
MOBILE LOCATION BASED INDEXING OF

DISASTER NOTIFICATION SYSTEM

THU THU ZAN

UNIVERSITY OF COMPUTER STUDIES, YANGON

JANUARY, 2019

Mobile Location Based Indexing of Disaster Notification

System

Thu Thu Zan

University of Computer Studies, Yangon

A thesis submitted to the University of Computer Studies, Yangon in partial

fulfillment of the requirements for the degree of

Doctor of Philosophy

January, 2019

Statement of Originality

I hereby certify that the work embodied in this thesis is the result of original

research and has not been submitted for a higher degree to any other University or

Institution.

…..…………………………… .…………........…………………………

Date Thu Thu Zan

ACKNOWLEDGEMENTS

First of all, I would like to thank the Minister, the Ministry of Science and

Technology for full facilities support during the Ph.D. course at the University of

Computer Studies, Yangon.

Secondly, I would like to express very special thanks to Dr. Mie Mie Thet

Thwin, Rector, the University of Computer Studies, Yangon, for allowing me to

develop this thesis and giving me general guidance during the period of my study.

I would like to extend my special appreciation to Prof. Dr. Nwe Nwe Win,

Vice-President, Myanmar Computer Federation (MCF) for the useful comments,

sharing knowledge, giving advice, and insight which are invaluable to me.

I would also like to express my respectful gratitude to Dr. Khine Moe Nwe,

Professor, Dean of the Ph.D. 9
th

 batch, the University of Computer Studies, Yangon,

for her excellent guidance, caring, and providing me to join EBA internship fieldwork

with foreign exposures during the Ph.D. study.

I would like to express my deepest gratitude to my supervisor, Dr. Sabai Phyu,

Professor, the University of Computer Studies, Yangon, for her patient supervision,

tenderness, encouragement and providing me with excellent ideas throughout the

study of this thesis. I will always remember her for being a mentor to me.

I would like to express my respectful gratitude to all my teachers for their

encouragement and recommending the thesis. To the reading committee teachers,

especially Daw Ni Ni San, Lecturer, English Department, I would like to thank her for

valuable supports and editing my thesis from the language point of view.

I also thank my friends from the Ph.D.9
th

 batch for their co-operation and

encouragement.

Last but not least, I am very much indebted to my family for always believing

in me, for their endless love and support. They are always supportive of me during my

period of studies, especially for this Doctorate Course.

ABSTRACT

Myanmar is one of the countries that geographically located in the disaster-

affected area because of the climate changes and environmental conditions. There is

no way to prevent the natural disaster, but its impacts can be reduced or rescued.

Adequate prior disaster information can save a significant number of lives and

properties. Therefore, the accurate alerts or notifications about disasters are needed

for Myanmar people. Now, there are many mobile phone users along with the

technological progress around the world including in Myanmar. Thus, mobile devices

become the most convenient communication tools which have not time and place

limitations. A suitable disaster notification system based on mobile phones is one of

the useful things as it is also a requirement of Myanmar people. Because of the fast

and easy way, notification messages via mobile phones take benefits in the

communication activities.

The main service task of this system is the delivery of possibly disaster

information to mobile devices which are in the imminent disaster region. The system

finds whether mobile is within a predefined area using its current location. The users

who are in the imminent disaster area will receive the required notification messages.

In this system, the server gets the current mobile position and keeps their location

update structurally are a great challenge along with the continuously changing in the

position of mobile devices. Therefore, a suitable technique is needed to store and

update mobile positions. Moreover, when a message delivery to mobile devices

within the specified range, the factor to be considered which mobile should be sent

the message first. One of the most suitable solutions is sending the nearest mobile

locations as fast as possible.

In this system, a two-dimensional balanced structure, a presort-nearest

location index tree is proposed that allows maintaining, updating, and circular range

querying mobile objects within the required time. It also supports generating nearest

locations by index structure from the desired query point. In this structure, all of the

location nodes are placed by level order thus nodes at any distance can easily find

without traversing the whole tree and the searching time may reduce greatly. It is

harmonized to solve nearest neighbor location queries since the locations of the data

points are based only on their relative distances from each other. In addition, all

mobile locations in the range will be available by the distance at one time.

Then, the system architecture is built for sending notifications by connecting

with firebase cloud messaging (FCM), application server and mobile devices in the

imminent disaster area. To overcome being unnecessary updates at the server, Hybrid

Update Algorithm is proposed in this system. In this case, a virtual mobile dataset is

needed to access several of moving mobile locations for performance evaluation.

Thus, a synthetic mobile location generator is proposed that is based on the creation

of two-dimensional mobile locations. As a result, this generator is free from location

privacy and confidentiality.

The necessary performances are tested by using a JUnit testing schema, which

can automatically apply to run in testing functions. For performance evaluations, the

execution time, updating time and CPU usage are measured by comparing between

proposed presort-nearest location index tree, presort range tree and KD tree according

to the evaluation of tree construction, range searching and neighbor searching over

moving objects. Besides, the distance-based method is applied for comparison of two

of index structures.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LIST OF EQUATIONS

1. INTRODUCTION

1.1 Problem Definition ………………………………………………

1.2 Terminology …………………………………………………..…

1.3 Requirements…………………………………………………..…

1.4 Motivation of the Research ………………………………………

1.5 Objectives of the Research……………………….………………

1.6 Contributions of the Research ……………...……………………

1.7 Organization of the Research ……………………………………

2. LITERATURE REVIEW

2.1 Android Location-Based Services………...…………………….....

2.1.1 Challenges in Location-Based Services……………….....

 2.1.1.1 Components of Location-Based Services…….….

 2.1.1.2 Location-Based Applications….…….….……….

2.1.2 Location Providers………….……..….….……………….

2.1.3 Issues of Location Update Policies……….….…………...

2.2 Structure of Moving Objects...…………………………………....

2.2.1 Moving Object Database……..……………..….……..….

2.2.1.1 Location Management Perspective…………....….

2.2.1.2 Spatio-Temporal Data Perspective……..….….….

2.2.2 Indexing Based Moving Object Structure……….……….

2.2.2.1 Indexing Trajectories of Moving Objects…..…….

2.2.2.2 Nature of Index Structures and Their Issues……..

2.2.2.3 Indexing Current and Future Movement…...….....

2.2.3 Querying Moving Objects…….……………………….….

i

ii

ix

xi

xii

3

5

7

7

8

9

10

11

 11

12

13

14

15

16

16

17

18

18

19

20

22

24

2.2.3.1 Query Types………………………………......….

2.2.3.2 Range Monitoring Queries…………….…..……..

2.3 Synthetic Dataset Generation………………...……………....……

2.3.1 Synthetic Dataset for Moving Objects……….……...….…

2.3.2 Advantages and Issues of Using Synthetic Data….……....

2.4 Notification Process……………………….………………….……

2.4.1 Disaster Notification Techniques…………...……….……

2.4.2 Types of Notification…………………………….….,……

2.4.3 Categories of Location Based Alerting System……….......

2.4.4 Importance of Notification………………..…………....…

2.4.5 General Components and Capabilities of Notification……

2.5 Summary………………………………………………………..….

3. THEORETICAL BACKGROUND

3.1 Trends in Mobile Technologies……………….…..…………….....

3.2 Cloud for Mobile………………………………..………………....

3.2.1 Context-aware Services…..……………..………………...

3.2.2 Location Based Services (LBSs)…………………….…....

3.2.2.1 Reactive LBSs………………………………........

3.2.2.2 Proactive LBSs…………………………………...

3.2.3 Categories of Location Update Policies...……...…….…..

3.2.3.1 Always Update Strategy……………………….…

3.2.3.2 Never Update Strategy……………………………

3.2.3.3 Distance-based Location Update…………………

3.2.3.4 Time-based Location Update…..…………………

3.2.3.5 Movement-based Location Update…………….…

3.2.3.6 Profile-based Location Update…...………………

3.2.3.7 Deviation-based Location Update……..…………

3.2.3.8 Hybrid Location Update………..……………...…

3.2.4 Android Operating System in Mobile Technology…...….

3.2.4.1 Advantages and Limitations of an Android………

3.2.5 Cloud to Device Messaging…….………………………...

3.2.5.1 Firebase Cloud Messaging………………………..

24

25

26

26

27

28

28

29

30

30

31

32

33

34

35

37

38

38

39

39

39

40

41

41

42

42

43

43

43

44

46

3.3 Scope of Moving Object Database...…………………………..…

3.4 Indexing and Its Factors……….………………………..……...... Ant Colony Optimization 44

3.4.1 Range Searching Process and Types…………..………… Ant Colony Optimization 44

3.4.1.1 One Dimensional Range Query………….……….

3.4.1.2 Two Dimensional Range Query…………….……

3.5 Presort Range Tree…………..……………………..……….…….

3.5.1 Procedure of Presort Range Tree (PRTree)……………...

3.5.2 PRTree with Circular Range Searching…..……………...

3.6 Example: Proposed Tree with center and service distance…….…

3.7 Nearest Neighbor Techniques……………………..……….…….. Probabilistic and Naive Bayes Classifiers 5 Rule-based Classifiers 53

3.7.1 Structure Based Techniques……………………………...

3.7.1.1 Ball Tree k Nearest Neighbor (KNS1)……..….…

3.7.1.2 KD Tree Nearest Neighbor (kdNN)…………...…

3.7.1.3 Cover Tree……………………………...….……..

3.7.2 Structure Less Techniques……………….………...……..

3.7.2.1 Brute Force Method………………………………

3.7.2.2 k Nearest Neighbor (kNN)…………..………...…

3.7.2.3 Weighted k Nearest Neighbor (WkNN)........….…

3.7.2.4 Condensed Nearest Neighbor (CNN)...……….….

3.7.2.5 Reduced Nearest Neighbor…..……..………….…

3.7.2.6 Clustered k Nearest Neighbor…………...….…….

3.7.2.7 Rank Nearest Neighbor ………..………………...

3.6 Summary..

4. THE PROPOSED SYSTEM ARCHITECTURE

4.1 Getting Mobile Locations…………. ………………...……….…..

4.2 Updating Client Application's Location……..……......…….…….

4.3 Index Based Structure………….…. ………………..……….…...

4.3.1 Presort-Nearest Location Based Application Server……...

4.3.1.1 Proposed Presort-Nearest Location Tree…...…….

4.3.2 Presort-Nearest Location with Circular Range Search……

4.3.3 Example: Calculating Proposed Index Tree………………

4.4 System Model………………………………………………......…

48

49

50

50

52

53

54

55

55

56

56

57

57

58

59

59

59

60

60

60

61

61

61

64

65

66

67

68

 69

70

72

4.5 Multicast Messaging System…………………..………………….

4.6 Notification System Steps…………………………………….......

4.7 Scheduler Process Module……………………………………......

4.8 Process Flow Using Scheduler……………………………………

4.9 Virtual Mobile Dataset Generation………………………………..

4.10 Moving Object Generator………...…………………….…………

4.10.1 Mobile Location Generator ………….……...……..……..

4.10.2 Process Flow of Generating Mobile Dataset...…………....

4.11 Distance-based Range Searching…………...…………..…...……

4.12 Summary …………………………………………………………

5. IMPLEMENTATION OF THE PROPOSED SYSTEM

5.1 Program Demonstration……………………………...……………..

5.1.1 Main View of Program Demonstration…………………..

5.1.2 Building Range Users Index Tree….…………………….

5.1.3 Sending Level Order Messages…..………..……………..

5.2 System Implementation…………………….………………………

5.2.1 Prerequisites for Using Firebase Cloud Messaging……….

5.2.2 Client Side Application……..………..….………….…….

5.2.2.1 Prerequisites for Client Application…….…….….

5.2.3 Server Side Implementation……..……………….……….

5.3 Summary…………….……………………………………………..

6. EXPERIMENTAL RESULTS

6.1 Means for Evaluation Environment……………………………….

6.1.1 Synthetic Dataset……………………...……………………

6.1.2 Experiments and Test Cases………………………..………

6.2 Evaluation of Response Time by Location Providers…...…...…..

6.2.1 Evaluation of Response Time by GPS……………..………

6.2.2 Evaluation of Response Time by Network Provider……….

6.3 Evaluation of Message Arrival Time for Users ……...…………..

6.3.1 Evaluation of Message Arrival Time for Online Users…….

6.3.2 Evaluation of Message Arrival Time for Offline Users …...

72

73

74

75

76

77

78

79

80

80

83

83

84

84

84

86

86

86

87

88

91

92

93

95

95

96

97

97

98

6.4 Performance Evaluation Metrics ...…………….…………..…….

6.5 Evaluation of Processing Time ……………….…………..…….

6.6 Continuous Range Search …….……………….…………..…….

6.7 Evaluation of Computational Responsiveness Time….……….…

6.8 Discussion……………………………………………………...…

6.9 Comparison of Tree Construction Time…..………………...……

6.10 Comparison of Range Searching Time…….…...…………...……

6.11 Comparison of Nearest Neighbor Search within a Range…..……

6.12 CPU Time of Continuous Range Query………...……………..…

6.13 Discussion…………………………………….………………..…

6.14 Summary …………………………………………………………

7. CONCLUSION AND FUTURE WORKS

7.1 Advantages and Limitation of the Proposed System…………..….

7.2 Conclusion…………………..…………………...………………..

7.3 Future Works………………...……………………………………

AUTHOR’S PUBLICATIONS…………………………………….…………..

BIBLIOGRAPHY………………………………………………………………

98

99

100

101

102

102

103

104

105

106

106

109

110

110

112

114

LIST OF ACRONYMS.. 124

LIST OF FIGURES

2.1 General Architecture of Location-based Services………………………... 12

2.2 Architecture of Mobile Object Database System…………………………. 17

2.3 Objects and Index Structure……...……………………………………….. 19

3.1 Mobile Cloud Computing Model…………………….…………………… 35

3.2 Dynamic Location Update Policies in Various Locations…………...…… 40

3.3 Activities of FCM between App Server and Client App.………………… 45

3.4 App Server, Android Mobile and FCM relations………………………… 47

3.5 Sample one dimensional Range Search between 20 and 60……………… 52

3.6 Sample Structure for Two-dimensional Range Tree...…………………… 53

4.1 Architecture of the Proposed System ……………………………………. 63

4.2 Getting Location of Client Application………………………………….. 65

4.3 Hybrid Location Update for Mobile Application………………………… 65

4.4 Sample Index Tree with Circular Range.………………………………… 67

4.5 Presort-Nearest Location Index Structure by Level Order………………. 70

4.6 Sending Message by Level Order………………………………………… 71

4.7 Client-Server System Model……………………………………………… 72

4.8 Communications between Mobile Phone, FCM and Server……………... 73

4.9 Process flowchart of System with Scheduler Process……………………. 75

4.10 Architecture of Moving Object Generator………………………………. 77

4.11 Process Flow of Moving Object Generator……………………………… 79

6.1 Client Application's Location Update by GPS…………………………… 95

6.2 Client Application's Location Update by Network Provider…………...… 96

6.3 Sending Continuous Messages to Mobile Users in the Range…..……….. 97

6.4 Sending Messages to Mobile Users Who are Offline…………………….. 98

6.5 Comparison of Processing Time………………………..………………… 99

6.6 Comparison of Continuous Range Search Time………………………….. 100

6.7 Comparison of response time…..………………………………………… 101

6.8 Comparison of Tree Constructing Time……………….…………………. 102

6.9 Evaluation of Range Searching Time…………………………………….. 103

6.10 Nearest Searching Time between proposed tree and KD tree……………. 104

6.11 CPU Time for Continuous Range Query Over Moving Objects.………… 105

LIST OF TABLES

Table 2.1 Key Capabilities of Notifications …………………………………. 31

Table 3.1 Credential and Parameter Explanation…………………………….. 47

Table 5.1 Features and Their Explanations ………………………………….. 87

Table 6.1 Parameters and Values ……………………………………………. 91

LIST OF EQUATIONS

Equation 4.1……………………………………………………………………... 66

Equation 4.2……………………………………………………………………… 80

Equation 6.1 …………………………………………………………………….. 99

Equation 6.2 …………………………………………………………………….. 101

CHAPTER 1

INTRODUCTION

Nowadays, mobile phones are used as a daily need with desired information

and search queries. Most of the users required queries are usually based on current or

anticipated locations. For example, searching nearest restaurants, viewing the route

and inquiry information are the user required queries which are supported by pop

technology [17]. This technology normally based on static or quasi-static moving

data. In addition, the services such as receiving weather information, emergency

alerts, and advertisement getting access by automatic notifications are push

technology [84]. This service is usually based on moving positions or mobile

locations. Both of the two technologies come from location-based services (LBSs)

which are one of the active research areas till now. Moreover, the two variants of the

push and pop are two supportive sub-technologies along with the user requirements.

They can provide vital support for disaster notifications. With advances in location-

based services (LBSs), mobile and wireless devices have facilitated the tracking and

monitoring of mobile objects. In such environments, mobile devices regularly receive

their current positions from the location providers and send them to a server. The

server maintains the location information and store in the database. The required

queries such as "which mobiles are currently located within the imminent disaster

area" are processed and results are sent to mobile devices. For these queries, the

server has to search all of the current mobile locations that are in the disaster area.

Therefore, an appropriate structure and nearest searching method are required.

Generally, most of the indexing structures with nearest neighbor search are

separately taken by two parts: building index structure and searching nearest locations

of the desired query point p [23]. The first part of building a tree also includes

appropriate structure for index tree along with receiving and collecting data points.

Then, an appropriate algorithm is used to find the nearest points from a given query

point. It is totally good for static or non-moving objects structure but it may issue in

moving locations or objects indexing. Moving object index structure with the regular

update will also need to cooperate updating of the nearest points searching algorithm.

It may think consistency between index structure and searching algorithm for

discretionary data points query and search will be required concurrency control.

Normally, the nearest searching technique can be divided into two parts:

structure-less technique and structure-based technique. For example, one of the most

well-known techniques such as k nearest neighbor is a structure-less technique and it

is very easy to implement. The general work of structure-less technique is that

distance is calculated from all nodes to the sample nodes of a query and the node with

the closest distance is regarded as the nearest position of nodes [27][34]. These

techniques are very simple but the value of k affects the result. To improve the speed

of query and memory requirement, a variety of tree-based index structures called

structure-based techniques are applied in many areas. Recent advances in moving

objects based research and applications, the positioning technologies and indexing

based structures have collaborated together thus it leads to a perfect technique for

maintaining and updating mobile position in the dynamic environment. Normally, the

purpose of the traditional index structure is generating queries faster and easier with

the required information. However, a good mobile objects' indexing needs not only

faster query but also ability to update regularly. It is not easy to keep and apply for

dynamic data as it needs to be reasonable for updating of an unusual and

unpredictable number of moving positions.

In this system, the presort-nearest location index tree structure is proposed

combining the concept of the nearest neighbor algorithm and tree-based index

structure. Thus it gives the advantage of an index structure to easy data access and fast

query along with the retrieving nearest locations from a location point that can be

learned by the second closest to the nearest third and fourth by each location in the

index structure.

This system explains how to combine mobile location attributes in the

proposed index tree and system architecture is built to deal with the overall system.

As mobile positions are basically used in this system so that it requires continuous

checking to the update positions and the result is tested to valid within a suitable

period of time. When the use of indexing based on location or position, the three basic

positions are normally analyzed such as historical, current and anticipated future

position. This system takes the second one which is based on the current position thus

it has to get its location with the appropriate update will be there. To reduce the

unnecessary and frequent update position in mobile, the location update policy is

proposed by Hybrid Update Algorithm. It combines time and distance-based threshold

to reduce traffic cost. A synthetic mobile location generator is proposed to produce

appropriate synthetic dataset.

