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Abstract 

Nowadays it is difficult for us to imagine a life 

without devices that is controlled by software. Software 

quality prediction is the important process of software 

development processes. It is a process of utilizing 

software metrics such as code-level measurements and 

defect data to estimate software quality modules. A 

more useful and efficient mechanism is k Nearest 

Neighbor method to classify class of target data based 

on k nearest training dataset. By applying the concept of 

k-NN, we propose a new mechanism called Class Base 

Weighted k-NN with Biner Algorithm (CBW k-NN) to 

find the range of training dataset where the target data 

has the maximum likelihood of occurrence by Biner and 

classify class of target data based on this range. The 

main purpose of this paper is to know the effective 

classification method for software defect datasets that 

exploit information from the NASA MDP (PC1, CM1, 

JM1) datasets. 

Keywords: Biner, Class Based Weighted k Nearest 

Neighbor, Classification, k Nearest Neighbor, NASA 

MDP dataset, Software Defect Prediction 

1. Introduction 

The costs of finding and correcting software 

defects have been the most expensive activity during 

both software development and software 

maintenance. Therefore, developing high quality 

software within the allotted time and budget is the 

key element for a productive and successful software 

project. The main software quality characteristic in 

concern is the software defect. A panel at IEEE 

Metrics 20022 also concluded that manual software 

reviews can find only 60 percent of defects [10]. 

Therefore, software defect prediction has been an 

important research topic in the software engineering 

field, especially to solve the inefficiency and 

ineffectiveness of existing industrial approach of 

software testing and reviews. Moreover, it is well 

known that earlier an error is identified, the better 

and more cost effectively it can be fixed. Therefore, 

there is a need to predict these software faults across 

the stages of software development process.  

Many mechanisms for software defect 

prediction are Decision trees, Ensemble Classifier, 

Random Forest, Naïve Bayes Classifiers, Support 

Vector Machine, Neural Networks, k Nearest 

Neighbor Classifier etc. that helps in improving the 

defect prediction performance. Machine learning 

techniques are proven to be useful in terms of 

software defect prediction [1]. The data from 

software repository contains lots of information in 

assessing software quality and machine learning 

techniques can be applied on them in order to extract 

software defect information. The classification 

process is sometimes called the supervised learning 

that is the machine learning task of inferring a 

function from labeled training data consist of a set of 

training examples. Among them, k Nearest Neighbor 

classifier is instance-based learning algorithms and a 

more useful and efficient classification method. 

Classification consists of predicting a certain 

outcome based on a given input. It uses input data, 

also called training set where all objects are already 

known class labels. The objective of classification 

algorithm is to analyze and learn from the training 

dataset and classify test data for which the class 

labels are not known.  

The main purpose of the paper is to describe 

the effective method for classification on software 

defect datasets using k Nearest Neighbors Classifier 

and Class Based Weighted k-NN with Biner 

Algorithm and solve classifiers on imbalance data set 

using both methods. For this purpose, it use three 

datasets related to NASA MDP software defect 

datasets named are PC1, CM1 and JM1. The results 

after classification of software defect data come in 

terms of certain efficiency parameters like Accuracy, 

Reliability, Mean Absolute Error, and Root Mean 

Squared Error in order to compare two methods. 

This paper is organized as follows: the related 

work is described in section 2. Section 3 describes 

the background details used in the proposed 

approach. In section 4, we explain the proposed 

approach adopted to classify software defective or 

non-defective results. Experimental work is carried 

out by section 5 and finally section 6 present the 

conclusion and future work. 
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2. Related Work 

Anil Kumar Singh et. al [8] performed 

Software Fault Prediction System by using two 

methods; Fuzzy c-means clustering approach and k-

Nearest Neighbors Classifier technique with the real 

time data set named PC1, taken from NASA MDP 

software projects. The performance comparison of 

this system was recorded on the basis of accuracy, 

net reliability, RMSE and MAE values. They applied 

the training and testing methodology, wherein a 

project is chosen for training the system. Two 

classifier approach was applied on the same project 

and the final calculated values are then used to 

classify the modules of project as fault prone or fault 

free. Simulation was carried out using MATLAB 

2010a. They recommended that the k-Nearest 

Neighbors Classifier method gives more accuracy 

and less error as compared to Fuzzy C-means 

clustering method on the basis of evaluation 

parameters: accuracy, reliability, MSE and RMSE.  

