

Comparison of Classification Methods on Software Defect Data Sets

Hnin Yi San, Dr. Khine Khine Oo

University of Computer Studies,Yangon

hninyisan@gmail.com,k2khine@gmail.com

Abstract

Nowadays it is difficult for us to imagine a life

without devices that is controlled by software. Software

quality prediction is the important process of software

development processes. It is a process of utilizing

software metrics such as code-level measurements and

defect data to estimate software quality modules. A

more useful and efficient mechanism is k Nearest

Neighbor method to classify class of target data based

on k nearest training dataset. By applying the concept of

k-NN, we propose a new mechanism called Class Base

Weighted k-NN with Biner Algorithm (CBW k-NN) to

find the range of training dataset where the target data

has the maximum likelihood of occurrence by Biner and

classify class of target data based on this range. The

main purpose of this paper is to know the effective

classification method for software defect datasets that

exploit information from the NASA MDP (PC1, CM1,

JM1) datasets.

Keywords: Biner, Class Based Weighted k Nearest

Neighbor, Classification, k Nearest Neighbor, NASA

MDP dataset, Software Defect Prediction

1. Introduction

The costs of finding and correcting software

defects have been the most expensive activity during

both software development and software

maintenance. Therefore, developing high quality

software within the allotted time and budget is the

key element for a productive and successful software

project. The main software quality characteristic in

concern is the software defect. A panel at IEEE

Metrics 20022 also concluded that manual software

reviews can find only 60 percent of defects [10].

Therefore, software defect prediction has been an

important research topic in the software engineering

field, especially to solve the inefficiency and

ineffectiveness of existing industrial approach of

software testing and reviews. Moreover, it is well

known that earlier an error is identified, the better

and more cost effectively it can be fixed. Therefore,

there is a need to predict these software faults across

the stages of software development process.

Many mechanisms for software defect

prediction are Decision trees, Ensemble Classifier,

Random Forest, Naïve Bayes Classifiers, Support

Vector Machine, Neural Networks, k Nearest

Neighbor Classifier etc. that helps in improving the

defect prediction performance. Machine learning

techniques are proven to be useful in terms of

software defect prediction [1]. The data from

software repository contains lots of information in

assessing software quality and machine learning

techniques can be applied on them in order to extract

software defect information. The classification

process is sometimes called the supervised learning

that is the machine learning task of inferring a

function from labeled training data consist of a set of

training examples. Among them, k Nearest Neighbor

classifier is instance-based learning algorithms and a

more useful and efficient classification method.

Classification consists of predicting a certain

outcome based on a given input. It uses input data,

also called training set where all objects are already

known class labels. The objective of classification

algorithm is to analyze and learn from the training

dataset and classify test data for which the class

labels are not known.

The main purpose of the paper is to describe

the effective method for classification on software

defect datasets using k Nearest Neighbors Classifier

and Class Based Weighted k-NN with Biner

Algorithm and solve classifiers on imbalance data set

using both methods. For this purpose, it use three

datasets related to NASA MDP software defect

datasets named are PC1, CM1 and JM1. The results

after classification of software defect data come in

terms of certain efficiency parameters like Accuracy,

Reliability, Mean Absolute Error, and Root Mean

Squared Error in order to compare two methods.

This paper is organized as follows: the related

work is described in section 2. Section 3 describes

the background details used in the proposed

approach. In section 4, we explain the proposed

approach adopted to classify software defective or

non-defective results. Experimental work is carried

out by section 5 and finally section 6 present the

conclusion and future work.