In summary, the system is intended to send the notification to mobile devices

which are in the imminent disaster area by keeping current mobile locations and

maintaining them consistently. For example, when a disaster such as an earthquake

occurs, the closest region to the epicenter location is regarded as the dangerous

region. The notification message can be sent fast and easy if the closest locations to

the epicenter are known. Messages can send successively through areas that really

need notification based on the proposed index structure. In this system, circular range

query and presort-nearest location index structure are proposed to send multicast

notification starting from the nearest locations. All of the messages are sent by push

technology which is supported by firebase cloud messaging (FCM). This system

focuses on Android because it is used by the majority of smartphone devices in the

world.

1.1 Problem Definition

With the extending of mobile technology, the new areas are emerged by

integration of getting mobile locations and handling their moving positions. In

addition, the acquiring and maintaining of moving mobile positions widely spread in a

wide variety of location-based applications. Therefore, the storage structures are

required to allow continuously access and fast retrieval of information on these

mobile objects. Some of the index based methods can be used for these objects.

Normally, indexing has its own relevant structure that needs time to build it. It is

saved by building the structure only for points that need to receive information and it

can be used in the multicast notification.

Besides, there is an increasing interest in storage and indexing based on tree

structures. Some previous spatial tree structures are not appropriate for keeping

moving mobile locations because of their unbalanced structure. Searching for an

unbalanced tree may require traversing an unusual and uncountable number of

pointers and positions. Therefore, a suitable balanced two-dimensional tree structure

for moving objects (mobile locations) is required. When the message is sent, it

requires sending the message first to the mobile devices where they are nearest than

the other devices in the range.

Since the variation of mobile locations continuously, tracking the changing

position of mobile devices becomes a new challenge. All of these objects may not be

the same in movement behaviors. Thus, the continuous location queries are the great

challenge and common service demanded by mobile devices. Generally, a repeated

query is a query which is worked in the database only once and remains active over a

predefined query lifetime. It has to continuously update the query to the database with

the predetermined time period. Besides, in moving location queries, not only a query

point itself is moving, but also spatial points such as latitude and longitude stored in a

spatial database can move too. It requires updating both the content and the

organizational structure of the spatial database constantly.

In a client-server system of mobile location, a server usually keeps track of the

location and its update whenever the mobile gets its location. As a result, the current

and update location of each user would always be received at the server side whereas

it would create a problem. There is nothing special for storing static objects but

moving objects will need to be adaptive and dynamic. Moreover, it needs to maintain

the update position consistently and faster query dynamically. If the mobile

movements are small and frequent, needless updates would be received at the server.

Moreover, it is not easy to update the database continuously whenever the locations

change every time. In order to keep moving objects (e.g. mobile locations) in a

database with the updated locations thus, an updating policy that supports a

reasonable update for mobile objects is required.

According to environmental needs, many datasets are generated synthetically

such as animal, mobile user, bus, Hurricane dataset, and so on. A synthetic dataset

usually comes from application-dependent generation. Therefore, a dataset generator

is required about their domain of interest before making any dataset synthetically. In

reality, the millions of mobile positioning data are unavailable for performance

evaluation of index structure. If the mobile location dataset can create synthetically, it

would be free from location privacy and confidentiality. It can be used to get location

data for performance evaluation of proposed index structure. Therefore, the

requirement of generating a synthetic dataset for dynamic mobile locations that seem

realistic is a challenge.

To define notable problem definitions related to this work:

Problem1. Getting current position of mobile devices with necessary updates

as well as reducing the server bottleneck.

Problem2. Sending notification message continuously that begins from the

nearest mobile devices in the range.

Problem3. Generating a large number of mobile locations for performance

evaluations synthetically that seems realistic.

It should be noted that these problem definitions are closely related to each

other and all of them have the same destination. The main idea of this system is

sending notifications to mobile devices which are in the imminent disaster area.

1.2 Terminology

In order to get mobile locations and keep them into server consistently, the

following general terminologies are needed.

Location Based Services (LBSs): Location-based services (LBSs) are used for the

services based on the geographical location of mobile devices. It is also a vital role in

finding the necessary information and querying the traffic areas. There are two types

for these functions that automatically receive information from the service providers

and inquiry or request from the user. These types of services are called push type of

service and pull type of service. Both of them have basically come from location-

based services which have their own advantages and applied in many areas [41].

Global Positioning System (GPS): It determines location using satellites. It does not

need any kind of internet or wireless connection. One of the main features of the GPS

is obtaining a current location for GPS-equipped devices or materials. GPS system

consists of obtaining location from satellites, sending it to receivers, monitoring the

accuracy and continuous changes [74].

Cellular Network: It supports receiving locations without fixing the initial location.

It returns coarse fixes when the GPS is not enabled. These systems provide to support

unlimited numbers of users based on the radio frequency (RF) channels that have the

same limit in a group of cells [100].

Network Provider: It finds the user location with the help of cell tower and Wi-Fi

access points. An accurate location is released after checking the status of the results

obtained by network lookup. It can work both indoors and outdoors even it is less

accurate compared to GPS. The results are fast and consume less battery [45].

Google API: Generally, most of the mobile phones receive their locations with the

help of GPS. The activity of their accessing locations is different depending on the

type and the features or functions of mobile devices. Some devices have complete

features of getting the location from a cellular network. Likewise, some devices

receives their accurate and fast locations from the network provider. There is an

optimal solution that can switch location providers such as GPS, network provider,

and cellular network. This is called Google API which exists as a tradeoff provider

between devices' features, type and functions [81].

Google Cloud Messaging (GCM): Google could messaging (GCM) provides for

sending the message from cloud to Android device. It has no cost that exists as a

persistent connection between a third-party server and Android devices to send data.

It maintains queuing of messages when the target application of the mobile phones is

offline. It has the ability to send push notifications and supports multicast message

system [77].

Firebase Cloud Messaging (FCM): Firebase cloud messaging (FCM) is a free

service that provides delivery of the message with reliably and securely. It is the

upgrade version of Google cloud messaging (GCM). The main objective of this

version is to increase reliability and update the infrastructure of current GCM. It is

well integrated with other Google services so that it occupies fast input/output and

less access time [82].

Android: Android is an operating system for Linux-based mobile devices that have

an operating system, middleware, and applications [75]. It provides for developers to

create open platform applications. It supports a set of location-based applications and

services which helps the users to access the multiple services based on the user

location.

Push Technology: It is an Internet-based technology that the initial transaction or the

request state is started from the server or the publisher. Push is also known as

“Webcasting", “Net casting" or "Point casting” [18]. Push notification is a kind of

notification that has been sent out to a device by a central server. Push has more

capacity than pull technology such as immediacy, efficiency, reduced latency, longer

battery life, shorter learning curve.

Indexing: It is a special data structure that allows having quick access to data or

objects systematically. Indexing is usually used for users to display results that match

the desired user criteria. In recent years, there has been a survey on indexing

algorithms together with the activities of moving object databases to fast and efficient

processes [51]. An indexing based structure is very suitable for continuous queries

within a specified time by sending multicast messages, reports or notifications. It is

more suitable as location points are taken repeatedly within a range by only once the

query.

Location Update Policies: Advancement in mobile computing technologies, location

update policies or strategies has emerged in various location-based areas. Each of

them has suitable applied areas with specific calculation. When the location update is

done, the main concept is how many times of update process are required in each

device. If the process is slow, it is difficult to get the latest position of this device. On

the other hand, when the process is fast, an extra update occurs repeatedly and it

consumes not only update cost and battery power [69].

1.3 Requirements

Throughout this work, the following objectives are pursued:

• To receive the user’s mobile phone from a special location provider called

Google API

• To register to FCM that generates unique token ID to mobile phone

• To communicate to a server not only sending token ID but also the latitude

and longitude of the current location

• To fetch notification from the server and sends to the mobile application

with FCM

• To solve frequent or unnecessary update in both client and server side

• To support fast range query with a relevant index tree structure

• To send message starting from the nearest to the remote locations of mobile

devices in the range

• To solve the performance of proposed approaches by comparing other

existing index structure and without using indexing.

• To conclude the work an interpretation of the evaluation's results

1.4 Motivation of the Research

People may be unobserved about the imminent natural disaster so that the lack

of adequate news or notifications causes the major damage during the disaster.

Especially, people in the disaster zone will be more difficult for those who do not

know imminent disaster notifications. The concise disaster information can save a

significant number of lives in some affected situations such as train derailments, head

injuries and gas-related fire damage. In this system, multicast notification service is

utilized to send notifications only to those who need to receive them.

1.5 Objectives of the Research

The main reason for this research is building presort-nearest location index

tree structure for range and nearest queries by incorporating dynamic attributes

(mobile locations). The next aim of this research is to reduce unnecessary update,

communication cost, and server bottleneck problem by using Hybrid Update

Algorithm. The last one is proposing a synthetic mobile objects generator to produce

many mobile locations that can be used in performance evaluation of moving objects

indexing.

The objectives of this research area are as follows:

• To be a balanced frequency of update location to the server and reduce

traffic cost

• To support continuous range query for registered mobile locations

• To send message continuously for all mobile devices starting from the

nearest mobile location in the range

• To generate realistic synthetic mobile object dataset for performance

evaluation

• To be aware of the disaster-prone area and give notification message to

mobile phones around the disaster area

• To conduct disaster preparedness and management plan

• To save life and property affected by the disaster and reduce disaster

impacts

• To send notification messages in desire time using Android Push

Notification approach

• To reduce thousands of network connection by FCM that supports

persistent connection between mobile applications and application server.

• To take disaster recovery and rescue actions

• To provide empirical studies of using index tree and without index tree for

mobile objects

• To send a message starting from the nearest mobile locations as fast as

possible

1.6 Contributions of the Research

This research is concerned with multicast disaster notification system which is

sent by using Google API, firebase cloud server that has firebase cloud messaging

service and location-based services (LBSs). The results of this research are the web-

based notification system and the implemented Android based application. The

proposed index structure in this research is a mobile object based index tree that

supports continuous range queries and nearest locations in the range. In fact, the range

query is available without using index tree based on either a distance-based method or

other measurements. But, it has to search along with a sequential or order match

pattern by each object in the dataset. Therefore, two issues are found in this way.

i. Such scanning of the large dataset can be very high cost.

ii. The larger dataset, the more execution time is required by sequential

searching.

Especially for repeating a single range, indexing based range searching is

faster than each of the single match of range searching. The proposed index tree

provides to search range queries in conformity with mobile objects. Then, the relevant

update policy based on distance and time threshold values is proposed and it is called

Hybrid Update Algorithm. It provides to be balanced update frequency for locations

of mobile objects between mobile applications and service provider. Finally, the

required synthetic mobile location generator is proposed by the process flowchart, the

architecture, program demonstration and application test with performance evaluation.

The main contributions of the proposed system are as follows:

i Proposing presort-nearest location index tree that is suitable for continuous

range query and nearest query of moving mobile objects.

ii Producing nearest nodes by level that supports to send message starting

from the nearest locations of epicenter.

iii The dynamic index structure that can handle both update and retrieve

location information within the desired response time.

iv Hybrid Update Algorithm is proposed to solve unnecessary frequent

update position of moving mobiles at the client side.

v A procedure to generate the virtual mobile dataset is proposed that is the

creation of two-dimensional mobile locations.

vi Generating location objects using random functions, categorizing three

behaviors that they seem realistic by synthetic mobile location generator.

1.7 Organization of the Research

This dissertation is organized with six chapters. This chapter includes an

introduction, the motivation of the thesis, the problem statements, objectives, focuses

and contribution of the research work. Chapter 2 surveys the challenges and

components of location-based services, different sources to handle moving mobile

objects and index tree structures on literature that deals with the dissertation. The

theoretical background of moving objects database structure, types of range search

and nearest neighbor search, location update strategies, and notification methods are

described in Chapter 3. The architecture of the proposed system and the proposed

algorithms for moving mobile objects is discussed in Chapter 4. The design and

implementation of the proposed system are represented in Chapter 5. Chapter 6

describes the evaluation of the experimental results by measuring with the usage of

the proposed presort-nearest location index tree, presort range tree and KD tree along

with the comparison of distance-based range searching. Finally, Chapter 7 presents

the conclusion extracted from this research works and depicts the future research

lines.

CHAPTER 2

LITERTATURE REVIEW AND RELATED WORK

This chapter categorizes into four parts: location-based services (LBS),

structure of moving objects and their databases, indexing based moving objects

structure, the importance of notification, its related researches, and description of

disaster notifications.

2.1 Android Location-Based Services

This section aims to categorize challenges in Location-based services (LBSs)

over Android mobile phones, Android location providers and issues in location update

policies. The challenges, types, components and applications of location-based

services will be discussed and studied with respect to its related works. Then, various

location providers and their features are studied together with the issues of location

update policies.

2.1.1 Challenges in Location-Based Services

Location-based services are services based on the device’s geographical

location given to the mobile phones. It typically provides information or

entertainment. It largely relies on the mobile devices' location. Normally, the special

issues and requirements related to LBS have grown since LBS together with the

variety of research areas of positioning, modeling, and analysis of location-based data

are rapidly increase [31]. In order to make the LBS services possible, some

infrastructure elements are necessary, including:

• mobile devices,

• applications,

• communication network,

• positioning of components,

• servers,

• services.

Push notification, one of the location-based technologies is a clickable real-

time message system which appears on the screen even mobile is in an idle state. For

this technology, there is an inexpensive way of communication that interacts between

a third-party server and application. Moreover, it can create rich push messages with

valuable notification and information. This is called firebase cloud messaging that

allows queuing and delivering the message to mobile devices to the server [82].

Besides, as push comes from location-based services, it also has a similar service

called pull [19]. However, apart from each of functional differences, the results of two

types are quite different in energy consumption [18]. In pull type, the mobile

application pulls the server whenever it requires new messages. In this way, pull may

suffer battery consumption and message delays when the pulling frequency is too high

or too low [42]. Nevertheless, both approaches are used in risk reduction

management, such as natural disaster alert system and other information accessing

systems such as advertising, product promotions and so on. A general architecture of

the location-based services system is shown in figure 2.1.

Figure 2.1 General Architecture of Location-based Services

2.1.1.1 Components of Location-Based Services

Each of the location-based services is composed of several components and

their connections. The required components for building location-based infrastructure

are the following [93].

(1) Communication Network: It provides a connection between the mobile

device and service provider. All of the requests from mobile devices are

transferred to the provider and the result information is delivered back to

the mobile devices.

Mobile

Device

(User)

Positioning

Communication

Network

Service

and

Content

Provider

(2) Mobile Devices: It serves as an interface tool that includes positioning

technique. It is mainly used for entertainment, sharing news and location-

based services. Today, the various mobile devices are emerged along with

the improvement of technologies.

(3) Positioning Component: It processes acquiring position, providing location

and determining the current position. The positioning can be classified into

two types: indoor and outdoor. Indoor positions are obtained by using

radio beacons or active badges. On the other hand, outdoor positions are

easily received with the help of location providers such as GPS, cellular

network and so on.

(4) Service and Location Provider: It mainly supports the accurate result

requesting for desired location or position of mobile users. Each of the

location providers has its own benefit according to the features and

functions of mobile devices. It provides a number of different services

especially for requesting and offering a location for mobile devices.

(5) Data and Content Providers: The responsibilities of these providers are

maintaining the location data and information in which the results are

satisfied and applied in many areas.

2.1.1.2 Location-Based Applications

The location-based services are greatly used in several different applications.

It enables user desired applications like local advertisements, emergency notifications,

tracking devices or moving objects, and finding nearby friends etc. There are also

military and even terrorist location-based applications. The LBSs applications can be

categorized into five groups.

(1) Finding positioning and location services

a. application services (shops, hotels, ATMs, ...)

b. connector services (hot spots, adapters, ...)

(2) Searching location to increase (network) services

a. incoming or outgoing connection improve by location

(3) Providing information based on location

a. traffic guides, product promotions

(4) Making others check of user current location

a. user (individual), range search, activities (group)

(5) Security

a. access users' location and care of their security

2.1.2 Location Providers

Today mobile techniques or services are mostly based on the current location

of the user that receives from the location providers. There are three main types of

location providers that support for getting locations. They are GPS, Network Provider,

and Cellular Network. They have the following features.

(a) GPS features (GPS, AGPS)

i. It determines location using satellites.

ii. It does not need any kind of internet or wireless connection.

iii. This provider may take a while to return a location fix depending on

the condition.

(b) Network provider (AGPS, CellID, and Wi-Fi MACID)

i. It determines location based on the availability of cell tower and WiFi

access points.

ii. It results are retrieved by means of a network lookup.

(c) Cellular Network (CellID, WiFi MACID)

i. It supports receiving locations without fixing the initial location.

ii. It returns coarse fixes when the GPS is not enabled.

iii. It provides capabilities by connecting to the specific set of hardware

and telecom.

The basic location provider that is usually used for the current location of the

mobile device is GPS. This signal is uncertain to estimate moving object locations

under weak conditions of Satellite [66]. Sometimes, Google map is used to map the

road and places of interest in the location-based system. Amit Gosavil, Vishnu [36]

proposed to notify the users who are located in the possible disaster zone and guided

to the nearest location of a secure or safe place on the Google map of the application.

This system aims not only normal people but also blind people to save lives and move

them into the nearest safe zone or shelter prior to the disaster. It supports both visual

and audio warning about disaster including the evacuation guidelines. But this system

is not suitable for developing countries that are poor in the ability of Google map and

it becomes the main challenge in this system [92]. In fact, all of the mobile devices

have their own abilities to get the location. Some devices have good features of the

cellular network and produce accurate locations for these devices. Likewise, some

devices receive their fast and accurate locations with the help of network providers.

The common location provider that is basically used to get location is GPS. There is

an optimal or special location provider that can switch between different location

providers and their functions called Google API. It supports to access facility and

allows updating schedule with a combination of effective techniques.

2.1.3 Issues of Location Update Policies

 Along with the rapid improvements of location-based services, tracking the

changing position of locations becomes a new challenge. The location of the user

current position is always received at the server side whereas it would create a

problem. If the mobile movements are small and frequent, unnecessary updates would

be performed at the server [41]. The objective of location update strategy is to provide

efficient search-updates and support location management policy in location-based

mobile computing.

Mohammad Wasif [94] also proposed a distance-based method and the update

is done for mobiles with different velocities using distance method and the graphs are

drawn for different modes and analyzed. It may reduce the update cost since an

update is needed only when the mobile moves to a new location area. It increases in

traffic volumes and the bottlenecks should be removed.

 Cheng, Pingzhi Fan proposed a hybrid location update strategy in which an

update occurs either the movement threshold or the time threshold is reached. The cell

movement is count and the timer is set to zero initially. The convex function is used

for the movement threshold and the timer is increased after a particular time period.

The signal cost can be reduced with the help of the movement threshold value. This

system showed that the proposed scheme is better performance than MBLU scheme

[21].

 Vicente Casares_Giner also proposed a hybrid location update scheme that

combines two update policies such as movement and distance based location

strategies [35]. This strategy avoids useless location updates and shows the results of

using the distance based scheme that produces the best result compared with

movement based strategy. The results obtained from the empirical analysis show that

it needs little memory in the mobile terminal and the good performances can be

obtained as distance-based scheme. However, the mobile terminal has to search for

the identity of the new visited cell in a cache memory after each movement.

 The issues of location update on the mobile device and the results obtained

after transmission of continuous location-dependent queries from the server are

discussed [52]. These queries are controlled by the response time constraint. The

storing and processing of moving object values have dynamic and real-time

properties. Therefore, this system proposed a new method called Adaptive Monitor

Method (AMM) that provide less update workload and monitor the update position of

moving objects.

2.2 Structure of Moving Objects

Since traditional database systems assume that data stored in the database

remain constant unless it is explicitly modified, they are not appropriate for

representing, storing, and querying dynamic attribute such as moving object because

the database has to be updated continuously. Moreover, if traditional multi-

dimensional index structures such as R-tree [7] are used for indexing moving objects,

similar problems still remain. The modification of location may need to split or merge

the nodes. This requires additional overheads. In the worst case, frequent index

rebuilding may be required. For these reasons, R-tree based index structures are not

proper to index dynamic attributes such as the positions of continuously moving

objects. This section discusses the properties of moving object database with two

perspectives and its advantages. Then the indexing based moving objects structure

and query types are consulted with the applied areas and related works. Especially,

indexing based range monitoring queries are studied in moving object index

structures.