Anu K P et. al [7] presented a wrapper based 

feature selection approach working along with an 

ensemble learning algorithm, RUSBoost, to solve the 

problem that affect the quality of training data is high 

dimensionality and class imbalance and thus improve 

the classification performance in the context of 

software quality prediction. And the J48 Decision 

tree classifier algorithm was used as the classifier that 

recursively splits a data set according to tests on 

attribute values in order to separate the possible 

predictions. They were applied two groups of 

software datasets KC3 and CM1 from PROMISE 

data repository. For the evaluation of the proposed 

model, they had included two more scenarios i.e. 

directly using RUSBoost without feature selection 

and without feature selection or boosting. They 

represented the wrapper-based feature selection 

method outperforms comparing to the other feature 

selection methods by using accuracy and RMSE 

value. Therefore, they recommended wrapper based 

feature selection followed by RUSBoost algorithm 

showed better performance than others. 

Dazy Arya [2] described Software Fault 

Prediction System using Fuzzy c-means clustering 

approach and a hybrid technique (Combination of 

Fuzzy c-means and Particle Swarm Optimization) to 

compare performance evaluation results. Fuzzy 

clustering based techniques are discussed for the 

comparative analysis in order to predict level of 

impact of faults in NASA’s PC1. The author was 

carried out the problem simulation by using 

MATLAB 2010a. The author was found that the 

hybrid method gives more accuracy and less error as 

compared to Fuzzy C-means clustering method on 

the basis of evaluation parameters such as accuracy, 

reliability, MSE and RMSE.  

3. Background 

Data mining is about solving problems by 

analyzing data already present in databases. Data 

mining is a powerful tool that can help to find 

patterns and relationships within data that go beyond 

simple analysis. Classification, one of the data 

mining techniques, is to find a derived model that 

describes and distinguishes data classes or concepts 

based on the analysis set of training data [12]. 

3.1 k Nearest Neighbor Classifier 

The k Nearest Neighbor (k-NN) classification is 

a popular, most widely used classification method for 

classifying class of target data based on training data set. 

The training data set is used to classify each member of 

a target dataset [3]. A more sophisticated approach, k-

NN classification finds a group of k objects in the 

training set that are closest to the test object, and bases 

the assignment of a label on the predominance of a 

particular class in this neighborhood. For each data 

point in the target dataset, the distance metric between 

target data and all training data are calculated and 

sorted. The threshold value (k) has to eliminate all 

distance values depend on threshold value (k) and taken 

into account based on classes of selected distance values 

to classify target data [6]. 

Algorithm 1: k Nearest Neighbor Algorithm 

Inputs: X, C, k, x 

Output: class label for Query instance x 

1. Calculate d(xi,x), where (i=1,2,….n) 

2. Order d(xi,x) from lowest to highest,  

3. Eliminate the k nearest instances to x:  Dx
k  

4. Taken into account the imbalance class distribution around 

the neighborhood of the query instances: Dx
k 

5. Return class label for Query instance x 

Figure 1. k Nearest Neighbor Algorithm 
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Table 1 reveals the meaning of various symbols used 

in k Nearest Neighbor. This table is used to form 

better understanding of the algorithm. 

Table 1. List of Symbols Used in the k Nearest 

Neighbor Algorithm 

Symbol Meaning 

X Each data of training dataset 

C Class labels of X 

K Threshold value 

X Query Instance or target data point 

d(xi,x) Manhattan distance between query instance 

and training data 

Dx
k Distance values between query instance and 

training dataset based on k value 

3.1.1 Threshold Value (k) 

There are several key issues that affect the 

performance of k-NN. One is the choice of k. If k is 

too small, then the result can be sensitive to noise 

points. On the other hand, if k is too large, then the 

neighborhood may include too many points from 

other classes. Threshold value (k) should use at least 

square root value of train dataset and be less than half 

of train dataset. CBW k-NN with Biner algorithm 

calculates for each range if train dataset is greater 

than twice of k value. If the number of classes is 2, 

threshold value should be an odd number to classify 

clearly. 

