue, S.

Buckingham Shum, and M. Lanzoni, “Knowledge

Extraction by using an Ontology-based Annotation

Tool”, In Proceedings of the Knowledge Markup and

Semantic Annotation Workshop, Victoria, Canada, 2001,

pp. 5-12.

[14] Krzysztof Czarnecki, Paul Grünbacher, Andrzej

Wa˛sowski, Rick Rabiser, Klaus Schmid ,“Cool Features

and Tough Decisions:A Comparison of Variability

Modeling Approaches”

[15] Katrien Verbert, Xavier Ochoa, and Erik Duval,
“The ALOCOM Framework: Towards Scalable

Content Reuse”

[16] Java-Prolog Library, http://www.swiprolog.

org/packages/jpl/.

http://en.wikipedia.org/wiki/OpenDocument
http://en.wikipedia.org/wiki/Open_XML