2.2.1 Moving Object Database

Moving objects are objects whose positions are changed instantly e.g. moving

cars, fighter airplane, ship etc. The normal data is usually stored as constant and less

update in the database. So, there is a problem that the present database don't know

how to manage and query such moving objects. To represent a moving object in a

database, it needs to update very frequently the position of the moving object.

Therefore, moving object database has emerged which is a database that can represent

and query the moving object. It can run powerful query languages and answer any

kind of questions about movements. For example, which mobile users are closest to

an imminent disaster region? Which routes are safe for them? The architecture of a

moving object database system is shown in figure 2.2.

Figure 2.2 Architecture of Mobile Object Database System

The advantages of mobile object database are the following.

• It is a simple approach to handle location management using DBMS.

• It needs very few updates to the database

• The architecture shall not cost much to construct.

• The answer queries involve both temporal and spatial data.

• It can handle the uncertainty of the mobile unit location

The disadvantages of mobile object database are the following.

• The mobile unit should have the capability to give its location uncertainty.

• The dynamic attribute may also need to be updated frequently if the

mobility pattern is not smooth.

• A function for the dynamic attribute may not be able to express in few

cases.

2.2.1.1 Location Management Perspective

There are two main purposes in moving object database.

(1) To maintain the current locations of moving objects dynamically

(2) To ask queries about the current or anticipated positions of the moving

objects.

Spatio Temporal Queries

Results Mobile Unit

Unit

Mobile Unit

Unit

Mobile Unit

Unit

Mobile Unit

Unit

U

P

D

A

T

E

DBMS

User

Request

Moving object sends their current positions to the database and database

performs updates. To keep and update the location of objects instantly, each of the

objects sends its position very often. The update between a server and moving objects

need to be balanced. If the updates occur and request to the database frequently and

the error in an update or last location in the database is received small, the update cost

with database workload becomes high. Conversely, if the update occurs too slowly

and the stored position is wrong, the actual positions become large. If the update

performs very often, the error is small and the update load is very high. If the update

performs as less frequent, then the update load is low and the error is large.

2.2.1.2 Spatio-Temporal Data Perspective

It is a database which stores not only the current status of traditional spatial

data but also the whole development process history. This type of database is used in

the following situations.

(1) Need to reach in time to a particular period of time and to retrieve the

status at that time. E.g did whales habitats move in the last 20 years?

(2) For understanding the changing state of the things, they will be analyzed

after confirming the good relationship. E.g is the Dead Sea shrinking?

Therefore, there are two common questions.

(1) Which data are stored in a spatio-temporal database?

-A point, line, region, network, partition

(2) What kind of change may occur?

-Discrete change: Construction of a building

-Continuous change: Vehicle

2.2.2 Indexing Based Moving Object Structure

Indexing based researches are widely emerged in moving objects environment.

The traditional data structures have not been designed to flexible dynamic updates of

moving objects. Researchers introduced new index structures or modified the existing

index structures that proved to be efficient and robust in moving objects. Most of

them focus on using a single index and its related query types. Some propose a hybrid

tree that combines at least two index structures and compares to single index

structure. Indexing is a special data structure that allows having quick access to data

or objects systematically. Indexing is usually used for users to display results that

match the desired user criteria. Normally, indexing technology has been used for

moving data in recent years. It is used as an optimization technique in real time that

manages and stores moving locations and query based on them. The objects and their

index structures are described in figure 2.3.

Figure 2.3 Objects and Index Structure

2.2.2.1 Indexing Trajectories of Moving Objects

The index structure has two types of category. These are (1) the histories or

trajectories based index structure and (2) the current and near the future position of

the index structure. In the first type, the movement of an object in a k-dimensional

space is transformed into a (k+1) dimensional trajectory space that has a time

constraint. Some examples of these types are the Trajectory-Bundle tree (TB-tree) and

Spatio-Temporal R-tree (STR-tree) which are proposed [71]. The results for both

these structures are adequately supportive of moving objects and better than the

traditional index type especially for queries related to moving object trajectories. Tao

and Papadias [87] proposed the Multi-version 3D R-tree (MV3R-tree) that combines

multi-version B-trees and 3D-Rtrees.

 In the second type of category, the common approach is linear function based

moving object location. In this type, the database update occurs when the mobile

object or moving object changes its deviation or speed or when the parameters of the

linear function change. The time-parameterized R-tree (TPR-tree) is proposed by

modifying R tree Saltenis [76]. In this scheme, the moving object position is

described as a reference position with the corresponding velocity vector. The TPRtree

focus on both the positions and velocities of the moving points when the nodes are

1

2

3

5

6

7

8

A1

A2

B1

B2

A B

Root

Root

A B

A1 A2 B1 B2

1 2 3 4 6 7 5 8

4

splitted. An efficient index tree structure using partition trees is proposed by Tayeb

[48]. PMR-Quadtree for indexing moving objects and discussed the issue of index

structure for moving objects based on the query of current or near future positions

[89].

Agarwal [4] discussed the main concepts of creating various schemes and

proposed an efficient index-based scheme to process nearest-neighbor queries

approximately and appropriately. With the extending of web service technologies, the

storing and processing of moving objects based on index structure dramatically

increase in a wide variety of applications. This index structure includes monitoring

the continuous changes of moving objects and maintaining their accurate locations in

moving object database. The new types of spatiotemporal queries are presented [99],

as well as algorithms to process such queries efficiently.

Besides, the two access methods namely the Spatio-Temporal R-tree (STR-

tree) which is basically come from R-tree that traces the identity of trajectory and the

Trajectory-Bundle tree (TB-tree) that focus on the trajectories are introduced allowing

to query moving data.

2.2.2.2 Nature of Index Structures and Their Issues

Various spatial index structures can be categorized into three main groups: the

index structure group of the Grid file, the R tree [39] and the B+tree variant based on

the Grid file. Normally, most of current index based algorithms and structures are

built based on one of the index structure of above-mentioned groups. For example, the

Gird index structure is the best index structure for main memory resident with less

space and it can easily manage and process moving object queries especially supports

query performance.

But, Grid index has two limitations based on data size and distribution. First, it

is very fast for query performance since it is a memory-resident index structure but it

cannot process for a large dataset of moving objects. This is because it has the size of

memory thus it cannot handle when the size of the moving objects or static objects

exceeds the memory limit. Second, the memory size and data distribution are closely

related so that the grid index performance for data distribution may degrade with the

low resolution of cell size. Besides, most of the cells include a very small number of

moving objects in cell-based index blocks thus the storage utilization may become too

slow. Moreover, the query processing and storage cost may be complex if the

resolution is too high. When the queries are overlapped in a large cell, the required

objects for each query in the cell will be evaluated and retrieved. It is difficult to

decide the optimal solution of each query with the great challenge for Grid-based

resolution.

The second and third index structure groups are R tree and B+ tree. Both of

them are disk-resident index structure. Today, many novel index structures based on

R-tree variant index structures have been discussed and proposed such as PR tree, the

previous R tree that always produces result by a window query [8], R
*
-tree [15] that

holds for various types of queries and executions for both points and rectangles and

TPR
*
 tree which collects the unique features of moving objects from a set of data

mining algorithms [88]. R tree suffers update performance for fast moving objects but

it is suitable for real-time or continuous query processing. This upgraded R trees such

as TPR- tree and other disk resident index structures have the same ability of R tree so

that the update cost may high due to moving location update rates. The more variety

of moving objects, the more frequent splitting and adding of moving nodes in the

index may occur. Therefore, several research solutions and proposals are proposed to

overcome the difficulty of update problems over moving objects. The disk resident

index structures like the R tree are combined with the advantages of Grid file index

structure which is a memory resident indexing technique. Likewise, the upgraded R

tree like TPR tree incorporates with the other memory resident methods that support

query performance.

Sometimes, the Grid file that has a high ability of query performance

cooperates together with B+tree. The corresponding examples are Bx-tree [41],

ST2B-tree [20] and Bdual-tree [98]. All of these index tree structures are firstly

combined with a grid for index space then its space is divided into the same-sized

cells in the grid. Moreover, the cell-based inverted index structure such as the Grid

file is not used directly so that the cells are sorted based on the theory of an ordering

method such as one-dimensional index method called Hilbert curve or Z-order curve

[41]. In this method, the data nodes in the index structures become the cells and

managed by one dimension index structure instead of using multidimensional index

structures. The advantages of this index are reducing the insertion and deletion cost.

The ST2B-tree is built based on the various density distributions so that it is suitable

for high dimensional data values but it still limits from the suffering to decide the

appropriate resolution of the grid in this index tree.

Since some traditional spatial index structures are unbalancing, they are not

enough for storing moving object positions. Using an unbalance structure leads to

traversing an uncertainty and an uncountable number of moving nodes and indexing

pointers. Presorting before tree structure is one of the ways of construction a balanced

tree. The objective of a moving index structure is both query and update to be running

smoothly. Thus, moving object databases are created along with relevant structure

query language for accessing [38]. The index structure that can quickly access the

query is not easy to take the appropriate update. In other words, it is rarely to be

perfect index structure for both updating and querying.

Therefore, moving object types and behaviors are classified and stored them

separately in the indexes [83]. Thus, the duty of the update consistently undertakes at

the client side and efficient and fast query processing is done on the server side by

proposed index structure. In recent years, there has been a survey on indexing

algorithms together with the activities of moving object databases to fast and efficient

processes [73]. Normally, indexing has its own relevant structure that needs time to

build it. It is saved by building a structure only for points that need to receive

information and it can be used in the multicast notification. Nowadays, indexing has

various types and fieldworks to apply in the real world. Some types are good in

querying and some are in updating.

2.2.2.3 Indexing Current and Future Movement

There have been recent research works that use indexing current and future

movement of moving objects. These works can be classified into two groups:

indexing the moving objects location and approximating the moving movements

based on functions. The static object requires no update where fast moving object

varies locations over time. Although the static objects do not need to update in the

database, the moving objects regularly update their locations to the database. It causes

high database workload especially for a large number of moving objects.

To overcome this issue completely, Y.Lee [55] proposed a technique that uses

the hash function to hold moving objects in the bucket. The bucket data for each

object is saved together with object location. An update occurs when the moving

objects are out of the current bucket (i.e. objects move away from the original

position). All of these update positions are triggered and locations are updated in the

database. The result of this method saves time for update frequency and speed up the

process between moving objects and the database server. But, the accuracy of this

method is not good for every query. This is because it is hard to distinguish the

objects which are in the query range or not after passing each of the range in the

bucket. Then, Kwon [51] introduced the Lazy Update R-tree (LUR-tree) which has

less update concept. This index tree comes from the R tree so that it has a bounding

rectangle called minimum bounding rectangle (MBR) for each query. In this tree, the

deletion of every object is reduced and the objects are deleted only when the objects

move out of the MBR. As a result, this proposed index may overlap with the

enlargement of MBRs severely and degrade query performance with traversing the

sub-trees repeatedly.

The next research work that provides to improve the update process is

discussed by M.Lee [56]. The issue of the traditional R-tree is introduced and a new

update strategy is proposed. When the R tree is updated, searching starts from a top-

down hierarchy so that it takes more time than usual. In this R tree strategy, all of the

updates are started from the root. The main idea of a new update strategy is to process

the update from the bottom of the index structure. The initial idea is placing the

incoming moving objects by enlarging the MBR and storing them in the leaf of this

index tree. The additional Direct Access Table (DAT) is taken as an auxiliary data

table structure. All of the index nodes are kept as a summary and it can be accessed

directly from the R tree.

Christian S. Jensen proposed B+ tree-based index structure for moving

objects. The locations of moving-object are stored together with the update time

stamp as vectors. Since it is based on the B+ tree, it needs to linearize

multidimensional space to one-dimensional space of moving object positions.

Therefore, a novel linearization technique is also introduced for two-dimensional

moving locations. The result showed the reduce insertion and deletion cost. They only

focus on the current and histories of moving objects and neglect about the future

position of moving objects. The proposed algorithms for both range query and nearest

neighbor query provide for current or near the future position of moving objects [41].

Yuni Xia introduced a novel index structure, Q+Rtree which is the

combination of Quadtree and R tree. It is a hybrid index structure that divides the

moving objects into two types: fast moving objects and quasi-static objects. Each type

of objects is separately stored in the R tree and Quadtree. The fast objects require

more update time than quasi-static objects so that they are stored in Quadtree. The

quasi-static objects are collected and processed in the R tree. This index structure only

focuses on the current positions and history of moving trajectories. In summary, this

novel index structure supports not only query performance but also update

performance [48].

2.2.3 Querying Moving Objects

Moving objects databases need to incorporate the location of moving objects

and their frequent updates that lead to support efficient queries such as nearest query,

range query processing. Existing database management system is insufficient to

maintain continuously changing data. Thus, there are two disadvantages to represent

moving objects in the database.

1. Database management system cannot instantly keep the mobile frequent

updates.

2. Continuous updates lead to a serious connection bandwidth overhead.

Therefore, the changing positions of objects are tracked to collect the

continuous movements in the moving object database. The indexing techniques for

moving objects develop and offer various query services based on moving positions.

The point queries, exact match queries, KNN queries, and range queries are common

type queries in moving objects databases. There are several queries that have been

studied, e.g. simple queries, compound queries, query string queries, location queries,

on-analytic queries, and special queries.

2.2.3.1 Query Types

An index structure is used to improve the speed of insertion and retrieving

data in the database. It usually arranges nodes or data without searching every tuple in

a database table. There are many forms of index structures that provide different types

of queries. Some of the query types are the following.

1. Simple Queries: Accept words and phrases as input text, and find similar

words and phrases in the text bodies in the index structure. Additionally,

the highest accuracy in similar words is specified and all of the queries are

searched together with respective query priorities

2. Compound Queries: Receive various queries at the same time, and give the

result-sets with the conjunction of results and a disjunction result.

3. Range Queries: Search the data and objects within the range by queries and

reply the results that contain values in the range.

4. Query String Queries: Input the desired query for each user, return

available query results.

5. Location Queries: Accept location of the object with latitude and longitude

coordinate from location provider and return accurate location as a

document.

6. Non-Analytic Queries: Only produce the exact match of words and phrases

without using analytical concept or method.

7. Special Queries: Produce the documents that are in the index or not

according to the desired query.

2.2.3.2 Range Monitoring Queries

Based on the types of moving objects, such as geographically distributed

moving objects, there is a special index structure that allows generating range

monitoring queries over content-match and group-aware queries [44]. Some of the

indexes preserve only for a specific type such as the trajectory of moving objects [47].

The common index for different types of query special is a grid structure. With the

rapid distribution of spatial moving objects, a Distributed Grid Index (DGI) was

proposed [59] that accurately interrogate the objects' location by unique object's ID.

Sometimes, the spatial index structure such as the R tree used the partition of grid

index that became less overlap and gained information [30]. Like the grid structure, a

Quadtree index offered [80] better performance regardless of the amount of moving

objects. However, using a simple, uniform grid index was basically supported to

query processing and it is weak in update performance [78].

In order to better help mobile objects' query was proposed [72]. Some survey

paper thought uncertain data or object index structures were not applicable to all types

of query processing [43]. As [29] discussed that some tree-based algorithms such as R

trees are not suitable for high-dimensional data in real-life applications. Instead, they

proposed Grid-index algorithm (GIR) that offers reverse rank queries with a little

memory cost. On the other hand, [102] discussed that it is hard to get an optimal

resolution of index based on the grid and also R tree with the skewed mobile objects.

As a result, a qualified index structure depended on the structure of index, types of

moving objects, and queries.

Some index for moving objects are based on queries regardless of moving

positions, speed or movement nature [97]. A suitable way of indexing and querying to

moving objects is having a good design, such as a spatio-temporal indexing using

key-value store [32]. Due to the variation of moving objects, the concurrency problem

may be occurred in their indexing so that distributed index structure that exploits in

multiple machines [37].

2.3 Synthetic Dataset Generation

This section consults the reason of generating synthetic dataset over moving

objects and applied for works in various areas. It also discusses advantages and issues

of using synthetic moving object dataset.

2.3.1 Synthetic Dataset for Moving Objects

Synthetic datasets are used to create virtual mobile locations when the

thousands of mobile locations are not easy to get in reality. Mobile Objects have their

own different behaviors such as moving types, bearing angles, etc. Therefore,

synthetic mobile location dataset is generated based on three different behaviors. To

generate virtual locations that seem realistic, random locations are created firstly and

update all of them based on their behaviors of moving types [10].

Researches about generating synthetic dataset and its usage are already

emerged and applied in different areas. Actually, synthetic dataset depends on the

application areas. A synthetic generator for spatiotemporal data is proposed and

applied in many different areas. It can be used to validate and verify data based on

mining algorithms. This dataset is suitable for telecommunication companies in which

positioning or location data is tracked and kept along the mobile phone cellular

network. Indeed, the moving positioning data or its movement patterns are collected

around the moving mobile phones in a cellular covered region. The advantage of

using synthetic spatiotemporal data is free from location privacy and confidentially.

Thus, it can be used for other service areas such as finding network bandwidth

optimization, traffic monitoring, etc. Sometimes, the synthetic dataset is generated by

tools [67] [20]. It is used to classify the optimization for ant colonies behavior based

algorithm. It is aimed to create virtual dataset when real dataset is not possible to

access or obtain for applications. Generating semantics-based trajectories data

(GSTD) tool supports to produce virtual moving objects by virtual trajectories. For

this tool, a parameter called GSTD is added to accommodate various object

variations.

It is hard to get the actual moving objects; Y.Xia and S.Prabhakar

demonstrated creating of a virtual dataset using City Simulator which is introduced at

IBM Almaden. This simulator is flexibility that enables to generate spatial data or

location data dynamically. It can generate virtual motion up to one million. It is built

as a three-dimensional index model and designed to create any types of moving

location instantly. Thus, it is used for comparison of database algorithms or index

structures that have a large number of the dataset. It is scalable and the region in the

map can be added as an input into the City Simulator.

The synthetic dataset is generator only for the specific application such as

transportation networks [62]. In this dataset, data is developed and generated by

simulating moving object trajectories.

The experimental results based on this data generator are very good because of

the well-defined datasets. The data types and functions can be analyzed in this

network and the issues and weaknesses can be modified after checking the results. In

this data generator, virtual cars or vehicles are driving on the road network and

capture their speeds and positions for a given period of time. Then, all of these

positions and speeds are stored in the database.

Some synthetic dataset generators are used for generating object patterns and

velocities that are presented [77]. This generator allows creating spatiotemporal

pattern datasets that have necessary characteristics such as cardinality and number of

patterns, acceleration and velocities, spatial areas and their lifetimes. The results of

dataset include different feature types of spatiotemporal objects corresponding with

their spatial regions.

2.3.2 Advantages and Issues of Using Synthetic Data

Nowadays, synthetic data are widely used in a variety of real world

applications such as natural language processing, moving object databases, and traffic

monitoring system. It has also been applied for machine learning areas. The main

reasons of using synthetic data instead of real-world data are privacy, flexibility and

testing cost. Many generation models produce synthetic dataset that depend on the

applications. This especially applies to the motion detection of people in which real

data can be not only time-consuming but also high cost. With synthetic dataset, it can

produce new motion data easily once the model is set up and the generated data avoid

copyright infringement. Using synthetic data has some great advantages, too. First, it

might be useful for visualization purposes and to test the scalability as well as the

robustness of new algorithms. Second, the resulting indicators can be shared broadly,

often as open data [61].
However, it requires a reliable framework and procedure that seem to be

relevant for the specific application. Besides, the generated output from the synthetic

dataset should be user-friendly and well-understand data in reality. Sometimes,

synthetic models only replicate specific properties of the data. They cannot match a

given dataset perfectly; only simulate general trends.