3.1.2 Manhattan Distance 

There are many techniques to measure the 

similarity between the target data and each training 

dataset. One of such widely used techniques is 

Manhattan distance. It is one of the powerful 

calculating distance techniques to classify class of 

target data based on all training dataset. 
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Where d(xi,x) is distance value between target 

data and training data. x are target data point and xi 

represent each data point of train dataset respectively. 

Also i value is the number of records in training data 

set and j value is the number of attributes(column) in 

each data point respectively. 

3.2 Class Based Weighted k-NN 

By the regular k Nearest Neighbor classifier, 

distance values are no limitation range. So, Class based 

Weighted k Nearest Neighbor classifier calculate a 

weight is assigned to each of the class based on how its 

instances are classified in the neighborhood of query 

instance [4]. 

Algorithm 2: CBW k-NN Algorithm 

Inputs: x, k, Range (start, end) 

Output: class label for Query instance x 

1. find closest range by using BINER function  

2. Calculate d(xi,x) for  subrange 

3. Order d(xi,x) from lowest to highest 

4. Eliminate the k nearest instances to x: Dx
k 

5. Calculate weight value distance value d(xi,x) 

6. Calculate total weight values of each class 

7. Multiply class based weighted factor and total weight values 

of each class   

8. Compare final total weight values of all classes 

9. Return class label for Query instance x  

Figure 2. CBW k-NN Algorithm 

Table 2 reveals the meaning of various symbols used 

to form better understanding of CBW k-NN. 

Table 2. List of Symbols Used in the CBW k-NN 

Algorithm 

Symbol Meaning 

Range 

(start, end) 

Whole Training dataset range 

Range (s, e) Final closest subrange 

K Threshold value 

X Query Instance or target data point 

Subrange Return range of BINER function 

d(xi,x) Manhattan distance between query 

instance and training data 

Dx
k Distance values between query instance 

and training dataset based on k value 

 

               (3.2) 

Where wi is weight value of ith distance value and i 

value is 1 to k. dk represent largest distance value of k 

eliminated distance values and d1 is smallest distance 

value. 

                 (3.3) 

Where w(c) is class based weighted factor for each 

class and frequency[c] is total count of each class at 

training dataset [5], [6]. 
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3.3 BINER Algorithm 

Biner algorithm narrows down the range in 

which the response variable has the maximum 

likelihood of occurrence instead of directly predicting 

the value of response variable. The data is 

hierarchically partitioned in the preprocessing step, 

and search for the partition in which the response has 

the maximum likelihood of occurrence is carried out 

at the runtime and then interpolates to give the output 

[4]. 

Algorithm 3: Biner Algorithm 

Inputs: x, k, Range (start, end) 

Output: Range (s, e) 

1. while end – start > 2 * k do 

2. r =end – start  

3. s1, e1 = start, start + r/2 

4. s2, e2 = start +r/4 , start + 3r/4 

5. s3, e3  = start + r/2, end 

6. d1 = getDistance (RangeMean(s1, e1), x) 

7. d2 = getDistance (RangeMean(s2, e2), x) 

8. d3 = getDistance (RangeMean(s3, e3), x) 

9. if similar (d1 , d2, d3 ) then 

10. return (start, end) 

11. else  

12. start, end = si, ei    

13. end if 

14. end while 

15. return (start, end) 

Figure 3. Biner Algorithm 

Table 3 presents the various symbols used in Biner 

algorithm. 