68

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

mailto:hninyisan@gmail.com,k2khine@gmail.com

2. Related Work

Anil Kumar Singh et. al [8] performed

Software Fault Prediction System by using two

methods; Fuzzy c-means clustering approach and k-

Nearest Neighbors Classifier technique with the real

time data set named PC1, taken from NASA MDP

software projects. The performance comparison of

this system was recorded on the basis of accuracy,

net reliability, RMSE and MAE values. They applied

the training and testing methodology, wherein a

project is chosen for training the system. Two

classifier approach was applied on the same project

and the final calculated values are then used to

classify the modules of project as fault prone or fault

free. Simulation was carried out using MATLAB

2010a. They recommended that the k-Nearest

Neighbors Classifier method gives more accuracy

and less error as compared to Fuzzy C-means

clustering method on the basis of evaluation

parameters: accuracy, reliability, MSE and RMSE.

Anu K P et. al [7] presented a wrapper based

feature selection approach working along with an

ensemble learning algorithm, RUSBoost, to solve the

problem that affect the quality of training data is high

dimensionality and class imbalance and thus improve

the classification performance in the context of

software quality prediction. And the J48 Decision

tree classifier algorithm was used as the classifier that

recursively splits a data set according to tests on

attribute values in order to separate the possible

predictions. They were applied two groups of

software datasets KC3 and CM1 from PROMISE

data repository. For the evaluation of the proposed

model, they had included two more scenarios i.e.

directly using RUSBoost without feature selection

and without feature selection or boosting. They

represented the wrapper-based feature selection

method outperforms comparing to the other feature

selection methods by using accuracy and RMSE

value. Therefore, they recommended wrapper based

feature selection followed by RUSBoost algorithm

showed better performance than others.

Dazy Arya [2] described Software Fault

Prediction System using Fuzzy c-means clustering

approach and a hybrid technique (Combination of

Fuzzy c-means and Particle Swarm Optimization) to

compare performance evaluation results. Fuzzy

clustering based techniques are discussed for the

comparative analysis in order to predict level of

impact of faults in NASA’s PC1. The author was

carried out the problem simulation by using

MATLAB 2010a. The author was found that the

hybrid method gives more accuracy and less error as

compared to Fuzzy C-means clustering method on

the basis of evaluation parameters such as accuracy,

reliability, MSE and RMSE.

3. Background

Data mining is about solving problems by

analyzing data already present in databases. Data

mining is a powerful tool that can help to find

patterns and relationships within data that go beyond

simple analysis. Classification, one of the data

mining techniques, is to find a derived model that

describes and distinguishes data classes or concepts

based on the analysis set of training data [12].

3.1 k Nearest Neighbor Classifier

The k Nearest Neighbor (k-NN) classification is

a popular, most widely used classification method for

classifying class of target data based on training data set.

The training data set is used to classify each member of

a target dataset [3]. A more sophisticated approach, k-

NN classification finds a group of k objects in the

training set that are closest to the test object, and bases

the assignment of a label on the predominance of a

particular class in this neighborhood. For each data

point in the target dataset, the distance metric between

target data and all training data are calculated and

sorted. The threshold value (k) has to eliminate all

distance values depend on threshold value (k) and taken

into account based on classes of selected distance values

to classify target data [6].

Algorithm 1: k Nearest Neighbor Algorithm

Inputs: X, C, k, x

Output: class label for Query instance x

1. Calculate d(xi,x), where (i=1,2,….n)

2. Order d(xi,x) from lowest to highest,

3. Eliminate the k nearest instances to x: Dx
k

4. Taken into account the imbalance class distribution around

the neighborhood of the query instances: Dx
k

5. Return class label for Query instance x

Figure 1. k Nearest Neighbor Algorithm

69

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

Table 1 reveals the meaning of various symbols used

in k Nearest Neighbor. This table is used to form

better understanding of the algorithm.