2.4 Notification Process

This section explains notification techniques and types of notification together

with literature reviews on various aspects of disaster notification systems. The

importance of notification is also discussed along with general components and key

capabilities of a complete notification system. This process is mostly associated to the

location-based services. It is mainly used for emergency information such as disaster

notification, fire alarm warning, gas-related fire damage etc.

2.4.1 Disaster Notification Techniques

A disaster is likely to be regarded as an unpredictable and unaware condition

that occurs accidentally by high consequences. It causes uncertainty conditions in a

short period of time. Adequate and prior disaster information or notification saves

lives and properties. It significantly reduces before and after damages of disaster.

Nowadays, people use mobile phones every day and mobile applications for disaster

notification are very suitable. Advancements in mobile and wireless computing

technologies, all of the notifications can be sent by all mobile users in one minute. In

summary, notification application for the mobile phone is one of the optimal tasks for

notifying emergency and crises and it will send the message to the right people at the

right moment. Many types of research have been described timely disaster prevention

and mobile update policies. Most papers focus on their nations. Some discuss not only

prevention but also evacuation for mobile users.

Prof. Harish Barapatre made an application to support rescue and relief

activities in disaster-affected areas [14]. This application is used for sending the

location wherever disaster has taken place. It is also used by the user who can provide

help in affected areas. It works with two buttons, I NEED HELP and I WANT TO

HELP. So this makes interaction between the victim who is facing disaster and the

volunteer who desire to help the victim. Lack of details on Google map will be the

main problem.

S.Kumar and Veeramani proposed their own algorithm “Extended Polygon

Match Algorithm using Quadtree” to find whether mobile is within a defined polygon

shaped area using their GPS coordinates [50]. Their objectives are to build a prototype

system using Android software to send alerts to mobile devices within the defined

geographical area and to fix the search area and the accurate location is easy using

GPS. The advantage of their system is that the disaster target region is perfectly

contained. But the other regions also contain when taking the corner points of the

polygon in the map. They have planned to implement this concept in all the mobiles

which are equipped with GPS.

2.4.2 Types of Notification

There are three main categories of applications for notifications: (1) user-

generated, (2) context generated, and (3) system generated.

1. User-generated notifications: In these notifications, human-created context

and send to other humans by an application. It usually uses for any types

of notification. Sometimes, it may include private context that can only

know between sender and receiver. It intends to use and send message or

notification for specific people from the sender. The mobile messaging

system is mostly used in this type of notification.

2. Context-generated notifications: These are sent by a mobile application to

the users that have to see permission. In this notification, the user can

create based on contacts, locations or time that acts as an automatic

message system. These notifications are fast and grow because they can

send one message to all users simultaneously based on the category of

notifications. Location-based notifications currently use and dominate for

all users in this category.

3. System-generated notifications: These notifications are produced by an

application or sometimes they are started from the service provider. This

type of system-generated notification can usually be called broadcasting or

multicasting based on re-engagement.

2.4.3 Categories of Location Based Alerting System

1. Advance Short Message Service (Advanced SMS)

Advanced SMS is used to send all mobile users who are subscribed in a

specified area, including foreign tourists, inbound visitors and people

travelling to other countries. Advanced SMS uses a powerful congestion

control techniques to regulate the effects of emergency reminders on

telecommunication networks.

2. Location Based Application Alert

Location based notifications or alert can be sent to all people who have the

notification app installed on their mobile phones, based on their current

locations. Minimal information about the device (which has registration

ID) is sent to application server.

3. Cell Broadcast

Cell Broadcast depends on geo-referenced unidirectional text messages to

all mobile phones within a targeted area. This will reach all mobile

handsets that have been configured to receive cell broadcast messages.

2.4.4 Importance of Notification

A notification is a message which includes an icon or symbol that sends when

an application wants the mobile user to pay attention. The importance of notification

is summarized in the following.

• It appears on users’ device lock screens.

• It gets user’s attention very high with its effectiveness.

• It supports easy communication between mobile users.

• It provides the users with special opportunities which can be beneficial for

customer loyalty.

• It can run to rescue and remind the users for emergency events.

• It saves time and money.

• It uses mobile technologies and applies in many areas.

• It supports to combine free online services.

2.4.5 General Components and Capabilities of Notification

A notification is a message that displays message information such as a

reminder or timely message outside of user interface application. A notification

message can be distributed from the user application to single devices, groups of

devices, or subscribers. There is a protocol that provides a reliable and battery-

efficient connection between the application server and devices called GCM http

server protocol. Y.S.Yilmaz evaluated arrival times to elaborate how GCM performs

(timing performance of GCM), Poisson distribution to the number of devices per time

and conducted a chi-square goodness-of-fit test on their models [77]. They point out

GCM servers on client device has reliable connection between client and server. But it

does not guarantee a timely message arrival. A notification implementation includes

two main components and three key capabilities for sending and receiving:

The following three components are necessary for a notification system.

1. A trusted infrastructure that has firebase cloud functions and abilities.

2. An application server that has fully web service technology to send a

message.

3. An iOS, Windows, Android application for users to receive the message.

The key capabilities and their descriptions are explained with the following

table 2.1.

Table 2.1 Key Capabilities of Notifications

Key Capability Definition

Initiate message at application server Starts the message process when the user

makes self-query or emergence query from

the application server. A message is sent to

FCM firstly, it broadcasts or multicasts the

message and sends to client applications.

Large-scale message targeting Distribute messages within the desired start

time and end time to the client applications.

Sometimes, target to the single device,

registered mobile devices or topic subscriber

devices.

Send messages to the applications Send notification messages to the application

from third party server via GCM

communication connection.

2.5 Summary

The chapter has four review collections: location-based services (LBS),

moving object structure, synthetic moving object and notification system reviews.

Firstly, the chapter introduces the challenges of location-based services (LBS) and

discusses location providers with location update strategies. It also describes the

corresponding literature review and previous work of using update policies. Then,

moving object index structures and synthetic moving object dataset generation are

discussed with related works.

 Finally, the chapter describes the notification system reviews. A complete

notification system requires many tasks such as maintaining and monitoring of user

current locations and focused range search querying in the imminent disaster area.

Most disaster notification found in literature focuses on the Android-based platform

with GPS and Google map. However, it is hard to get the definite area by Google map

during disaster occurs. Also, only using the GPS for current locations is not enough to

get location especially in indoor areas. These issues have been solved by using

Google API in this system. The variety of references are illustrated such as

notification system, moving object index structures and location update policies tie

together background theory, technique, and algorithm.

CHAPTER 3

THEORETICAL BACKGROUND

3.1 Trends in Mobile Technologies

Mobile has been significantly improved like a king in digital marketing today.

With the growth of the mobile, its technologies are widely applied to business areas,

government and public environment. Mobile information and communication

technology determines the society and behaviors since it represents an element of

individual quality and a way of communicating and doing business. The potential

provided by hardware can be fully used only by adapting to the users' requirements by

improving the software side. Today's development of the information and

communication technology has to be created with the focus on the humans and with

technology transparent for the user. Regarding the mobile information and

communication technology, the problem has traditionally been that the mobile

applications focused too much on the technology, which means that applications had

been developed for certain purposes or for special technologies. The new standpoint

has been led by the idea that the application has to provide the users with what they

want, anywhere they want it and in the best possible way. The user has to be able to

employ the mobile device and software based on the installed applications in different

environments and independent of the environment.

Developing an application that may make everyday life easier is a sufficient

motive to turn an idea into reality. Mobile devices are tools used to access LBS

services, send requests and correct results. Such devices can be Personal Navigation

Devices (PNDs), Personal Digital Assistant (PDA), portable computers, cellular

phones, etc. With the increased use of the internet over the year, the whole

smartphone industry has come a long way. More and more apps are designed to allow

cloud interaction paving the way for the minimal requirement of internal memory.

There has been a significant improvement in mobiles which are cloud-based

techniques in the modern era. The role of mobile technologies is dramatically

increased and used in important application areas such as emergency response and

rescue activities, prior disaster notification functions and finding nearest safe zones by

tracking user current location from a mobile phone. The result data is stored on the

cloud which renders the users free from any storage issues. The android is an

operating system that is developed by Google. The operating system is designed

basically for the touch screen mobile devices and it is based on a simple manipulation.

It uses simple touch gestures that relates to the real world situation. The Android is

the first and only open source operating system; that means it has the ability to be

ported to any cell phone. Android has hundreds of partners releasing new phones

every year. Likewise, there are multiple Android options in mid-range or low-end

price brackets. There is high demand for cloud-based mobile applications which can

easily fetch the data from the cloud at any point in time.

3.2 Cloud for Mobile

Cloud computing is the way of accessing user desired applications from the

internet. It includes online data storage, infrastructures, and cloud-based applications.

There are four deployment models in cloud computing. They are public cloud, private

cloud, hybrid cloud, and community cloud. The ease of maintenance, low-cost storage

and accessing the data at any time and any place are major advantages of cloud

computing. Mobile devices receive personal data from user self-query, automatic

query via service provider and all of these data are collected in a short period of time.

The personal data includes valuable knowledge and information for users. But, mobile

access introduces many problems such as duplication to make data easily accessible,

access to desired data, security of data, and AI techniques for quick and effective

access to data. The rich mobile technology integrates cloud facilities so that it

becomes elastic resources of powerful mobile cloud network technology that has fully

storage services, functionalities, and mobility such as Evernote, DropBox, Google

Drive, Google Cloud Server. Therefore, there has been emerged mobile cloud

computing that has cloud computing facilities, mobile computing technologies, and

wireless communication networks. It is also the next generation of the portable cloud

computing environment. The combination of cloud-based technologies and persistent

networks provide benefits for mobile users, cloud-based applications and network

operators. Therefore, mobile cloud computing (MCC) has a complete mobile

infrastructure where both the data storage and the data processing are provided by

cloud infrastructure which is outside of the mobile device. Therefore, these

applications use cloud-based data storage and computing power. Alternatively, mobile

cloud computing can be defined as a cooperation of mobile devices, web service,

network and cloud computing [25] [58]. Today, it is the most popular technology in a

wide variety of mobile cloud-based applications and mobile users access these

applications and services on the Internet.

The main advantages of mobile cloud computing are saved battery life with

the help of cloud storage, improve storage capacity that supports cloud-based database

and process high power for accessing and querying required information and reliable

for mobile data backup on the cloud infrastructure. Besides, the mobility feature and

save time for searching information is also the key advantage of mobile cloud

computing. Therefore, there are many practical applications that use mobile cloud

computing such as healthcare mobile services, mobile learning, e-commerce on the

mobile, mobile gaming etc.

Some issues and challenges of mobile cloud technology are service cost on the

cloud, offloading from mobile to cloud, security, privacy for mobile users, network

traffic cost between mobile and cloud. The relationship between mobile device and

computational cloud is described in figure 3.1.

3.2.1 Context-aware Services

It offers relevant services to users based on the user current position or desired

query by using the location and context of mobile users. Context refers to real-time

behaviors that have moving characteristics and positioning technologies. The samples

of a context-aware service are real-time traffic monitoring with updating, vehicle

tracking, route planning, and motion detection. In recent years, context-aware

techniques have been widely promoted and applied in different areas of application. It

still has some limitations in a small scale or single organizational environments due to

Mobile Device

Wireless Network Technology

Computational Cloud

Figure 3.1 Mobile Cloud Computing

Model

the lack of well-prepared rules, interfaces, technologies, and models for exchanging

context data. In large scale or multi-organizational environments, web services

protocols and technologies support and enable to exchange context information.

Therefore, context-aware techniques are more powerful with the combination of web

service facilities to utilize a variety of context information. As a result, context-aware

behaviors and operations are adapted to dynamic changes. Several challenges are

discussed by researchers that are more specific to the development of context-aware

services [65].

(1) Service adaptation: The client should be adapted by deploying on different

hardware and software platforms ranging from desktop applications to IoT

based mobile devices. This adaptation should be available automatically

configurable services with less modification and manual settings by the

user.

(2) Context-awareness: It has the supporting infrastructure initiate from the

user personal device. The clients should be aware and relocated as soon as

they move out of the room or place. The immediate response for the

context-awareness result is stored in the preferable device or other

resources.

(3) Resources discovery: The relocation service needs to discover the storage

devices and resources through the communication network and check

whether they provide the required facilities, abilities and capabilities.

(4) Service state capture and transfer: The status of the clients should be kept

while changing from one service to another especially for a seamless

relocation. It needs to ensure the contact list of each user, their current

conversation, activities, etc.

The common flow of context-aware services based on web service techniques

are required to provide and develop with the following questions [91].

(1) Context information and context representations: which techniques are

used for modeling context information in Web services? They help us

understand the context information exchanged among applications,

context-aware services and supporting components.

(2) Context sensor techniques: how context information is measured and

sensed? They help us understand how context information is measured and

how sensors are implemented.

(3) Context storage techniques: how context information is stored and how the

information is accessed from its storage? They are also related to context

information and distribution techniques.

(4) Context distribution techniques: how context information is distributed and

propagated to different relevant supporting components? How applications

and services can retrieve context information?

(5) Security and privacy techniques: how context information is protected?

Which authentication and authorization mechanisms are used for context

information? Which techniques are used to ensure the privacy in

connection to context sharing?

(6) Context adaptation techniques: how context information is actually used in

Web services?

3.2.2 Location Based Services (LBSs)

There are various terms to define location-based services [24] defines and

LBSs as services that integrate the location or position of a mobile device with other

information so as to provide added value to a user. Mobile networks are usually

controlled and maintained by the operators who provide connections for the mobile

users and are responsible for the data and voice transfer.

The positioning of components is usually necessary in LBS applications in

order to determine the location of the user’s mobile device. In the majority of current

LBS services the user is not required to enter the location manually, nor the input of

post codes or street names. Instead, the position of the user device can be obtained by

using the positioning technology, such as satellite positioning, positioning by mobile

network, WLAN stations or radio connections.

One of the well-known examples of LBSs is GPS. It is freely available for all

location service system around the world. GPS users belong to either military or civil

environments. It lets them determine, free of direct charge, their position anywhere in

the world and they use the information for several combined applications. Depending

on the ensured accuracy, the GPS provides two levels of services: the Standard

Positioning Service (SPS) and the Precise Positioning Service (PPS). Today, with the

currently available service provides such as GPS, cellular network and WI-FI, the

locations of objects include an important foundation for a variety of application areas.

There are six types of LBS services.

• assistance,

• orientation,

• information,

• advertising,

• tracking,

• charging.

 GPS is a complex system which combines three segments – space, control

and user segment. Such distinction of segments emphasizes the main objective of the

combined segments: to create a functional system that at a global level makes people

aware of the possibility and potential of the services based on navigation. GPS uses

the satellite constellation, where each of the satellites transmits the signal in the range

which encompasses the message navigation. In the LBSs system, there are two types

of services. First, user queries the desired information to the third party server (which

is called pull type). Second, the user can get notification or alert by the server

automatically (which is called push type). All of these two types are adequately

supportive to mobile users especially for the self-querying and automatic messaging

services. Generally, Location Based Services can be classified by Reactive LBSs and

Proactive LBSs.

3.2.2.1 Reactive LBSs

Reactive LBSs are always explicitly initiated by the client application. In this

service, the activity of LBS and the client application is generally as follows: the

client application query firstly to the desired service and sends a query request, either

via a mobile-based application or a PC. The service provider or application server

then receives for required information or query whereupon the service collects user's

location coordinate, processes it, and sends back the location-based query result to the

client application. This request/ respond functions will be active several times until

information is requested from the client application repeatedly. Thus, reactive LBSs

are regarded as synchronous request/respond activities between the client application

and the application server.

3.2.2.2 Proactive LBSs

Proactive LBSs start as soon as a predefined location event is automatically

activated, for example, if a user reaches in certain nearest area of interest, the user will

receive related information or notification via user mobile application without making

anything. In fact, proactive LBSs are not explicitly activated by the user, but the

interaction between user and service provider is marked as an asynchronous. The

different factor between proactive and reactive LBSs is that the user is only tracked

and located once; proactive LBSs require finding user location frequently in order to

get location coordinate from the user.

3.2.3 Categories of Location Update Policies

Location management for mobile devices is a necessary and important factor

in a mobile computing system. In a mobile network, the coverage area is formed of

cells. Therefore, the mobile operators usually try to reduce the size of cellular cells for

each user. To reduce cell size, location management is required and it becomes a

fundamental task. The main goal of this management policy is to provide a fast and

efficient update for any types of mobile. Due to different features and functions in

mobile devices, it is also research challenge in the current as well as next-generation

wireless networks. Various location update strategies for location management are

available in mobile computing. There are two common strategies created by very

simple functions. They have always update strategy and never update strategy.

3.2.3.1 Always Update Strategy

In this type of strategy, an update occurs whenever each mobile location enters

a new cell. The main benefit of this strategy is service provider or server always

available the current location of each user simultaneously. Therefore, repeated

searching processes are not required whenever there is a call. It would update the

location whenever the mobile receives location from the service provider in every cell

movement. It is totally good at one side but it creates a problem on the other side.

This is because it requires more resources to get current and update location for every

movement of cell update. Therefore, location update cost would be very high and the

paging cost would be zero. This kind of strategy is suitable and valuable when the

user is less mobility and the cell size is comparatively very large.

3.2.3.2 Never Update Strategy

The process of this update strategy is opposite to the always update strategy.

In this strategy, a location update would never be performed at the server. Therefore,

the location update cost would be zero since it has no update request at the server. The

main benefit of this strategy is no location update cost on one side but paging cost

would be more on the other side. This kind of strategy is very much applicable and

valuable if the cell size is comparatively very small and user mobility based on the

behavior of the mobile user is very high.

Figure 3.2 Dynamic Location Update Policies in Various Locations

The other strategies in a mobile computing system that use threshold values

and specific policies are distance based update strategy, time-based update strategy,

movement-based update strategy, and profile based update strategy [24]. The various

update policies for dynamic objects are shown in figure 3.2.

3.2.3.3 Distance-based Location Update

It is a simple and efficient strategy for location update. In this strategy, the

mobile base station keeps each mobile terminal for distance in the number of cells by

tracking moving mobile position. It takes the last update and current location.

Whenever the terminal travels the number of cells starting from a predefined distance

and reaches the cell size distance threshold D, at that time an update occurs. When

this policy is used, the threshold value management is needed to be done. The

distance counter set to 0 in the initial cell [70] [101]. Now, when the mobile object

moves and crosses the cell boundary, the distance counter would increase by 1 at each

time. After reaching the counter cross value greater than D, a location update occurs

at the server or service provider. This strategy is suitable for users who move less,

quasi-static moving objects and the users who move within a specific distance that is

less than distance threshold value D., In that case, a few updates would occur and

Distance

Location Update Policies

Dynamic Update Policies

Time

Movement

Profile Deviation

exact location of the user would receive. The latest location is only recorded so that

both the paging cost and the update cost would be very low. The main drawback of

distance-based location update policy is that unnecessary location update may occur

at the server when the mobile user crosses the boundary very frequently.

3.2.3.4 Time-based Location Update

This is also a simple and automatic location update strategy with the

predefined timer. Here the mobile base station updates the user current location after

reaching a particular time period called T. This strategy is comparatively easy to use

and available because each mobile station requires keeping its internal clock only

[40]. The other benefit is the value of timer to control and manage on the history of

call arrival pattern in each cell or user mobility pattern. There is one more benefit due

to the easy processing and nature of periodic signaling. The network is available in

every mobile that the mobile terminal is powered-off or outside the coverage area if it

does not perform a location updates at a predefined scheduled time.

It only focuses on the timer and it does not consider any mobile behavior or

movement. Therefore, the user is stationary or no moving, at that time the

unnecessary update would occur and increase the location update cost as the main

drawback. Moreover, the uncertainty of mobile users’ location cannot be bound when

a call arrives. As a result, the searching process cannot be controlled and limited to a

set of cells. It does not dependent on Location Areas (LA) and it has lower paging

cost because location update definitely occurs at time T.