Table 3. List of Symbols Used in Biner Algorithm 

Symbol Meaning 

Range (start, end) Whole Training dataset range 

K Threshold value 

X Query Instance or target data point 

s1, e1 First range of three subranges 

d1 Distance value between query 

instance and first range 

RangeMean(s1,e1) Mean  values for first range of 
training dataset 

si, ei    Selected subrange to calculate 
next sub ranges 

                               

 (3.4) 

Where qi is the ith attribute of the target data, µi is the 

mean of ith attribute values in all data points in the 

range andi is the standard deviation of values of the 

ith attribute in the whole database. 

                 (3.5) 

Where i is number of attributes of each data point and 

N is number of data point at training dataset. 

3.4 Software Defect Dataset Nature 

In this paper, we use three software defect 

prediction data sets from NASA MDP. Individual 

attributes per dataset, together with some general 

statistics and descriptions, are given in Table 4 and 5. 

The software defect datasets have various scales of 

line of code (LOC), various software modules coded 

by several different programming languages 

including C, C++ and Java, and various types of code 

metrics including code size, Halstead’s complexity 

and McCabe’s complexity [10]. The following tables 

are NASA MDP datasets nature and attribute nature 

taken from NASA MDP software projects [9]. 

Table 4. NASA MDP Dataset Nature 
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PC1 C 1107 22 

Flight software for earth 

orbiting satellite 

CM1 C 372 22 NASA spacecraft instrument 

JM1 C 1085 22 
Real-time predictive ground 

system 

Table 5. Dataset Attributes’ Nature 
No Name Description 

1 Loc McCabe's line count of code 

2 V(G) McCabe "cyclomatic 

complexity" 

3 EV(G) McCabe "essential complexity" 

4 IV(G) McCabe "design complexity" 

5 N Halstead total operators + 

operands 

6 V Halstead "volume" 

7 L Halstead "program length" 

8 D Halstead “difficulty" 

9 I Halstead "intelligence" 

10 E Halstead "effort" 
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11 B Halstead “number of delivered 

bugs" 

12 T Halstead's time estimator 

13 lOCode Halstead's line count 

14 lOComment Halstead's count of lines of 

comments 

15 lOBlank Halstead's count of blank lines 

16 loCodeAndCom-
ment 

Halstead's count of lines of code 
with comments 

17 Uniq_Op unique operators 

18 Uniq_Opnd unique operands 

19 Total_Op total operators 

20 Total_Opnd total operands 

21 branchCount Branch count of the flow graph 

22 defects {false,true} non-defect or defect 

 

3.5 Performance Evaluation Methods 

The performance evaluation methods use to 

compare output results with other methodologies on 

the same datasets by using Accuracy, Reliability, 

Mean Absolute Error (MAE), and Root Mean Square 

Error (RMSE) [11]. Accuracy calculate correct 

classification rate. Precision represent correctness 

and Recall represent defect detection rate. F-measure 

or Reliability combines precision and recall in a 

single efficiency measure by taking their harmonic 

mean [1].  

 

              (3.6) 

                 (3.7) 

                 (3.8) 

                 (3.9) 

Where  

TP- if a software module is defective and is classified 

as defective 

FN- if a software module is defective and is classified 

as non-defective 

TN- if a software module is non-defective and is 

classified as non-defective 

FP- if a software module is non-defective and is 

classified as defective 

MAE and RMSE can be used together to 

diagnose the variation in the errors in testing datasets. 

MAE is the average over the verification sample of 

the absolute values of the differences between predict 

and corresponding actual value. RMSE is calculated 

square of the difference between predict and 

corresponding value and then averaged over the 

sample. 

 

            (3.10) 

      

              (3.11) 

 

Where i value is number of testing data point and xi is 

class of ith target data and    is its mean value. 

4. Proposed Approach 

4.1 Overview Design of Proposed System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. System Flow Diagram 
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In overview design of the system, the main 

process is to classify target data that are defective or 

non-defective, user can select dataset and divide 

training set and testing set and define k value that is 

the smaller distance range instead of the whole 

dataset. User can choose method such as k-NN and 

Class Based Weighted k-NN with BINER Algorithm 

for classification. The system displays to user 

classification results (defective or non-defective) 

according to chosen method. The system also 

compares results by calculating accuracy, reliability, 

and error rate methods (MAE and RMSE) for both 

methods. 