Table 1. List of Symbols Used in the k Nearest

Neighbor Algorithm

Symbol Meaning

X Each data of training dataset

C Class labels of X

K Threshold value

X Query Instance or target data point

d(xi,x) Manhattan distance between query instance

and training data

Dx
k Distance values between query instance and

training dataset based on k value

3.1.1 Threshold Value (k)

There are several key issues that affect the

performance of k-NN. One is the choice of k. If k is

too small, then the result can be sensitive to noise

points. On the other hand, if k is too large, then the

neighborhood may include too many points from

other classes. Threshold value (k) should use at least

square root value of train dataset and be less than half

of train dataset. CBW k-NN with Biner algorithm

calculates for each range if train dataset is greater

than twice of k value. If the number of classes is 2,

threshold value should be an odd number to classify

clearly.

3.1.2 Manhattan Distance

There are many techniques to measure the

similarity between the target data and each training

dataset. One of such widely used techniques is

Manhattan distance. It is one of the powerful

calculating distance techniques to classify class of

target data based on all training dataset.





t

j

ji xxxxd
1

),(

 (3.1)

Where d(xi,x) is distance value between target

data and training data. x are target data point and xi

represent each data point of train dataset respectively.

Also i value is the number of records in training data

set and j value is the number of attributes(column) in

each data point respectively.

3.2 Class Based Weighted k-NN

By the regular k Nearest Neighbor classifier,

distance values are no limitation range. So, Class based

Weighted k Nearest Neighbor classifier calculate a

weight is assigned to each of the class based on how its

instances are classified in the neighborhood of query

instance [4].

Algorithm 2: CBW k-NN Algorithm

Inputs: x, k, Range (start, end)

Output: class label for Query instance x

1. find closest range by using BINER function

2. Calculate d(xi,x) for subrange

3. Order d(xi,x) from lowest to highest

4. Eliminate the k nearest instances to x: Dx
k

5. Calculate weight value distance value d(xi,x)

6. Calculate total weight values of each class

7. Multiply class based weighted factor and total weight values

of each class

8. Compare final total weight values of all classes

9. Return class label for Query instance x

Figure 2. CBW k-NN Algorithm

Table 2 reveals the meaning of various symbols used

to form better understanding of CBW k-NN.

Table 2. List of Symbols Used in the CBW k-NN

Algorithm

Symbol Meaning

Range

(start, end)

Whole Training dataset range

Range (s, e) Final closest subrange

K Threshold value

X Query Instance or target data point

Subrange Return range of BINER function

d(xi,x) Manhattan distance between query

instance and training data

Dx
k Distance values between query instance

and training dataset based on k value

 (3.2)

Where wi is weight value of ith distance value and i

value is 1 to k. dk represent largest distance value of k

eliminated distance values and d1 is smallest distance

value.

 (3.3)

Where w(c) is class based weighted factor for each

class and frequency[c] is total count of each class at

training dataset [5], [6].

if d
k
  d

1



















1
1

d
k

d
i

d
k

d

i
 if d

k
  d

1

][/1)(cfrequencyc 

70

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

3.3 BINER Algorithm

Biner algorithm narrows down the range in

which the response variable has the maximum

likelihood of occurrence instead of directly predicting

the value of response variable. The data is

hierarchically partitioned in the preprocessing step,

and search for the partition in which the response has

the maximum likelihood of occurrence is carried out

at the runtime and then interpolates to give the output

[4].

Algorithm 3: Biner Algorithm

Inputs: x, k, Range (start, end)

Output: Range (s, e)

1. while end – start > 2 * k do

2. r =end – start

3. s1, e1 = start, start + r/2

4. s2, e2 = start +r/4 , start + 3r/4

5. s3, e3 = start + r/2, end

6. d1 = getDistance (RangeMean(s1, e1), x)

7. d2 = getDistance (RangeMean(s2, e2), x)

8. d3 = getDistance (RangeMean(s3, e3), x)

9. if similar (d1 , d2, d3) then

10. return (start, end)

11. else

12. start, end = si, ei

13. end if

14. end while

15. return (start, end)

Figure 3. Biner Algorithm

Table 3 presents the various symbols used in Biner

algorithm.