3.2.3.5 Movement-based Location Update

In this strategy, it needs to count the number of cell movement. Therefore, the

mobile base station needs to track and keep the number of cell movements for mobile

users including the number of cell cross boundary. Here, the movement counter is

managed, it initially set to zero. It has an increment by 1 for each and every time as

soon as the user crosses the cell boundary. Now, when the movement counter

becomes greater than the predefined movement threshold called M, at that time

location update is done at the server. There is the main drawback of this kind of

location update policy or strategy. If the user travels around the boundary repeatedly,

undesired or unnecessary updates may happen [2].

3.2.3.6 Profile-based Location Update

The Profile Based Location Update scheme has been proposed in [85] [68]. In

this scheme, each user’s profile would be maintained and from that profile, the

location of the user would be traced out. The main idea behind this strategy is that the

mobility pattern of the majority of subscribers could be easily predicted. This type of

strategy would be useful when the user is working in the same geographical area for

maximum hours of his / her daily routines. To find out the probability of the user’s

profile location long term statistical data would be useful. To create the profile of

each user the following operations could be performed: For each time period (ti, tj),

the system maintains a list of location areas, [(a1, p1), (a2, p2)… (ak, pk)]. Here Af is

the location area, and Pf is the probability that the subscriber is located in Af. It is

assumed that the location areas are ordered by the probability from the highest to the

lowest, that is, p1 > p2 >… > pk.

If the subscriber moves within the recorded location areas, a1, a2,…, ak,

during the corresponding period (ti, tj), the subscriber does not need to perform a

location update, otherwise, the subscriber reports its current location, and the system

will track the subscriber as in the classical location area strategy. Therefore location

updates could be significantly reduced. In this type of scheme, the main benefit is the

system knows the user’s location based on its profile and if the user is in that location

area only at that time the location is not required to update. Sometimes it may happen

that user changes his / her daily routine due to some circumstances, at that time the

service provider would need to do paging to search the latest location of the user.

3.2.3.7 Deviation-based Location Update

The deviation-based policy is mostly used for vehicle-based updating strategy

so that it mainly concerns with moving object deviation or motion on a traffic road or

road network on the map [63]. Since it usually has location update, the application

server tracks moving object position related to all location attributes starting from the

beginning of the step. There are various classes in moving object types (e.g. vehicles,

trucks and cars). Each type of class has a specific velocity and speed. When the

moving object in a specific class with an update the database at time sub-attributes the

database location can be expected at any time t. Since the moving object does not

travel at exact speed so that the actual location of the moving object deviates from its

expected location. When the deviation reaches to a given threshold the moving object

will update the database with the actual location. Thus, in response to a query entered

at the time that retrieves m location, the DBMS returns the location of m within a

circle with radius equals the threshold value centered at a point of the last location

update.

3.2.3.8 Hybrid Location Update

This strategy is the combination of at least two location update strategies to

promote the ability to update policy in mobile devices and server. The objective of

this strategy is to be a valuable update policy that can switch between different

policies and functions. Each of the update policies has its own advantage and

limitation so that hybrid update policy overcomes each of them by combining two or

three update policies in moving mobile environments. All of these updates are done

after reaching the predefined threshold values or timer. The two common hybrid

update policies are combining time-movement based strategy and distance-movement

based strategy.

3.2.4 Android Operating System in Mobile Technology

Android's mobile operating system is based on the Linux kernel and it is a

software stack for mobile devices. This operating system is one of the world's best-

selling Smartphone platforms. Android involves many developers writing an

application that helps in extending the functionality of the devices. There are currently

over 1.6 million applications available for Android. The Android open-source

software stack consists of Java applications running on a Java-based, object-oriented

application framework on top of Java core libraries [5].

3.2.4.1 Advantages and Limitations of an Android

An Android is an open source technology and it has some advantages which

are listed as the following [54]. It is a Google-developed operating system which

primarily focuses on mobile devices such as smartphones. This operating system has

touch inputs to display objects and lightweight virtual keyboard. It has been improved

by adding new features and fixing errors in previous versions that lead to being many

upgrades operating system. Each new version has a dessert name in alphabetical order

starting from Cupcake 1.5; Donut 1.6; Eclair 2.0 to the latest Oreo 8.0 version.

The advantages and limitations of an Android are the following.

a. It is an open source technology.

b. It is compatible with every Android device function and feature.

c. It incorporates some hardware technologies and widely uses in the future.

d. It allows combining other third-party development, especially for the

backend server.

e. It can be learned freely by developers.

f. Many Android applications are easily downloaded in Google play store.

 An Android has some limitations in contrast to advantages.

a. It does not available for some Windows-based applications such as

Firefox.

b. It does not have many big companies except only HTC.

c. It has poor security in each application.

d. It has some issues such as in Bluetooth technology.

3.2.5 Cloud to Device Messaging

Many mobile applications use remote resources and services especially on the

cloud because of the limitations on their built-in memories and spaces. Some

resources are freely provided by cloud infrastructure and some have fees to use them.

An open source and free cost service are Google cloud messaging (GCM). It is one of

the services that exist between developers and Android devices to send push

messages. GCM acts as a proxy server or communication server and supports

multicast messages between the android uses and server [86]. It is used for emergency

response and rescue actions such as disaster notifications, gas related fire damage and

other sensitive applications for Android devices with the high performance of GCM.

It provides persistence connection and retains messages when the Android

devices are in offline. Sometimes, GCM message arrival time has latency so that it is

unpredictable message arrival time. Although Google’s GCM servers have a reliable

connection between Android devices and application server, it does not guarantee the

time to receive message [77]. Recently, Google upgraded FCM by removing the

issues of GCM. Google introduced a backend service called Firebase that helps

developers to build reliable and real-time mobile applications for Windows, iOS,

Android and other web applications [53]. Using firebase cloud messaging (FCM),

messages can send to all mobile users without using an operator or application server

[103].

Firebase is a cloud service supplier and backend as a service. A special

platform is provided by firebase that mostly supports to create mobile applications. It

has no cost to build an application and update it in real time. It is a platform and a

tool that is known for its speed and reliability in terms of the time. It takes for

building applications that are real-time with a highly simpler platform, many of

the Google features are carried forward along with other advanced features like

crash reporting and thereby allowing the developers to create critical and more

functional applications providing a wide variety of services. It has a great scope in

future because of the variety of advanced features that are added in firebase that

provide a variety of services.

Firebase cloud messaging is upgraded from Google cloud messaging. The

JSON configuration files, libraries, dependencies, and plugins are needed to use FCM

[6]. There is no need to configure the server for using firebase. Instead, firebase

supports these functions automatically. So server-side implementation is not required.

It provides reliability and queuing of messages thus it saves time. It offers the wide

range of messaging solutions with advanced options and newer capabilities. It has two

types of services-Message type and Notification message. The Hypertext Transfer

Protocol (HTTP) is an application layer protocol which is used for the secure

communication over the internet and between sender and receiver. Extensible

Messaging and Presence Protocol (XMPP) is also the open source communication

technology that acts as a protocol between sender and receiver based on XML

techniques [28]. The flow of activities from App server and the client application is

conveniently carried out by Firebase Cloud Messaging system. The following figure

3.3 simply explains the activities of firebase cloud messaging.

Figure 3.3 Activities of FCM between App Server and Client App

Firebase
Cloud
Server Down/

Upstream

Message

 with ACK

App Server Client App
Downstream

Message

HTTP

Response

Downstream

Message

Downstream

 Message

Upstream

Message

Android

iOS

Chrome

HTTP

XMPP

3.2.5.1 Firebase Cloud Messaging

“Push” is an important function on mobile devices, as it allows users to

receive updates or messages without actively launching an app. Firebase cloud

messaging (FCM) is an internet-based communication message service system. It

delivers messages from the third-party server to client applications. Sometimes, it

queues messages when the client applications are offline. Using FCM, a server can

notify or send both messages and voices to client applications. Thus, it is used for

sending the notification message, instant message and other short messaging services.

It can transfer message size up to 4kb between server and client applications. An

implementation using FCM has three major components between sending and

receiving messages [57].

 It is a free service for delivering cross-platform messaging by multicast or

broadcasting techniques. It supports push notification well and queuing of messages.

It inherits from Google cloud messaging. The message requests have not time

constraint; FCM will maintain it until the period of four weeks. If the application has

not connected to FCM for more than one month, FCM discards this application and it

will not receive any message from service provider or application serve. There are

some requirements to access FCM service. Firstly, Google play services maintain a

connection to the cloud, firebase-instance-ID-service that receive instance ID, and

firebase-message-service to receive notifications are required on the mobile device.

Next, the application server to store data and to manage the message and firebase that

routes messages to the application server and devices are also needed in the cloud.

The connections between Application Server, Android Mobile and FCM are shown in

figure 3.4.

Normally, there are three basic segments for sending notification message to

the mobile users.

1. User – represents a person who uses the possibilities provided by the

mobile device and the alert application installed on the mobile device;

2. Mobile Terminal Device – hardware-equipped terminal which enables the

usage of alert or notification application;

3. Location Provider System – system of satellites and receivers intended for

positioning.

4. Application Server – service providers that automatically send all of the

notification to the users or subscribers.

Figure 3.4 App Server, Android Mobile and FCM relations

The goal of FCM is sending a notification message to the correct place,

providing reliable network connection between thousands of client applications and

service providers or server, and queuing of this message when the client applications

of mobile users are offline. To get FCM service, a project is created in Google

Developer Console firstly that releases project number and API Key. The application

server communicates FCM by server key and sender ID. The client application needs

register ID or token ID from FCM. Besides, the required JSON configuration files,

plugins, libraries and dependencies are added to the client application. The required

credentials are shown with explanations in table 3.1.

Table 3.1 Credential and Parameter Explanation

Credential Explanation

Sender ID
unique numerical value API project

(Google Developer Console)

API Key save on app server (header post)

Application

ID
client app register to receive message

Token ID

FCM connection servers issue ID that

uses the client app and receives the

notification message

 Generate token ID to mobile

 Connect with App server by

server key and app ID

 Queue the message while

mobiles are offline

 Register to FCM

 Send token ID to App

server

 Receive notifications

 Store token ID from

mobile

 Search mobiles in

disaster range

 Send messages to

FCM

 Firebase Cloud Messaging

 Android Mobile

 App Server

3.3 Scope of Moving Object Database

Database support for the modeling and querying of time-dependent geometries

& moving objects is known as Moving Object Database. Currently, the applications of

moving objects database are being developed in the market. Database Management

System (DBMS) technology constitutes a fundamental foundation to develop these

applications [11]. The powerful moving object database can answer any kind of query

the moving object. Generally, physical objects that have position and extent which

may change over time, e.g.

• Countries, rivers, roads, pollution areas, land parcels.

• Taxis, airplanes, oil tankers, criminals, polar bears, hurricanes, flood areas,

oil spills.

• Users with location-aware portable wireless networked devices such as

mobile phones, PDAs.

Since the data of millions of moving objects changes incessantly, it has

become inevitable to store and manage the voluminous and by devising scalable data

management system. The DBMS for moving objects would deal with data mining,

location propagation, privacy, and synchronization, efficiently.

Some databases such as spatio-temporal databases have roots in spatial and in

temporal databases and moving object database (MOB) includes spatio-temporal

features. Besides, MOB supports for continuously changing geometries called

movement. It considers moving point objects and regions that may move and change

their shape. It also thinks about current and near future movement/history of

movement by time-dependent linear functions.

Moving object database is widely used for motion tracking and monitoring in

broad application scope. It includes:

• Geo-fencing Applications

• Digital-based Technology Fields

• Traffic Monitoring and Control Applications

• Airline Control Systems and Applications

• Location Awareness and Tracking

• Web Mining

• Machine Learning Applications

• Communication System

• Real-time weather forecasting

• Moving Object Management, etc.

It is a quite popular database because it has efficient and effective support for

those kinds of sectors with rapid development.

3.4 Indexing and Its Factors

The index allows people to reach information rapidly. It is about direct inquiry

performance. At the part where the searches are concentrating, the main logic of index

is, building itself at that related part. Therefore the performances of the results are

higher and more accurate [9]. If the index defines a column, as shown in the below

inquiry, as an index domain at the same time database will create a directory inside of

database which will use later for the search. Searching in an indexed domain means

searching through the directory, thus receiving feedback will be much faster. In order

to make select inquiries faster, if the index is done for every column then this will be a

mistake. As the number of indexes increases add on and updates, then features might

slow down and system performance might be affected badly in general.

 CREATE INDEX system.plane_idx

 ON system.plane (plane location)

 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

The main factor in Spatial/temporal data indexing is creating groups which

will have any sort of relationship with the groups that are formed out of these objects

and the inquiry sentence when there is a query [3].

SELECT *

 FROM plane, landing

 WHERE plane.mail code =’A01’ AND

 distance (plane.geodata, landing.geodata) < 200000 ;

The above query will group the plane data with landing field data within the

same time interval and will be configured by the database to form an answer. These

methods have the fundamental main idea of moving object database approaches. With

the help of this, the spatial objects which have geometrical features can be abstracted

from their complexities so they can be viewed in more simplified shapes. Thanks to

this abstraction the substances which take place in space (point, line, and region) can

be structurally modeled [22]. With these attempts, depending on the variety of

indexing algorithms, time factor can take place. The relation between the modeling

objects (intersection, tangent etc.) in terms of their features like (distance < 200000)

and the operations defined on the objects will involve in the problem.

3.4.1 Range Searching Process and Types

There are two types of range searching: static range searching and dynamic

range searching. The difference between two of them are that the data in the dataset

has no significant change in static but the data insertion and deletion occurs within

specific queries in dynamic range search. The sample query for range searching has

the following process. Input Description: A set S of n points and a query region Q.

Problem description: Which points from S lie within Q?

Discussion: Range search problems arise in the database and location-based

system applications. Any data object with d numerical fields, such as a person with

height, weight, and income, can be modeled as a point in d-dimensional space. A

range query describes a region in space and asks for all points or the number of points

in the region. For example, asking for all people with income between $0 and

$10,000, with a height between 6'0'' and 7'0'', and weight between 50 and 140 lbs.

defines a box containing people whose body and wallets are both thin.

The difficulty of a range search problem depends on several factors: number of range

queries, query shape, number of dimension and result and count of points in the

region.

The location coordinates are stored as the two-dimensional objects and three main

queries normally ask for high dimensional storage in the database.

1. Exact match query: The objects whose coordinates in the range are exactly

matched query coordinates.

2. Partial match query: Some features are the same but not all coordinates

exactly match [49].

3. Range query: The objects whose coordinates are in a specified query range

or service area.

3.4.1.1 One Dimensional Range Query

There are two types of range query in index tree based range structure. They

are one dimensional range query and two or multidimensional range query. A range

tree on a set of 1-dimensional points is a balanced binary search tree on those points.

The points stored in the tree are stored in the leaves of the tree; each internal node

stores the largest value contained in its left subtree. The simplest structure for one-

dimensional range searching is a sorted array. The preprocessing sorts the N elements

to be in ascending order by key. To answer a range query, two binary searches are

done to find the positions of the low and high end of the range in the array. After

these two positions have been found all the points in that part of the array are listed as

the answer to the range query [46].

Given one dimensional space, the query asks for the points inside an interval

[x:x]’. Let P = {p1, p2… pn} be the given set of points on the real line. The leaves of

T store the point P and internal nodes of T store splitting values to guide the search.

Let the value at node v is xv. Left subtree of a node v contains all the points smaller

than or equal to xv and right subtree contains all the points strictly greater than xv. To

report the points in the range query [x: x’] and searching with x and x’ in the tree T.

let u and u’ be the leaves where the searches end. Then the points in the interval [x:x’]

are ones stored between the leaves u and u’. The procedure for one-dimensional range

tree is the following. There is a tree (T) and two range values (x1, x2). All of the

nodes that are in the range of the tree will be displayed as the results of one-

dimensional range search.

Procedure: OneDRange(T, x1, x2)

i. while not isLeaf(T) and (x2≤ T.dataorx1 > T.data):

ii. if x2≤ T.data: T = T.left

iii. else: T = T.right

iv. if isLeaf(T):

v. if x1≤ T.data ≤ x2: output(T.data)

vi. else: v = T

vii. while not isLeaf(v):

viii. if x1≤ v.data:

ix. utput_subtree(v.right)

x. v = v.left

xi. else: v = v.right

This range searching is used for both static and dynamic index structure. This

range query allows speeding up the processing power of searching time between an

arbitrary number of nodes and pointers. The sample one dimensional range search

with the interval [20:60] is shown in figure 3.5.

Figure 3.5 Sample one dimensional Range Search between 20 and 60

3.4.1.2 Two Dimensional Range Query

The structure of this tree is built where the top level structure is a range tree

based on the x coordinate value and each leaf node is also built a range tree based on

the y coordinate values of all the objects in its subtree. It treats range query as two

nested one-dimensional queries: [x1, x2] by [y1, y2]. Let [x: x’] * [y: y’] be the range

query. First ask for the points with x coordinates in the given range [x1, x2] => a set

of subtrees instead of all points in these subtrees, only want those that fall in [y1, y2].

The main tree T on the x coordinate points at any node stores a pointer to a tree Ty (v)

(associated structure of v), which stores canonical subset P(v) organized on the y-

coordinate, and then 2D points are stored in all leaves [8]. The time complexity of a

balanced two-dimensional tree is O (n log n) space. The query time for all allocation

nodes in two-dimensional range query is O (log n). Generally, the two-dimensional

range tree is built by two steps: preprocessing step and range searching step. The

procedures of preprocessing and range searching are explained the following.

Preprocessing: A building of the 2D-Tree.

Input the N points (array) and initialize the empty tree

i. Pick one (randomly) as the root of the empty tree

ii. For each point pi(i=1,2,…N-1), insert it into the tree by

Visit left child only

Visit right child only

Visit both Children

20-60

49

19 70

3 30 59 80

3 19 30 49 59 70 100 80

iii. Going down the tree by comparing its keys (two coordinates) to the root

nodes and other nodes in the tree

iv. Alternating the x and y coordinates as the comparing keys while going

down the tree level by level

v. For every comparison, if smaller, go to left sub-tree; if bigger, go to right

sub-tree. Repeat until reaching an external node

vi. Insert point pi into the current position

vii. Loop until all points are inserted

Range searching: Read in the Range R(x1, x2, y1, y2)

i. Travel through the 2D-Tree by comparing the key of the node point to the

corresponding interval (x1,x2)or (y1,y2):

ii. Go down to the left sub-tree, if x2 <= p.x (or y2 <= p.y)

iii. Go down to the right sub-tree, if x1 >= p.x (or y1 >= p.y)

iv. Check both sub-trees, if x1 < p.x < x2 (or y1 < p.y <y2)

v. Check the other coordinate of those node points which are cut through the

interval or on the edge lines

vi. Repeat until reaching external nodes, output the points within R.

The sample two-dimensional range tree is shown in figure 3.6. It is built by

input two dimensional values for such as [0,0],[0,1],[2,2],[0,2],[3,4], [3,3],[0,4],[0,9],

[4,4], [5,5],[7,7], [5,6],[8,8],[9,9],[5,9],[8,9],[1,1],[6,6],[5,7].

Figure 3.6 Sample Structure for Two-dimensional Range Tree

3.5 Presort Range Tree

Presort Range tree come from Range tree thus this index structure is a two-

dimensional relationship that recursively builds based on one dimensional Range tree

structure. The only difference is that the data is added by sorted lists and it is taken as

input parameters. Thus, the creation of an index is faster than the usual because it

does not have to search for the correct space to store the new value, and it saves both

I/O and CPU costs. The new value that will always be joined adjacent to the last value

that was stored. The index tree would be fast as it is built sequentially and range

search easily.