4.2 Data Preprocessing 

For two methods, data preparation and 

cleaning procedure is use by defect datasets to check 

unbalanced dataset and cleaning dataset. 

Procedure: Software Defect data preparation and cleaning 

(1) read all instances and given file name 

(2) check the uploaded file for unbalanced instances 

(3) while(!end of dataset file) 

(4) begin 

(5)  read record of dataset line by line  

(6) tokenize attribute value of record  

(7) end 

(8) count original dataset 

(9) remove same record in dataset array 

(10) count remaining record dataset 

Figure 5. Software Defect Data Preparation and 

Cleaning Procedure 

4.3 Problem Formulation with k-NN 

In PC1 dataset, it used to create flight software 

for earth orbiting satellite and total instances are 932 

records. It are divided training and testing dataset by 

ratio 2:1 as training is 622 and testing is 310. Firstly, 

it calculates distance values between testing datasets 

and the whole training datasets by using Manhattan 

distance. By ordering the instances according to 

distance values, it sorts and eliminates distance 

values by threshold value (k) 50. The threshold value 

is dynamic changes for various amounts of dataset. 

Finally, total true class value is 44 and total false 

class value is 6 by k value 50. Therefore, it classifies 

this instance class ‘True’ by using training true and 

false ratio 1:13. 

4.4 Problem Formulation with BINER 

It is sort training dataset by ascending order to 

divide training datasets by biner function. Firstly, it 

divides three range of whole dataset for PC1 such as 

Range 1(0,311), Range 2(156,467), and Range 

3(311,622). And then it calculates sub range for each 

instance of testing dataset by Eq 3.4 and biner 

function according to selected next ranges. Like k-

NN, it calculates distance values are between testing 

dataset and the result training dataset range. By 

ordering the instances according to distance values, it 

sorts and eliminates distance values by threshold 

value (k) 50. And then it calculates weight value for 

each eliminated distance value by Eq 3.2 and total 

weight value of each class as ‘True’ and ‘False’ class. 

For unbalance dataset, it calculates class based 

weighted factor of each class. Finally, it calculates 

final weight values of each class and classifies class 

result according to final weights. 

5. Experimental Result 

For experimental purpose, to demonstrate the 

defectiveness of our approach, we have evaluated 

Accuracy, F-measure, MAE and RMSE of PC1, CM1 

and JM1 dataset. It measures the system performance 

by using various kind of k value as PC1(k=25,32,50), 

CM1(k=16,25,38) and JM1 (k=27,42,65). The 

performance range for evaluation criteria is 0% to 

100%. The more range increase, the higher the 

accuracy except for MAE. For demonstration 

purpose, the evaluation results have shown in 

following figures. In figure 6, kNN is better than 

CBW kNN by k value (25). 

 

Figure 6. Performance Evaluation Result for PC1 

In figure 7, kNN is better than CBW kNN by k value 

(16). 
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Figure 7. Performance Evaluation Result for 

CM1 

In figure 8, CBW kNN is better than kNN by k value 

(27). 

 

Figure 8. Performance Evaluation Result for JM1 

6. Conclusion and Future Work 

In this paper, we implement an approach 

called class based weighted k nearest neighbor with 

biner algorithm. For selecting an appropriate 

classifier to test software defective on imbalance 

data set, this system provide on the classification 

algorithm based on k-nearest neighbors. This system 

also makes the comparison of classification for 

software defective and non-defective using weighted 

k-nearest neighbor algorithm with class based 

weighted factor which is focused on the range of 

nearest data set using BINER function. This system 

evaluates accuracy, reliability, error-rate of two 

methods such as Class Based Weighted k-NN with 

BINER Algorithm and k-NN classifier to compare 

two methods. The factor observed according to this 

system implementation is that the more k value 

increase in CBW k-NN, the higher accuracy in 

classification result. In contrast, there is no change in 

k-NN classification according to k value. In future, 

this system should be upgraded to classify various 

types of software defect datasets. 
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