Table 3. List of Symbols Used in Biner Algorithm

Symbol Meaning

Range (start, end) Whole Training dataset range

K Threshold value

X Query Instance or target data point

s1, e1 First range of three subranges

d1 Distance value between query

instance and first range

RangeMean(s1,e1) Mean values for first range of
training dataset

si, ei Selected subrange to calculate
next sub ranges

 (3.4)

Where qi is the ith attribute of the target data, µi is the

mean of ith attribute values in all data points in the

range andi is the standard deviation of values of the

ith attribute in the whole database.

 (3.5)

Where i is number of attributes of each data point and

N is number of data point at training dataset.

3.4 Software Defect Dataset Nature

In this paper, we use three software defect

prediction data sets from NASA MDP. Individual

attributes per dataset, together with some general

statistics and descriptions, are given in Table 4 and 5.

The software defect datasets have various scales of

line of code (LOC), various software modules coded

by several different programming languages

including C, C++ and Java, and various types of code

metrics including code size, Halstead’s complexity

and McCabe’s complexity [10]. The following tables

are NASA MDP datasets nature and attribute nature

taken from NASA MDP software projects [9].

Table 4. NASA MDP Dataset Nature

N
a

m
e

L
a

n
g

u
a
g

e

M
o

d
u

le
s

A
tt

r
ib

u
te

s

S
y

st
e
m

PC1 C 1107 22

Flight software for earth

orbiting satellite

CM1 C 372 22 NASA spacecraft instrument

JM1 C 1085 22
Real-time predictive ground

system

Table 5. Dataset Attributes’ Nature
No Name Description

1 Loc McCabe's line count of code

2 V(G) McCabe "cyclomatic

complexity"

3 EV(G) McCabe "essential complexity"

4 IV(G) McCabe "design complexity"

5 N Halstead total operators +

operands

6 V Halstead "volume"

7 L Halstead "program length"

8 D Halstead “difficulty"

9 I Halstead "intelligence"

10 E Halstead "effort"





2

2)(
()tan

i

ii q
cegetDis













   222)(

11
iii x

N
x

N


71

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

11 B Halstead “number of delivered

bugs"

12 T Halstead's time estimator

13 lOCode Halstead's line count

14 lOComment Halstead's count of lines of

comments

15 lOBlank Halstead's count of blank lines

16 loCodeAndCom-
ment

Halstead's count of lines of code
with comments

17 Uniq_Op unique operators

18 Uniq_Opnd unique operands

19 Total_Op total operators

20 Total_Opnd total operands

21 branchCount Branch count of the flow graph

22 defects {false,true} non-defect or defect

3.5 Performance Evaluation Methods

The performance evaluation methods use to

compare output results with other methodologies on

the same datasets by using Accuracy, Reliability,

Mean Absolute Error (MAE), and Root Mean Square

Error (RMSE) [11]. Accuracy calculate correct

classification rate. Precision represent correctness

and Recall represent defect detection rate. F-measure

or Reliability combines precision and recall in a

single efficiency measure by taking their harmonic

mean [1].

 (3.6)

 (3.7)

 (3.8)

 (3.9)

Where

TP- if a software module is defective and is classified

as defective

FN- if a software module is defective and is classified

as non-defective

TN- if a software module is non-defective and is

classified as non-defective

FP- if a software module is non-defective and is

classified as defective

MAE and RMSE can be used together to

diagnose the variation in the errors in testing datasets.

MAE is the average over the verification sample of

the absolute values of the differences between predict

and corresponding actual value. RMSE is calculated

square of the difference between predict and

corresponding value and then averaged over the

sample.

 (3.10)

 (3.11)

Where i value is number of testing data point and xi is

class of ith target data and is its mean value.