Normally, a tree data structure is a useful tool for organizing data objects

based on index. It is equally useful for organizing multiple mobile objects in terms of

two dimensional relationships. In the traditional index structure, it is built by unsorted

two-dimensional data. When it is used by unsorted data, its structure might be bigger

than the index structure of the sorted data. Especially it is going to be hard to build

and store in a large amount of data size. Ordering or sorting the data may take

additional extra time, but it will be faster than any other unsorted structure and thus it

will bring to be a fast and compact index including range searching. To construct any

tree structure, the first thing is pre-processing the data into the data structure. Then,

queries and updates on the data structure are performed. There is an assumption for

mobile locations that no two points have the same x- coordinate and also y-coordinate

in this index structure.

3.5.1 Procedure of Presort Range Tree (PRTree)

The presort range tree procedure is the following;

Input: Lats =Array of two dimensional points sort on latitudes

Longs =Array of two dimensional points sort on longitudes

Output: Two dimensional locations index structure by ordered queries

Procedure: PRTree (Lats, Longs)

1. if Lats.length==1 then return new LeafNode(Lats[1]);

2. medium= [Lats.length/2];

3 copy Lats[1….medium] to Lats L and Lats[medium+1….. Lats.length] to

LatsR ;

4 for i=1 to Longs.length do

5 if Longs[i].x <= Lats[medium].x then append Longs[i] to LongsL ;

6 else append Longs[i] to LongsR ;

7 root= new Node((Lats[medium].x),One D Range(Y));

8 root.left= PRTree(LatsL , LongsL);

9 root.right= PRTree(LatsR , LongsR);

10 return root;

3.5.2 PRTree with Circular Range Searching

After preprocessing of tree construction is done, the structure allows searching

circular range query for mobile objects. To determines whether registered mobiles are

in service area or not so that this system has to get bounding coordinates with center

and service distance: (centerLat, centerLong, bearing, distance).

bearingRadians = Radians(bearing);

lonRads = Radians(centerLong);

latRads = Radians(centerLat);

maxLatRads = asin((sin(latRads) * cos(distance / 6371) + cos(latRads)

sin(distance / 6371) * cos(bearingRadians)));

maxLonRads = lonRads + atan2((sin(bearingRadians) * sin(distance / 6371)

cos(latRads)),(cos(distance / 6371) - sin(latRads) * sin(maxLatRads)));

3.6 Example : Calculating Proposed Tree with center and service distance

Firstly, sort the mobile locations by latitudes and longitudes. Then the presort

range tree is built and shows as the following;

25.40319 98.11739

LEFT: 16.80958 96.12909

LEFT: 16.35099 96.44281

RIGHT: 16.77923 96.03917

RIGHT: 24.99183 96.53019

LEFT: 24.77906 96.3732

RIGHT: 25.38048 97.87883

RIGHT: 25.88635 98.12976

LEFT: 25.59866 98.37863

RIGHT: 25.82991 97.72671

RIGHT: 26.35797 96.71655

LEFT: 26.15312 98.27074

RIGHT: 26.69478 96.2094

The results of sample range search in centerLat, centerLng, distance: 26.693,

96.208, 100 km that are registered mobile locations to send notification as follows:

node (25.40319, 98.11739)

RIGHT: node (24.99183, 96.53019)

LEFT: node (24.77906, 96.3732)

RIGHT: node (25.38048, 97.87883)

RIGHT: node (25.88635, 98.12976)

LEFT: node (25.59866, 98.37863)

RIGHT: node (25.82991, 97.72671)

RIGHT: node (26.35797, 96.71655)

LEFT: node (26.15312, 98.27074)

RIGHT: node (26.69478, 96.2094)

3.7 Nearest Neighbor Techniques

The nearest neighbor (NN) rule basically comes from the supervised learning

technique in which class is already known and identifies the nearest neighbor points

from the category of an unknown data point. One reason for the use of this rule is its

conceptual simplicity, which leads to straightforward, if not necessarily the most

efficient, programming. Different techniques are used for nearest neighbor search by

many researchers. The two basic techniques are structure-based technique and

structureless technique. The first technique consists of suitable index-based structure

and stores all of the objects appropriately. Some of the two-dimensional index

structures that can be used for nearest neighbor search are Ball tree, Cover tree, and

KD tree. The second technique basically comes from calculating the distance between

the query position p and every point position in the training set of positions P.

Examples of this technique are Brute Force Method, k Nearest Neighbor (kNN), k

Nearest Neighbor (kNN), weighted k Nearest Neighbor (wkNN), Condensed Nearest

Neighbor (CNN), clustered Nearest Neighbor, reduced Nearest Neighbor (RNN) and

rank k Nearest Neighbor (rkNN) [27].

3.7.1 Structure Based Techniques

Structure based techniques allow to retrieve certain information in the

database. An improvement of this technique over kNN is speed. In this structure, the

relevant data is kept at the leave nodes of the tree and the rest of the internal nodes

provide to be efficient search through leaves. It provides fast access and improves the

search query time such as range search, nearest neighbor search and circular search

but the expense of the space for the data structure must be maintained for the search.

In order to obtain the data structures, it takes the time complexity of preprocessing the

data. It can be used not only static structure with stationary data but also dynamic

structure with moving objects [27].

3.7.1.1 Ball Tree k Nearest Neighbor (KNS1)

It is very similar to KD trees, spatially organizing points in multiple

dimensions. However, unlike KD trees, which split the points parallel to the axis, ball

trees split such that points closer to each other go to one child while the other set of

nearby points go to the other child. As it is also a two-dimensional balance tree, it

provides to improve the speed of KNN. The data is displayed by level order in the

hierarchy. It deals perfectly with a large dataset and high dimensional entities. Its

structure is balanced and saves the searching time for both range search and nearest

neighbor search [60]. However, it may be costly by insertion algorithms. Moreover,

KNS1 degrades as distance increases.

3.7.1.2 KD Tree Nearest neighbor (kdNN)

KD tree data structure is most often used to speed up fast nearest neighbor

queries. It divides the training data exactly into half plane as soon as the input data is

allocated and produces a two-dimensional balanced tree. It supports not only the

entire nearest query from the query point in the tree but also all nearest query results

in the range [64]. It is appropriate to use for nearest neighbor searching in a large

dataset. So, it is fast and simple for both building tree and searching in queries.

However, it needs more computation and intensive search by adding an extra

neighbor algorithm or procedure. The tree construction time is needed to use this

index structure that can reduce the time by eliminating duplicate tuples or data.

Besides, it slices points blindly into half which may miss data structure. The

procedures of KD tree structure and nearest neighbor search are described in the

following.

Procedure: BuildKDTree (P,l,r,odd)

a. if odd then Sort P on x

else Sort P on y

b. v=|(l+r)/2|

c. if l==r then root=new LeafNode(P[v])

d. else

e. if odd then root=new Node(P[v].x)

else root=new Node(P[v].y)

f. root.left=BuildKDTree(P,l,v,not odd)

g. root.right=BuildKDTree(P,v+1,r,not odd)

h. return root;

Procedure: Nearest Neighbor Search (q: point, n: node, p: ref point w: ref

distance)

//initial call (q,root,p,infinity)

if n.left=n.right=null then {leaf case}

w' :=||q-n.point||;

if w' < w then w:=w' ; p:n.point;

else

if q(n.axis)= n.value then

search_first:=left;

else

search_first:=right;

if(search_first= =left)

if q(n.axis)-w <= n.value then Nearest Neighbor Search (q, n, n.left, p, w);

if q(n.axis)+w > n.value then Nearest Neighbor Search (q, n, n.right, p, w);

else // search_first==right

if q(n.axis)+w > n.value then Nearest Neighbor Search (q, n, n.right, p, w);

if q(n.axis)-w <= n.value then Nearest Neighbor Search (q, n, n.left, p, w);

3.7.1.3 Cover Tree

A cover tree T is a level tree in which each level on a data set is a cover for the

level beneath it. It is a type of tree-based data structure that is specially designed to

save the searching time of the nearest neighbor approach. It is a modification of the

Navigating Net data structure, and it is associated with a variety of other index-based

data structures developed for low-dimensional data [26].

By storing data in this index based tree, it can easily retrieve and add data

whenever the user wishes a query. The tree structure has built the hierarchy of levels

that contain the root point at the top of the tree and the rest of the levels are in the

metric form of space [16].

3.7.2 Structure Less Techniques

The main concept of the structure less technique is based on k-nearest

neighbor which is the most popular supervised learning method. It lies in the first

category in which the whole data is classified into training data and testing data point.

Then, distance is calculated from all training data to the testing point and collected the

point that has the lowest distance. After being a calculation, k nearest neighbors is

produced. This technique is very simple and it is only based on the distance to

implement this technique. However, the value of k affects the result so that it needs to

carefully determine k value in some cases. This method needs various calculations

according to the number of the dataset but it overcomes memory requirements. On the

other hand, structure-based techniques are not suitable for the small dataset and it can

reduce the complexity of calculation.

3.7.2.1 Brute Force Method

The most straightforward exact nearest neighbor search method is by brute-

force, the structure less-search method. Brute force method first calculates the

distance between the query location l and every location in the set of location points

P, then orders all calculated distances, and last identifies the shortest distance(s) and

the corresponding point(s) in P nearest to q [1] [79]. It has a time complexity of

O(nd) where n is the number of the points in the point set P and d dimensionality of

the space S, and complexity of space is O(1) because no data structure is required to

be maintained for the search. It usually contains problem-solving statement based on

computation and the definition of its relations. Therefore, it is an inefficient method

related to the problem that has high complexity or hierarchy. It is only suitable for

solving small problem or modules of a large concept.

3.7.2.2 k Nearest Neighbor (kNN)

It uses the nearest neighbor rule such that it assigns the class of the nearest

neighbor for a specific query node n, computes the k nearest neighbors and assigns

the class by majority vote. It is a lazy supervised learning algorithm and classifies the

objects based on similarity measurement. The advantage of this technique is that

training time is very fast for relevant attributes, simple to learn, robust to noisy data in

the training dataset. However, it may bias by neighbor value or predefine value k,

heavy in computational complexity for large dataset and overloading in memory

requirements. As it is a lazy algorithm in supervised learning, it takes time too much

for the running process and easily false by irrelevant training attributes [26]. The

variations of nearest neighbor distance measures are the following.

• City-block distance (Manhattan dist)

Add absolute value of differences

• Cosine similarity

Measure angle formed by the two samples (with the origin)

• Jaccard distance

Determine percentage of exact matches between the samples (not

including unavailable data)

3.7.2.3 Weighted k Nearest Neighbor (WkNN)

It assigns weights to neighbors as per distance calculated. The advantages of

this algorithm are the following: (1) it reduces some issues of kNN by assigning equal

weight to k nearest neighbors implicitly. (2) it carries out all of the numbers of k

training data. (3) It provides as the global algorithm based on weight. However, this

algorithm runs slow and computation complexity increases in calculating weights

[13].

3.7.2.4 Condensed Nearest Neighbor (CNN)

It reduces the data in the training set that has similar data or it does not require

as valuable information. It cannot be picked up points on boundary because CNN is

an order dependent technique [7]. The way of this work is to classify the object into

three different types.

1. Outliers: objects which would not be included in the predefined type if

inserted to the database.

2. Prototypes: the minimum set of objects required in the training set for any

other non-outlier objects to be correctly included.

3. Absorbed objects: objects that are not outliers, and would be correctly

included in the object group.

3.7.2.5 Reduced Nearest Neighbor

It is an extension of the CNN rule. It removes duplicate tuples and patterns

which do not impact the output of training dataset. It also scales the size of data in the

training set and eliminates extra or unnecessary templates. It can improve processing

time for each query and fewer memory requirements by reducing the execution rate. It

suffers computational complexity and time-consuming [33].

3.7.2.6 Clustered k Nearest Neighbor

This cluster simply refers to collecting the nearest neighbors of a specific point

by getting all the points in a service area with the radius and then it returns the cluster.

It is built by clusters that are formed to retrieve nearest neighbor object efficiently. It

overcomes the incomplete sharing of training datasets with robust cluster features.

But, the threshold value is difficult to determine at the initial state of clustering.

Besides, it can bias by the value of k for clustering.

3.7.2.7 Rank Nearest Neighbor

It can be assigned the ranks of data in the training tables or databases for each

category [12]. It is suitable for the dataset which has many features variations. As it is

based on rank, it easily searches for any data and robust under various datasets. But,

the multivariate rank nearest neighbor (RNN) depends on the distribution of the data.

3.8 Summary

Firstly, this chapter presents the relationship between cloud technologies and

mobile devices with location update policies and then discuss the cloud to devices

messaging services. The chapter explains the scope of moving object databases. The

procedures of KD tree and presort range tree are explained and discussed that

procedures are used to compare the proposed index tree for performance evaluation.

The index approaches especially for the nearest neighbor techniques and two types of

range dimension are also described. And then the chapter presents the detail process

of the different nearest neighbor techniques for structure less and structure-based

methods in indexing technologies. Finally, this chapter also discusses the nature and

workflow of the two-dimensional range search.

CHAPTER 4

THE PROPOSED SYSTEM ARCHITECTURE

This chapter presents a complete notification system for mobile users by

proposing methods and architectures. This system contains three main approaches:

getting and updating mobile user locations, storing and processing them by indexing

and sending notification by firebase cloud messaging.

In the first approach, Google API is used to support accurate location for

mobile users that are applied to the server. It is a collection of location APIs. It

includes three different providers to get the location. (1) GPS provider: This provider

determines location using satellites. Depending on conditions, this provider may take

a while to return a location fix. (2) NETWORK provider: This provider determines

location based on the availability of cell tower and Wi-Fi access points. Results are

retrieved by means of a network lookup. (3) PASSIVE provider: This provider will

return locations generated by other providers. The users passively receive location

updates when other applications or services request them without actually requesting

the locations themselves. For updating the locations, the mobile users send their

locations regularly and continuously in traditional update strategy. However, in fact,

it is not necessary. If the mobile movements are small and frequent, thus unnecessary

update would be performed at the server. Hybrid Update Algorithm is proposed to

update locations appropriately for both client side as well as server side.

At the second approach, presort-nearest location index tree based index

structure is proposed that provides two-dimensional range queries and nearest

queries. Normally, the index is built by unsorted two-dimensional data. When it is

built by unsorted data, it might be bigger than the index structure of the sorted data.

Especially it is going to be hard to build and store in a large amount of data size. The

proposed index structure is a two-dimensional relationship that recursively builds

based on a one-dimensional tree structure. The data is added by sorted lists and it is

taken as input parameters. Ordering or sorting the data may take additional extra

time, but it will be faster than any other unsorted structure and thus it will bring to be

a fast and compact index including range searching. Thus, the creation of an index is

faster than the usual because it does not need to search for the correct space to store

the new value, and it saves both I/O and CPU costs. The new value that will always

be joined adjacent to the last value that was stored. The index tree would be fast as it

is built sequentially and range search easily.

The third approach is sending a notification to mobile users. In this system,

mobile users who are necessary for notification or they are in the imminent disaster

zones will be sent notification. To send the notification, firebase cloud messaging

intermediates between mobile users and third-party server or application server. As

FCM is a free service offered by Google cloud server, it supports to get persistent

connections. FCM solves the following two requirements. (1) It needs to have a

persistent network between client and server communication. (2) Many connections

may occur as each client continuously communicates to the server along with

sending locations and updating them thus it takes the high cost. It also queues the

messages while the mobiles are offline.

The system analyzes the proposed index tree structure on moving mobile

objects. Besides, a mobile object generator is also proposed that apply to the

performance evaluation of proposed system. And the system analyses range

searching queries based on index structure with comparing distance-based approach.

It is described in detail in chapter 6. Figure 4.1 describes the overall system

architecture for notification.

Figure 4.1 Architecture of the Proposed System

This figure 4.1 shows the architecture of a complete notification system for

mobile users. The server sends all of the notifications automatically to the users. In

this architecture, the following steps are carried out to send notification by push type

of service.

Storage

2. Registration

1. Send current

location

3. Register ID

Server

4. Register ID

Mobile Phone

Firebase Cloud Messaging

5. Broadcast

Message

6. Broadcast Message

(1) Android application from the mobile phone receives the current position

through a special location provider called Google API.

(2) The application registers to FCM with application ID.

(3) FCM generates Token ID for each Android application.

(4) Then, the application communicates with the server not only giving token

ID but also sending the location of the mobile current position. After that,

the server keeps mobile’s latitude and longitude to the database which has

built index structure.

(5) For users who are located in an imminent emergency area, the server

searches all of the users who are in the service area by indexing tree based

range query. Then, the server sends the message to FCM with the lists of

mobile users in the emergency area.

(6) Afterwards, the application fetches the message from FCM push

technology by multicasting.

The detail process of system architecture cooperates with the following four

modules.

i. Getting mobile locations

ii. Updating Client application's location

iii. Index based structure

iv. Circular range searching

4.1 Getting Mobile Locations

In this module, Google API is applied to get the current location of mobile

users. It is a special set of communication tools. But it is hard to get the accurate

locations as the delivery is limited at some places and measurement of the results is

impossible. Instead, Google API platform has succeeded in linking mobile devices

and location providers. Thus, accurate and reliable current locations are provided by

Google API. It is used for the following two objectives.

• To provide a more powerful framework that automatically switches

between location providers and location accuracy.

• To handle location update schedule.

The following figure 4.2 shows the relationship between Google API that

combines three location providers and Mobile App.

Figure 4.2 Getting Location of Client Application

4.2 Updating Client Application's Location

In general, tracking mobile positions are one of the most common

requirements for many location management services. In recent years, mobile

location-based services are definitely growing with updating policies and strategies.

Since the location of mobile positions changes continuously but the database location

of the moving object cannot be updated continuously; therefore, an updating strategy

for moving object is required [95]. There is the trade-off between the number of

update messages and information accuracy in designing moving object database

systems [96]. In this system, the appropriate update is done by taking distance and

time predefined thresholds at the client side. The flow of Hybrid location update for

mobile application is shown in figure 4.3.

Figure 4.3 Hybrid Location Update for Mobile Application

GPS

Network Provider

Google API

Mobile App

Cellular Network

Update
Update

Update

thresholds

L0

L1
L2

L3

Application Server

Current

Location

Trajectory
Mobile App

Mobile App

Mobile App

thresholds thresholds

Algorithm: Hybrid Location Update

Input: Database of mobile locations contains the locations of registered mobile with

time.

Output: current registered mobile location

1. i=0; dis_threshold; time_threshold; time_scheduler;

2. Read the current location (Lxi, Lyi, ti) and previous location (Lxi-1, Lyi-1, ti-1)

of registered mobile location.

3. If the time_scheduler > time_threshold &&

√

 (4.1)

3.1.Update the database with current location (Lxi-1, Lyi-1, ti-1) = current

location (Lxi, Lyi, ti), i+1.

3.2. Total number of update=Total number of update+1;

3. Else current location(Lxi, Lyi, ti) = previous location (Lxi-1,Lyi-1,ti-1), i=i+1;

Assume that every (t= 2 seconds) for example both position and speed

supposed to be known as it comes from the GPS. These values inserted in the local

database of the mobile locations. When these values are inserted and connected to a

trigger which computes the current location (Lxi, Lyi) and previous location (Lxi-1, Lyi-

1) of the position. Since where x and y are the x coordinate and y coordinate at the

location, t is the time elapsed from the last update. Then compute the current position

and previous position of each location. If the result value is greater than the value of

(th) and time_scheduler is greater than the value of (th) the local database of the

moving object is updated with the actual position and actual speed. Also, update the

central database with the actual position and time. Otherwise if one of the result

values is less than the (th) no update occurs.

4.3 Index Based Structure

Indexing is a special data structure that allows having quick access to data or

objects systematically. Indexing is usually used for users to display results that match

the desired user criteria. In fact, a static data indexing is enough to use with traditional

structures. However, most of them are unbalancing construction it as it is hard to store

moving object positions or mobile locations. Generally, the purpose of an index

structure is a fast and easy query within the desired time. A good moving data

indexing needs not the only faster query but also ability to update regularly. In order

to manage moving objects' location, update their positions appropriately, presort-

nearest location index structure is proposed in this system.