4. Proposed Approach

4.1 Overview Design of Proposed System

Figure 4. System Flow Diagram

FNFPTNTP

TNTP
Accuracy






)(

FPTP

TP
ecision


Pr

FNTP

TP
call


Re

callecision

callecision
measureF

RePr

Re*Pr*2




 

m
RMSE

m

i

i




 1

2





Select Data

Start

DB

Divide Train Set and Test Set

Define k value

Choose Algorithm

k-NN Or CBW k-

NN with BINER

K Nearest Neighbor

Algorithm

Class Based Weighted k-NN

with BINER Algorithm

Display defect or

non-defect result

Display defect or

non-defect result

Compare two methods

Comparison result

End

k-NN

CBW k-NN with

BINER Algorithm

m
MAE

m

i

i




 1



72

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

In overview design of the system, the main

process is to classify target data that are defective or

non-defective, user can select dataset and divide

training set and testing set and define k value that is

the smaller distance range instead of the whole

dataset. User can choose method such as k-NN and

Class Based Weighted k-NN with BINER Algorithm

for classification. The system displays to user

classification results (defective or non-defective)

according to chosen method. The system also

compares results by calculating accuracy, reliability,

and error rate methods (MAE and RMSE) for both

methods.

4.2 Data Preprocessing

For two methods, data preparation and

cleaning procedure is use by defect datasets to check

unbalanced dataset and cleaning dataset.

Procedure: Software Defect data preparation and cleaning

(1) read all instances and given file name

(2) check the uploaded file for unbalanced instances

(3) while(!end of dataset file)

(4) begin

(5) read record of dataset line by line

(6) tokenize attribute value of record

(7) end

(8) count original dataset

(9) remove same record in dataset array

(10) count remaining record dataset

Figure 5. Software Defect Data Preparation and

Cleaning Procedure

4.3 Problem Formulation with k-NN

In PC1 dataset, it used to create flight software

for earth orbiting satellite and total instances are 932

records. It are divided training and testing dataset by

ratio 2:1 as training is 622 and testing is 310. Firstly,

it calculates distance values between testing datasets

and the whole training datasets by using Manhattan

distance. By ordering the instances according to

distance values, it sorts and eliminates distance

values by threshold value (k) 50. The threshold value

is dynamic changes for various amounts of dataset.

Finally, total true class value is 44 and total false

class value is 6 by k value 50. Therefore, it classifies

this instance class ‘True’ by using training true and

false ratio 1:13.

4.4 Problem Formulation with BINER

It is sort training dataset by ascending order to

divide training datasets by biner function. Firstly, it

divides three range of whole dataset for PC1 such as

Range 1(0,311), Range 2(156,467), and Range

3(311,622). And then it calculates sub range for each

instance of testing dataset by Eq 3.4 and biner

function according to selected next ranges. Like k-

NN, it calculates distance values are between testing

dataset and the result training dataset range. By

ordering the instances according to distance values, it

sorts and eliminates distance values by threshold

value (k) 50. And then it calculates weight value for

each eliminated distance value by Eq 3.2 and total

weight value of each class as ‘True’ and ‘False’ class.

For unbalance dataset, it calculates class based

weighted factor of each class. Finally, it calculates

final weight values of each class and classifies class

result according to final weights.

5. Experimental Result

For experimental purpose, to demonstrate the

defectiveness of our approach, we have evaluated

Accuracy, F-measure, MAE and RMSE of PC1, CM1

and JM1 dataset. It measures the system performance

by using various kind of k value as PC1(k=25,32,50),

CM1(k=16,25,38) and JM1 (k=27,42,65). The

performance range for evaluation criteria is 0% to

100%. The more range increase, the higher the

accuracy except for MAE. For demonstration

purpose, the evaluation results have shown in

following figures. In figure 6, kNN is better than

CBW kNN by k value (25).

Figure 6. Performance Evaluation Result for PC1

In figure 7, kNN is better than CBW kNN by k value

(16).

0%

20%

40%

60%

80%

100%

Accuracy

Pre

Recall

F-mes

MAE

RMSE

73

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

Figure 7. Performance Evaluation Result for

CM1

In figure 8, CBW kNN is better than kNN by k value

(27).