Due to the rigorous requirements of dynamic range searching, the proposed

algorithm allowed getting the desired range queries with faster response. All of the

incoming objects or points are ordered before building index structure. The sample

two-dimensional index tree structure and its circular range searching are shown in

figure 4.4.

Figure 4.4 Sample Index Tree with Circular Range

4.3.1 Presort-Nearest Location Based Application Server

Today, the number of researches based on indexing is known as mobile

objects indexing came out from the traditional static one. There are some indexing

approaches to handle the complicated moving positions. One of the suitable ideas is

pre-ordering or presorting these objects before building index structure. Moreover, an

efficient index structure usually promotes application server performance and reduces

database workload. In this system, an index structure, presort-nearest location index

tree is proposed that allowed maintaining, updating, and range querying mobile

objects within the desired period. The main objective of using this index tree is speed

data access.

 The mobile locations that have latitudes and longitudes are input as a two-

dimensional object to this index tree. In this system, the server sends a notification

message to the users in the service range area. Messages will be sent starting from the

nearest locations in the range. Therefore, the proposed index tree focuses on retrieving

the nearest location from the center location in the range. As a result, all of these

nearest locations are displayed by level order from the proposed index tree.

(latitude, longitude) (latitude, longitude)

((latitude, longitude) (latitude, longitude)

(epicenter)

Application Server

Index Tree

(Service radius)

4.3.1.1 Proposed Presort-Nearest Location Tree

This index structure is used to find the nearest positions from arbitrary mobile

locations in the range by level order.

Algorithm: Presort-Nearest Location Tree

Input: c: center of location query

R[m]: mobile locations in range lists that are sorted by latitude and longitude

of each location.

m: mobile locations

Output : Nearest locations index structure from center points by level order

 Nearest Location Tree(c, R (m))

i. if m != null then Tree->root := c;

ii. minIndex = 0;

iii. Tree->leftKey:=FindNearest(c);

iv. Tree->rightKey:=FindNearest(c);

v. GenerateTree(c);

FindNearest(c)

i. nearest := Node[0]; mindist=0;

ii. for i=1 to R(m)

iii. d= distance(c,nearest);

iv. if(d[i]<d[mindist])

v. nearest=d[i];

vi. return nearest;

GenerateTree(c)

i. for d = 1 to height(Tree)

ii. printGivenLevel(Tree, d);

iii. if level is 1 then

iv. print (Tree->c)

v. else if level>1 then

vi. printGivenLevel (Tree->leftKey,level-1);

vii. printGivenLevel (Tree->rightKey,level-1);

The proposed presort-nearest index tree is an ordered tree data structure to

hold a list of points. It allows all points within a given range to be reported efficiently

starting from the nearest points and is typically used in two-dimensional moving or

static points. This procedure starts with range list arrays that are sorted by latitude and

longitude of each location. Both of these arrays are arrays of locations which have the

same location points but one is ordered by latitude and another one is ordered by

longitude. Firstly, the center point is initialized as a root, the left subtree and right

subtree are built according to the finding nearest distances from the center point. Here

initially the mindist would be set to 0 in the nearest distance. Now, the mobile

locations in the range list are calculated by distance. Each of these distances is

compared to the array [mindist] and nearest node would less than array [mindist] that

returns the nearest in the range list. Then, the index tree structure is generated by the

level order.

4.3.2 Presort-Nearest Location with Circular Range Searching

The circular range search is easy to calculate with center locations and circular

distance. As this range search is in the dynamic setting of mobile locations, the results

of range queries may vary based on inserted or deleted of mobile positions. This

system takes a circular range search with the building of presort–nearest location

index structure. To determine whether registered mobiles are in the service area or not

so that this system has to get bounding coordinates based on center location and

service distance: (center_latitude, center_longitude, and radius). A range query

retrieves all objects whose location falls within the circular range. The four maximum

and minimum coordinates of a circular range query are calculated in the following

formula.

• latitude= center_latitude;

• longitude = center_longitude;

• radius = service radius; // km

• R = 6371; // earth radius in km

Then the maximum and minimum latitudes and longitudes with service radius

for epicenter is calculated.

• minLongitude=longitude-Math.toDegrees(radius/R/Math.cos

(Math.toRadians (lat)));

• maxLongitude=longitude+Math.toDegrees(radius/R/Math.cos(Math.toRad

ians (lat)));

• maxLatitude = latitude + Math.toDegrees(radius/R);

• minLatitude = latitude - Math.toDegrees(radius/R);

4.3.3 Example: Calculating Proposed Index Tree

The sample index structure of presort-nearest location tree is shown in figure

4.5. For this calculation, center location which includes latitude and longitude is input

as 24 and 100 with service radius 100 km. The service range location that has

maximum and minimum latitudes and longitudes are produced the value of 23.100,

24.899 (minimum latitude, maximum latitude) and 99.0155, 100.9844 (minimum

longitude, maximum longitude). Then, the proposed tree is built according to mobile

locations in the service range. All of these locations are generated from the nearest

positions by level order.

Center location(24,100)

 regid_77 (24.003146 , 100.28794)

 regid_122 (23.875261 , 99.873917)

 regid_154 (23.71053 , 100.32681)

 regid_124 (23.701285 , 100.051437)

 regid_58 (23.694562 , 100.702099)

 regid_28 (23.68297 , 100.325871)

 regid_23 (23.662612 , 100.846516)

 regid_93 (23.567519 , 100.712698)

 regid_14 (23.483985 , 100.86734)

 regid_70 (23.299651 , 99.61424)

 regid_170 (23.237851 , 99.576512)

 regid_199 (23.102035 ,

99.165767)

 regid_102 (24.045191 , 100.740739)

 regid_42 (24.23908 , 99.398467)

 regid_148 (24.27276 , 99.36762)

 regid_50 (24.343625 , 99.84413)

 regid_195 (24.569405 , 99.236397)

 regid_150 (24.571354 , 100.766499)

 regid_16 (24.730367 , 100.012243)

Figure 4.5 Presort-Nearest Location Index Structure by Level Order

After generating the nearest mobile locations by level order, the message will

be sent to the mobile users depending on the status of nearest locations. For sending

message appropriately, there are three message statuses exist such as "Success",

"Already Sent" and "Fail". A message will be sent only once and then "Success"

status is shown together with the message if it is successfully delivered to the mobile

users. If not, Fail status will be seen with the message type. It may have some users

who are already received the message but they are still in the range, the message will

not need to send again. In this situation, "Already Sent" status is controlled and

duplicate messages will not be received by each of the mobile users. Therefore, the

notification message can easily be sent from the nearest mobile locations in the range.

The figure 4.6 shows the delivery of message by level order with message arrival

time.

--------LEVEL (2) ------------

 << Success >>: Good Weather to regid_77 (24.003146, 100.28794)

 << Success >> Good Weather to regid_102 (24.045191, 100.740739) [21:42:04]

---------LEVEL (3) ------------

 << Success >>: Good Weather to regid_122 (23.875261, 99.873917)

 << Success >>: Good Weather to regid_154 (23.71053, 100.32681)

 << Success >>: Good Weather to regid_42 (24.23908, 99.398467)

 << Success >> Good Weather to regid_148 (24.27276, 99.36762) [21:42:08]

---------LEVEL (4) ------------

 << Success >>: Good Weather to regid_124 (23.701285, 100.051437)

 << Success >>: Good Weather to regid_58 (23.694562, 100.702099)

 << Success >> Good Weather to regid_50 (24.343625, 99.84413) [21:42:11]

 << Success >>: Good Weather to regid_195 (24.569405, 99.236397)

---------LEVEL (5) ------------

 << Success >> Good Weather to regid_28 (23.692355, 99.875067) [21:42:13]

 << Success>>: Good Weather to regid_23 (23.68297, 100.325871)

 << Success >>: Good Weather to regid_150 (24.571354, 100.766499)

 << Already Sent >>: Good Weather to regid_16 (24.730367, 100.012243)

---------LEVEL (6) ------------

 << Success >>: Good Weather to regid_93 (23.567519, 100.712698)

 << Success >>: Good Weather to regid_14 (23.483985, 100.86734)

---------LEVEL (7) ------------

 << Success >> Good Weather to regid_70 (23.299651, 99.61424) [21:42:20]

 << Success >> Good Weather to regid_170 (23.237851, 99.576512) [21:42:21]

---------LEVEL (8) ------------

<< Success >> Good Weather to regid_199 (23.102035, 99.165767) [21:42:21]

Figure 4.6 Sending Message by Level Order

4.4 System Model

Figure 4.7 Client-Server System Model

A model, searchable model is built to incorporate dynamic attributes in

presort- nearest location index tree and query processing. The flow of this client-

server system model is shown in figure 4.7. This includes a server and a collection of

registered mobile objects. In order to keep the location information up to date, these

objects regularly send their updated positions to the server. Unnecessary updates

wouldn’t be performed at the server because Hybrid Update Algorithm is applied to

the client side. The required information query the server with range queries like

"which mobiles are currently located within a disaster area?” To process such queries

efficiently, the server maintains an index tree that, in addition to speeding up the

query processing, is also able to absorb all of the incoming updates.

4.5 Multicast Messaging System

Multicast messaging is a “one-to-many” technique which sends messages

from a single source to as many destinations as express a specific interest in receiving

it. It should be used instead of broadcast traffic if messages want to send only to the

mobile users who actually need to receive them. Multicast doesn't consume CPU and

bandwidth resources than broadcast. Therefore, multicasting prevents unwanted

message transmission and avoids clogging of the network. firebase server is suitable

to use multicast notification between mobile device and service provider. The

Client

Center=21.3012, 98.115096

Radius=100km

 Latitude

18.00712

16.77426

17.31263

Longitude

94.491409

96.162642

95.96344

Hybrid Update Algorithm Presort -Nearest Location Index

Tree

Register

Result
Register

Mobile

Server

multicast communication between mobile phone, firebase message server, and the

application server is shown in figure 4.8.

Figure 4.8 Communications between Mobile Phone, FCM and Server

In this figure 4.8, there are three components that are incorporate each other to

send the message. The application server sends a message to the firebase cloud

messaging server. Then the Firebase server sends this message to the mobile users

who are in the defined service range by multicast type. The relationship between these

components is available based on the following three points.

1. Mobile Application registers to firebase cloud messaging (FCM) that

generates a token ID.

2. The server authenticates with FCM by server key.

3. It communicates with FCM by token ID for sending notification.

4.6 Notification System Steps

The notification system is processed by mobile locations and connected to the

firebase cloud messaging service that provides persistent connection for multicast

notification process. The detail steps of this proposed system has the following

phases:

a. Information Acquiring and sending: The application server acquires

disaster information from disaster server and sends a message through a

(1) Send message

(2) Send message Mobile App

Firebase cloud message

Application Server

Mobile App

Mobile App

(2) Send message

(2) Send message

firebase cloud server to the intended mobiles. The cloud server sends all of

the messages by multicasting with a push type of service.

b. Location Tracking and Updating: Android Application gets the user's

mobile position with latitude and longitude of location by Google API. It

connects to the application server and sends the current and update

positions by update policy conveniently.

c. Range Searching: The disaster area is defined by a range, and then the

mobile locations which are within the disaster region search by circular

range queries.

d. Index Tree Building: It is used for handling of two-dimensional mobile

locations systematically. It stores mobile locations structurally and

supports dynamic and continuous range queries and nearest queries.

e. Device Messaging via Cloud: Firebase cloud server sends a message to the

application on the android devices which are in the disaster area. Devices

receive these messages with pop up notifications.

f. Notification: Whenever a disaster occurs, users in the disaster region

receive notification that shows outside of the Android applications' UI. A

notification message consists of disaster information and emergency

guideline.

4.7 Scheduler Process Module

Scheduler process is so important requirement for the moving object

applications. It allows building customized Web service at the server. Especially in

continuous range search, working with a lot of mobiles that have both getting and

updating locations to the database can be a problem. Spring boot provides for the

solution of this problem. Besides, Spring boot has persistent trigger and it can retain

persistent information in its own repository. In this system, Spring scheduler is used

that supports consistency scheduling different in JDKs like J2SE and J2EE

environments. To schedule tasks without re-compiling and re-deploying the entire

system, spring scheduler is used that supports as the abstraction layer with flexibility

and loose coupling.

In this system, each execution of the range search is independent so that the

beginning of the range search execution doesn’t wait for the completion of the

previous range search. As a result, multiple range searches are allowed in this system.

In this system, the number of milliseconds to delay with a string value at the initially

scheduled task is used. To run every 25 seconds, the fixed initial delay string is added

to the server side program such as @Scheduled (fixed Rate String = "25000"). By

using Spring scheduler annotation @Scheduled, it runs automatically as soon as the

server starts.

4.8 Process Flow Using Scheduler

Figure 4.9 Process flowchart of System with Scheduler Process

Alert Message

Alert Message List from

Database (DB)

Range User List

Nearest Location Tree

Send FCM and save it

on database

Message

Size >0 Increment

Mobile User List That

Have not Send

User List

Size >0

Has user?

End For

End

Start

True

False

True

False

True

False

The process flow of a system that uses scheduler is shown in figure 4.9. This

flow explains the detail processes and steps of the server-side module and its

database. The server intends to send a notification message to the firebase cloud

server. To send this notification message, the system does the following steps. Firstly,

message lists query from the database and checklists that have to send. Based on the

message lists, mobile users lists those are not yet received by notification message

query from the database and check user lists that have to receive. At the same time,

the mobile user lists are checked whether they are in range or not. If they exist,

presort-nearest location index tree is built and continuous range query is executed.

Then, the nearest locations in the range are produced by level order. The notification

message is sent to a firebase cloud server with the nearest mobile lists. Moreover, the

users who received the message are saved in the database thus the users will not

receive the duplicate message from this server. All of these processes are

automatically run by Spring scheduler at a fixed period. The system does not have to

send any message or the mobile users are not in range, the scheduler is stopped and

finished.

4.9 Virtual Mobile Dataset Generation

Synthetic data is information that's artificially manufactured rather than

generated by real-world events. Synthetic data is created algorithmically, and it is

used as a stand-in for test datasets of production or operational data, to validate

mathematical models and, increasingly, to train machine learning models. The

benefits of using synthetic data include reducing constraints when using sensitive or

regulated data, tailoring the data needs to certain conditions that cannot be obtained

with authentic data. However, the virtual mobile dataset has some drawbacks that

occur the original dataset includes inconsistencies and difficult to replicate instantly.

This inability may bias to produce an accurate dataset that nearly the same as real

data.

Generation of synthetic datasets is a common practice in many research areas.

Such data is often generated to meet specific needs or certain conditions that may not

be easily found in the original, real data. The nature of the data varies according to the

application area and includes text, graphs, social or weather data, among many others.

The common process to create such synthetic datasets is to implement small scripts or

programs, restricted to small problems or to a specific application. In this system, a

generator is proposed designed to generate high dimensional mobile datasets. The

data creation is driven by three parameters which are drive, walk, and stationary based

on mobile user behaviors. First, a grounding dataset is created according to given

inputs, and then updating is done according to predefined time and distance thresholds

by three behaviors. It can successfully be used to create synthetic datasets for moving

mobile users.

4.10 Moving Object Generator

Many datasets are generated synthetically according to environmental needs

such as animal, mobile user, bus, Hurricane dataset, and so on. Also, a synthetic

dataset usually comes from application-dependent generation. Different datasets have

different applications and usage. Therefore, all of the researchers should think about

their domain of interest before making any dataset synthetically. It has to compare the

behaviors and functions of real data so that it seems realistic. A suitable way that can

generate synthetic dataset is deriving a model or architecture with valid properties of

real data. An appropriate and valid architecture, a moving objects generator is

proposed. The architecture of proposed moving objects generator is shown in figure

4.10.

Figure 4.10 Architecture of Moving Object Generator

 Location Table

Id

Token

Latitude

Longitude

Active time

Moving type

Bearing angle

Database

Collecting user

location
Geo bounding

coordinates

Current latitude

Current longitude

Update latitude

Update longitude

MAX_LAT

MIN_LAT

MAX_LNG

MIN_LNG

Compare

Send

location

Send

location

Send

location

In each of the mobile user, different action and characteristic take different

location update. This generator automatically runs and processes by taking as a thread

function with run (), wait () and sleep (). In this architecture, synthetic mobile users'

dataset is generated along with their behaviors and activities. Practically, mobile

users are generally located at stationary or no moving type, sometimes they drive, and

some are walking. Especially for updating moving data, one of the suitable forms is

updating their process based on their motions. As an example, a user who is walking

and a user who is driving will not be the same motion as the required update.

4.10.1 Mobile Location Generator

 It is used to create virtual mobile location dataset that seems real mobile

locations. There are two main steps included in implementing this generator.

(a) Generate locations which include latitude and longitude between maximum

and minimum location coordinates.

 (b) Update latitude and longitude consistency.

Both of these above two steps are done alternately to produce synthetic mobile

locations. The procedure of mobile location generator is the following.

Procedure: Synthetic Mobile Location Generator

Input: generate locations Lat and Lng with latitudes and longitudes within ε

// ε is (maxlat minlat 28.5, 9.6 and maxlon minlon 101.17, 92.2)

// Lat and Lng is randomly generate latitudes and longitudes

Output: Synthetic mobile locations

i. for each regId=1 to number of users; R=6378.1km

a. latitude=minLat+(Math.random()*((maxLat-minLat)+1));

b. longitude=minLon+(Math.random()*(maxLon-minLon)+1);

c. bearingAngle = Math.random() * ((360 - 0) + 1);

ii. update latitude and longitude consistency

a. updateLat = latitude+ asin(sin(latitude) * cos(distance / R) +

cos(latitude) * sin(distance / R) * cos(BearingAngle));

b. updateLon = longitude + atan2(sin(BearingAngle) * sin(distance/ R) *

cos(latitude), cos(distance / R) - sin(latitude) * sin(updateLat));

Since the mobile user location has its own latitude and longitude, each of them

is calculated separately. After getting random locations, all of these are divided by

three types of mobile users who are walking, driving and stationary according to the

time and distance threshold values along with their updates are done for each. At the

second step, a location update policy is drawn as mobile users' behaviors and actions

are quite different. In this step, time and distance based location update strategies are

used to separate mobile users' types. The output will be a synthetic dataset that

includes finding locations and updating them appropriately.

4.10.2 Process Flow of Generating Mobile Dataset

Figure 4.11 Process Flow of Moving Object Generator

The process flow of the proposed architecture on moving objects generator is

clearly explained in figure 4.11. The first phase is to find the location of mobile users

True

False

Load Locations from

Database to Memory

Generate Mobile Users'

locations

Call Mobile User s

From Memory

Update Locations by

Moving Type

Increment

Schedule

every x

second

Mobile

List Size

> 0

user?

End For

End

Start

True

False

synthetically because it is hard to get the millions of mobile locations in reality and it

is also a way of privacy protection for the real world. After getting these locations of

mobile users, all of these locations are loaded from database to memory. Then, the

following two steps are done by spring scheduler that runs with the help of Spring

Boot at the specific time. Firstly, mobile users are taken out of memory before doing

any process. Secondly, mobile users' locations are updated by moving types after

checking mobile user lists which are available for processing.

4.11 Distance-based Range Search

This distance-based search determines whether registered mobiles are in the

service area or not so that this system compares the distance between the mobile

device and center with circle’s radius. If the radius of the circle is greater than or

equal to the distance, the mobile is inside the service area. The following Mobile

Region Check (MRC) procedure can be used to decide the registered mobile region.

Procedure: MRC (m_latitude, m_longitude, c_latitude, c_longitude, radius)

1. Initialization: mlatitude=mobile’s latitude; mlongitude=mobile’s longitude; clatitude=

epicenter’s latitude; clongitude =center’s longitude; radius=circle’s radius, d=

distance between mobile device and center;

2. √

() ()
 (4.2)

3. If (d <= radius) then print: Given point is inside the service area;

4. Else print: Given point is outside the service area;

4.12 Summary

This chapter presents the architectures of the proposed methods, algorithms

which are applied in the multicast notification steps. The proposed system is

implemented to send disaster notification to the mobile users within the disaster area.