Figure 8. Performance Evaluation Result for JM1

6. Conclusion and Future Work

In this paper, we implement an approach

called class based weighted k nearest neighbor with

biner algorithm. For selecting an appropriate

classifier to test software defective on imbalance

data set, this system provide on the classification

algorithm based on k-nearest neighbors. This system

also makes the comparison of classification for

software defective and non-defective using weighted

k-nearest neighbor algorithm with class based

weighted factor which is focused on the range of

nearest data set using BINER function. This system

evaluates accuracy, reliability, error-rate of two

methods such as Class Based Weighted k-NN with

BINER Algorithm and k-NN classifier to compare

two methods. The factor observed according to this

system implementation is that the more k value

increase in CBW k-NN, the higher accuracy in

classification result. In contrast, there is no change in

k-NN classification according to k value. In future,

this system should be upgraded to classify various

types of software defect datasets.

References

[1] Saiqa Aleem, Luiz Fernando Capretz and

Faheem Ahmed, “Benchmarking Machine

Learning Techniques for Software Defect

Detection”, International Journal of Software

Engineering & Applications (IJSEA), Vol.6,

No.3, May 2015.

[2] Dazy Arya, “PSO Optimized Software Fault

Prediction system using Fuzzy C-Means”,

International Journal of Digital Application &

Contemporary research (Vol. 3, Issue 6, Jan

2015).

[3] Nitin Bhatia, “Survey of Nearest Neighbor

Techniques”, International Journal of Computer

Science and Information Security (IJCSIS), Vol.

8, No. 2, 2010.

[4] Harshit Dubey, “Efficient and Accurate kNN

based Classification and Regression” CENTER

FOR DATA ENGINEERING, International

Institute of Information Technology, Hyderabad

- 500 032, INDIA, March 2013.

[5] Jianping Gou, Lan Du, Yuhong Zhang and

Taisong Xiong, “A New Distance-weighted k-

nearest Neighbor Classifier”, Journal of

Information & Computational Science 9: 6

(2012) 1429–1436.

[6] Klaus Hechenbichler and Klaus Schliep,

“Weighted k-Nearest-Neighbor Techniques and

Ordinal Classification”,

Sonderforschungsbereich 386, Paper 399 13th

October 2004.

[7] Anu K P, BinuRajan, “A Novel Approach for

Improving Software Quality Prediction”,

International Journal of Engineering and

Advanced Technology (IJEAT) ISSN: 2249 –

8958, Volume-4 Issue-6, August 2015.

[8] Anil Kumar Singh, Rajkumar Goel and Pankaj

Kumar, “Comparative Analysis of Accuracy

Prediction using Fuzzy C-Means and KNN

Clasiffier”, International Journal of Digital

Application & Contemporary research, Volume

2, Issue 7, February 2014.

[9] Manjula.C.M. Prasad, Lilly Florence and Arti

Arya, “A Study on Software Metrics based

Software Defect Prediction using Data Mining

and Machine Learning Techniques”,

International Journal of Database Theory and

Application, Vol.8, No.3 (2015).

[10] Romi Satria Wahono, Nanna Suryana Herman,

Genetic Feature Selection for Software Defect

Prediction”, Advanced Science Letters, Vol. 20,

239–244, 2014.

[11] https://www.otexts.org/fpp/2/5, last access on 28

Dec. 2017

[12] Ian H. Witten and Eibe Frank, Data mining:

practical machine learning tools and

techniques, Diane Cerra, QA76.9.D343W58

2005.

0%

20%

40%

60%

80%

100%

Accuracy

Pre

Recall

F-mes

MAE

RMSE

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Accuracy

Pre

Recall

F-mes

MAE

RMSE

74

National Journal of Parallel and Soft Computing, Volume 01, Issue 01, March-2019