The system takes current locations of mobile users by Google API and updates them

by hybrid update algorithm. The system proposes to presort-nearest location index

tree structure with the availability of dynamic range queries. The required

performance of this proposed index structure is evaluated by proposing a mobile

object generator. The detail explanations of this generating process bring a good idea

for making any other moving objects generator. The more dataset varies, the more

result different, and all of these outcomes will be used in part for incoming research.

In order to better findings, virtual mobile users are created with different forms and

versions and tested by using indexing in this system. The implementation of proposed

system is described in chapter 5 with program demonstration, detail system process

and implementation. The performance evaluations over range search queries are

discussed in chapter 6.

CHAPTER 5

IMPLEMENTATION OF THE PROPOSED SYSTEM

Disaster Notification is the process of sending notification into registered

mobiles which are in the imminent disaster area. This chapter describes the proposed

approach that builds presort-nearest location index tree with the dynamic range

queries. The storing of mobile locations and processing them by presorting the nearest

location index structure is done thus it can speed up the query performance especially

for both nearest and range searching. This index structure mainly supports not only

continuous range query but also nearest neighbor query by level order in the range. In

reality, millions of mobile user locations cannot get easily so that synthetic dataset for

mobile objects are generated by proposing Synthetic mobile dataset procedure.

The program demonstration includes Synthetic mobile location dataset and the

proposed index tree structure is firstly demonstrated in this chapter. The detail process

of program demonstration steps is briefly discussed starting from the synthetic

moving objects creation to sending a message to the objects in the range. The program

demonstration provides a clear explanation with visual support. Then, the system

implementation is explained step by step.

In this implementation includes two main parts: client-side application and

server-side implementation. At the client side, it first defines two types of client

application: getting location and updating location by Hybrid Update Algorithm. It

then sends the current location to the application server with register ID that received

it from Google cloud server that supports firebase cloud messaging (FCM). It exists as

a persistent connection between thousands of Android applications and application

server. At the server side, there are collecting of registered mobile locations with

latitudes and longitudes, indexing user locations in the service range by proposed

index tree, displaying all of these locations by level order and sending notification

messages to mobile users which are in the imminent disaster area with the help of

FCM. All of the mobile users in the range will receive notification message according

to the nearest location level order. The continuous and dynamic range queries are

available at the server side. All of the steps in the implementation are controlled by

Spring scheduler that supports as the abstraction layer with flexibility and loose

coupling.

5.1 Program Demonstration

Program demonstration has used the ability to see the flow and features of this

system with the detail tested results. It provides visual support to enhance the quality

of system presentation. In this demonstration, multithreading is used to perform many

operations without blocking in parallel tasks and to update the virtual mobile locations

independently in the range.

The process of program demonstration includes the following four steps.

(1) Creating synthetic moving objects and updating them

(2) Finding moving objects within the service range search

(3) Applying the presort-nearest location index tree based on synthetic moving

objects

(4) Sending a message to the objects in the range by level order

In this demonstration, it shows in practice how a particular step is cooperated

together to be a complete mobile location indexing based on synthetic moving

objects.

The detailed flow of the demonstration is the following. First, a center location

which includes latitude and longitude is input and range bounding coordinates such as

minimum and maximum latitudes and longitudes are calculated. Then, the numbers of

mobile users in the range are output together with each register_Id, latitude, and

longitude. After that, presort-nearest location index tree is built and the location

coordinates in the range are released starting from the closest locations of center

location by level order. Moreover, messages will be able to send simultaneously with

that output. In this system, continuous range search is supported as messages will be

delivered within the specified time automatically.

5.1.1 Main View of Program Demonstration

The first page of Mobile Location-based Indexing based on the Synthetic

dataset by program demonstration includes three main parameters. They are the center

location (latitude and longitude), and a service radius which is regarded by kilometer.

For this demonstration, the synthetic dataset is generated based on the proposed

procedure (moving objects generator) that produces synthetic mobile locations. In this

generator, location objects or nodes are generated using random functions,

categorized by different behaviors that seem realistic. The update locations are done

according to the type of mobile objects. In this system, three types of mobile objects

are specified. As it intends to send notification within the disaster area, service area or

range area is calculated and maximum and minimum bounding coordinates are

produced. A generate and send button is provided to send notification messages by

proposed nearest index structure.

5.1.2 Building Range Users Index Tree

The operation of the nearest location index tree provides to send fast and

appropriate notification messages. In this system, the nearest location index structure

is proposed to allow maintaining and updating user locations with continuous range

queries. It also supports generating nearest points by index structure from the desired

query point. It places the location nodes by level order thus nodes at any distance can

easily find without traveling the whole tree and the searching may reduce greatly. It

gives the advantage of an index structure to easy data access and fast query along with

the retrieving nearest locations from a location point. Moreover, it is harmonized to

solve continuous range queries together with the nearest neighbor location queries. In

addition, all mobile locations in the range will be available by the distance at one

time.

5.1.3 Sending Level Order Messages

The sending message to all mobile users in the range starts as soon as the

emerging of nearest location index tree. As the users' positions are ordered by closest

to the center point in the index structure, the message will be sent according to the

index tree. It provides the users who are the nearest positions to receive the message

first. The delivery of the message to the mobile users occurs when the range query

starts and searches for users in the service area. The message will only be received by

users who are in the service area. This process is based on a multicast messaging

system and the continuous range query is provided by multithread functions.

5.2 System Implementation

This system has developed a client-server communication that supports

disaster notification message of the upcoming disaster. At the client side, an Android-

based mobile application is provided by using a special location provider called

Google API and firebase cloud messaging (FCM). This application will run on mobile

phones supported by Android version 4.0 or high upgraded versions. The mobile

phone must have a location supported identification facility. This application has two

major parts:

(1) Getting current and update location of the mobile device.

(2) Registration to get a token ID and connecting with firebase cloud

messaging.

Through a special location provider called Google API, mobile phone catches

the current location of its user and sends it to the server. Using the current position of

the user, this system will determine whether the user is in probable disaster exposed

area or not. The application registers to FCM that generates Token ID. Then the

application communicates with the server not only giving token ID but also sending

the location of the mobile current position. The required update position is done after

reaching the predefined threshold values or constraints that are provided by the

combination of distance and time-based location update policies.

At the server side, there are three parts in the Microsoft SQL Database: mobile

users, alert message and mobile user message. At the first part of mobile user, there is

holding mobile latitudes, longitudes, creates register dates and active times of

registered mobile users. The second part is alert message where service region radius,

messages for client, message start date, end date, epicenter latitude and longitude is

collected. The third part is mobile user message where it uses presort-nearest location

index structure and filters mobile users which are within the disaster service area. If

the mobile users are within the service area by procedure and message is not expried,

mobile uses will get multicast message from server.

In this system, an application server is taken as a third-party server. This

system has to mark the notification service region based on the center location and the

service distance called circular range search. For registered users are in the imminent

disaster area, the application server needs to push a message to users' Android

application. It requests to send a multicast message to FCM server via an HTTP

POST. Afterward, the registered android application fetches the message from the

FCM server. The general work of server-side implementation includes the following

two things.

(1) Marking service range area by circular searching

(2) Sending notification to real mobile devices in the range by FCM

5.2.1 Prerequisites for using Firebase Cloud Messaging

The following documents are required for firebase cloud messaging client.

i. Android Studio 2.2 or later

ii. The device that has Google Play Store app

iii. Android version 4.0 or higher

iv. Google APIs configurations

v. The Android SDK Manager with Google Repository

vi. Push Android SDK 1.7 or later

5.2.2 Client Side Application

The UI design of this application is very simple and user-friendly design. The

main contents of the client application are location log and messages button. The

location log provides to see the summary of the history and current locations of this

application. The messages button is the collection of messages that are sent by the

application server.

The status of location for both update and current location with respect to their

date and time are shown in the location log. All of the update locations are easily seen

by scrolling down the surface of the location log. The location is provided by Google

API that helps to get the fast and accurate position of mobile phones by switching

between available location providers such as GPS, Network Provider, and Cellular

Network.

When the application server sends the required messages to the registered

mobile phones, the notification message is pop up at the top of the mobile phones and

save them in the application messages. In this application, the messages are available

and supported to send and read for not only Myanmar language but also English

language.

5.2.2.1 Prerequisites for Client Application

It is an Android based application and it work with firebase cloud messaging,

local server database and push notification service. It includes the free services and

configurations supported by mobile computing technologies. It is also a location-

based communication service with Android technologies. The required features and

their explanations for client application are explained in table 5.1.

Table 5.1 Features and Their Explanations

Features Explanations

Google-map-key To use special location provider (Google API)

Base-

URL="http://172.20.10.3.8080/disaster-

server/"

To connect application server and client

application

Notification-sound To send notification message with sound

Token To save and send FCM registration service

Message adapter
To send message with title, body, and date in

message list

Position adapter
To receive and update latitude and longitude of

mobile location

Retrofit Request
To retrieve and upload JSON via REST based

web service

Access_Find_Location To request and find client application's location

Request_Google_play_service
To available Google API services in client

application

REST
To use HTTP requests that have GET, PUT,

POST and DELETE data

'com.google.firebase:firebase-

plugins:1.0.5'
To add firebase configuration options

'com.google.gms:google-services:3.1.0' To add Google service configuration options

5.2.3 Server Side Implementation

All of the activations in this server are done by Spring boot [90]. It is used to

get the important concepts of automatic configuration, starter dependencies, and the

command line interpreter. Spring boot provides fast and wide accesses for all

development and provides non-functional features. In this system, most of the

processes are dynamic such as getting update locations of mobile users, searching

continuous range query, dynamic index tree for mobile users in the range and sending

a message to the target client applications. Therefore, Spring scheduler exists the main

controller of this system.

The main menus for this system are "Message", "Mobile User" and "FCM".

"FCM" menu supports sending a different message to each of the mobile users. To

send multicast or broadcast message, it can be sent from the "Message" menu on the

application server. The stored user information in the database is shown in the

"Mobile User" menu. The message title is available up to 80 words including spaces

and message body can be sent up to 200 words with spaces. The application server

delivers a message to the FCM server firstly, and then the FCM server multicasts this

message to all mobile users which are in the service area. For users who are in the

range but they are offline, this message is maintained by FCM server before the

message is expired.

The collection of required information for mobile users is stored in the

database. As soon as the client application is installed and its location is available,

token ID and its current location are received from the application server with the help

of FCM and special location provider called Google API. For each mobile user, there

is a user token that receives from firebase server, its current location that has latitude

and longitude, the create date of this application, and its active time. The current

location is updated as soon as the server gets user locations from the mobile

application. The places for all of the registered mobile locations are available and

connected to the Google Map on the mobile user Web page.

To send a message from the application server, the message number, message

status, center location of latitude and longitude, service radius with kilometer are

provided on the Web page. Besides, the important message title, message text,

message date and expiry date that has detail hour, minute and second are described

and the direction of center location is also available by the Google Map on the

notification message Web page. The system provides both Myanmar language and

English language to send the messages.

5.3 Summary

This chapter describes the design and implementation of the proposed system

by displaying the output results. Program demonstration is added so that it can clearly

understand the flow of this system and the proposed methods. The structure of the

proposed index tree for mobile locations in the range incorporates in this

demonstration. It displays a more understandable form of sending the message to

mobile users. Besides, the step by step explanation is clearly described not only at the

client side but also server side. The places for both mobile users and the service area

with center location are displayed on the server side Web page. Moreover, this

chapter explains the cooperation of Spring boot with a scheduler and the proposed

methods in Web services. The detail process starts from getting the current location to

sending the notification to the real mobile devices in the range by FCM. The

evaluation results of the proposed system are discussed in chapter 7.

CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, the experimental study is discussed on performance

evaluations of the proposed presort-nearest location index tree with the comparison

KD tree, presort range tree and distance-based range searching. The results are

attained by the required preprocessing, range query, nearest query, and total

execution. The goal of this chapter is to evaluate the performance of presort-nearest

location index tree for moving mobile objects. There are two main parts in this

chapter. The first part is generating synthetic mobile objects' dataset. The second part

is the evaluation of performance based on proposed index tree construction, range

searching and nearest neighbor searching along with the comparison of KD tree and

presort range tree. Moreover, the range searching over proposed index tree is also

compared to the distance-based range searching.

An experimental setting is managed and discussed on a computer with an Intel

Core i7-4590U CPU, 8G RAM, and 1-terabyte hard disk storage. The proposed

synthetic location dataset generator is applied to generate mobile locations that use to

simulate moving objects. This dataset basically comes from the random function of

three different behaviors. In order to be a realistic mobile location dataset, it has two

properties: generating mobile locations that include latitude and longitude coordinates

and updating all of them consistently. This system consists of finding the nearest

positions of mobile locations that change the positions in a continuous range query.

Therefore, multithreading has been used in this system that can work without delay

for parallel tasks.

For performance evaluations, this system tests about proposed index tree

construction, its range queries and nearest neighbor queries with the comparison of

using KD tree and presort range tree. Moreover, CPU time is calculated and noted

with the increasing number of mobiles. To improve performance evaluations, this

chapter clearly showed the tested results by different range values and number of

mobiles. Experimental results indicate the efficiency of using the proposed index tree

is more than using the KD tree structure for moving objects. Besides, the range query

result indicates that the proposed index tree has faster processing time than the normal

distance-based calculation. This is because the variation of mobile objects caused the

delay of normal distance-based calculation. The large volume of mobile locations can

handle by presorting in the proposed tree structure. Moreover, the proposed structure

which is presorted by input queries resist the skewed distributions of mobile objects.

Therefore, the proposed structure performed the desired range queries and nearest

neighbor search within the short execution time, especially in the large mobile dataset.

The required parameters and their values for performance evaluations are described in

table 6.1.

Table 6.1. Parameters and Values

Parameters Values

Synthetic Mobile Generation Range Min Latitude 9.6, Max Latitude 28.5

Min Longitude 92.2, Max Longitude

101.17

Number of Mobile Objects 1000 – 100,000

Object Types Car, Walking, Stationary

Bearing Angles 0
.
 – 360

.

Update Distance 0.00832km,0.01112km,0.0102km

Schedule Fixed Rate

(for Random Mobile Users)

2000msec

Schedule Fixed Rate

(for Building Tree)

1000msec

Initial Delay 5000msec

6.1 Means for Evaluation Environment

In order to measure the performance of presort-nearest location index tree, one

must secure the following four means:

1. Dataset(s): A collection of mobile object locations. Each location consists

of latitude and longitude together with the registered id (reg_id). It is

generated synthetically and required not only to create mobile object

locations but also to update them that seem realistic.

2. JUnit: It is an open source testing framework which is used to write and

run repeatable automated tests. The experiment was performed for

computing preprocessing, query and execution time for range search,

nearest neighbor search and building tree construction time with a number

of data set points that are organized in two dimensions.

3. Spring Scheduler: It is a schedule annotation in Spring that is used for task

scheduling. The trigger information needs to be provided along with this

annotation. The fixedDelay, fixedRate and cron are common services to

provide the triggering information and each of these has the following

property.

• fixedRate- makes Spring run the task on periodic intervals even if the

last invocation may be still running.

• fixedDelay- specifically controls the next execution time when the last

execution finishes.

• cron- is a feature originating from Unix cron utility and has various

options based on your requirements.

4. JBoss Server –It is the open source implementation that has high flexibility

and powerful architecture for Java EE suite of services. It is developed as

Java application server JBoss, a division of Red Hat Inc. It is simple and

easy with preconfigured enterprise procedures and components. It supports

the server-side implementation of Java and Web-based applications and

software.

5. Multithreading– It is used to allow multiple thread execution at a particular

time. It performs many operations without blocking in parallel tasks. It can

update the virtual mobile locations independently in the range. The

advantages of using multithreading are reducing development time and

sharing the same memory.

6.1.1 Synthetic Dataset

Synthetic mobile location data is created procedurally, and it is used as a

stand-in for test datasets of moving mobile locations, to validate performance

evaluation of proposed index tree and, increasingly, to train comparison of other index

structure and another similar approach. These datasets are needed to simulate mobile

objects when they are unavailable for millions of mobile positioning data in reality.

To generate synthetic datasets appropriately, moving mobile objects are created

dynamically by classifying their behaviors. In fact, different mobile objects have

different velocities and movements. Therefore, location objects are generated by using

random functions, which can be categorized by different behaviors in such a way that

they seem realistic. It is aimed to get realistic mobile locations for performance

evaluation of presort-nearest location tree with indexing and storing dynamic location

objects.

6.1.2 Experiments and Test Cases

This system involves communication as well as the connection of the firebase

cloud server, application server, and client application. The required location, sending

and receiving the message is tested with scenarios. All of the possible positive and

negative test cases and their results are lists the following.

Scenario 1: App is installed and the location is available. But it does not take

any connection to the application server and FCM.

Results: Success case. It automatically connects to the FCM as soon as the

application is installed. Application server gets Token ID that generates from FCM, a

location of a mobile phone and saves them in the mobile user lists.

Scenario 2: The registered mobile phone is not in the range while sending a

message from the application server. It reaches in the range after sending the message

from the server.

Results: Success case. This system supports continuous range search with the

help of Spring Scheduler so the message will be delivered as long as the message

expires.

Scenario 3: The registered mobile phone is offline. But, it is in the service

range area.

Results: Success case. Since it is in the range, it is included in the nearest

location index structure. It will receive notification message as soon as it is online.

Scenario 4: Registered mobile phone received the first message in the range.

Application server sent the second message in the same range.

Results: Success case. Messages are defined by message id so that the

message will be received by mobile users if it is not the same as the previous

messages. Only the duplicate message will not send to the mobile phone.

Scenario 5: Application is installed and only GPS or WiFi is available.

Results: Success case. Google API takes location for Application with the help

of any location provider. Application server gets a mobile location and then the

message will be received by mobile Application.

Scenario 6: The registered mobile phone is power off. The application server

sends a message for it.

Results: Success case. Messages are retained by firebase cloud server until the

message is not expired and the mobile phone is power on.

Scenario 7: Application is installed. It does not query any message in the

range.

Results: Success case. This system is based on the push technology. Therefore,

Application will receive message automatically by the service provider without

requesting it at that instant.

Scenario 8: Application is uninstalled and reinstalls it again. The application

server sends the message to this application.

Results: Success case. FCM generates new Token ID and Application will

receive a message which is not duplicated from the server.

Scenario 9: Application is installed and GPS or WiFi is off.

Results: Partial success case. There is a background process to get a location

from a mobile phone called cellular network. It takes time and needs to be in the

network coverage area (i.e. using the cell network is accurate to basically 500m from

cell tower).

Scenario 10: Many registered applications are in the same service range. They

need a notification message instantly.

Results: Success case. FCM handles thousands of network connections

between application server and application. It can send a multicast message to all

mobile users in the range.

Scenario 11: The original application is shared from Zapya or file transfer

applications and installed in another phone. The application server sends a message to

the original application that is in the service range.

Results: Success case. The application can be shared by file transfer

application or any types of transfer software. FCM generates a token ID for each

application in the mobile phone. Therefore, only the original application that is in the

service range will receive the message.

Scenario 12: Message has no expired date and time. Application arrives in the

message service range after one month.

Results: Failure case. Messages are retained in FCM storage for a maximum

of four weeks. Therefore, FCM automatically deletes this message and Application

will not receive the message.

Scenario 13: Application is offline until the message is expired.

Results: Failure case. The message is sent by firebase cloud server so that it

can only connect to the application with the help of network connection.

6.2 Evaluation of Response Time by Location Providers

In this system, a special set of communication tools, Google API is used to

access the current location which is the key feature of the client application. It

supports efficient communication between client and application server with the

availability of Google service and other important services for messaging. One of the

Google API capabilities is providing the best service based on location providers. It

supports the most accurate and fastest current and updates location with the help of

location providers. The accessing location analysis of basic location providers such as

GPS and Wi-Fi enabled Network Provider for a client application is evaluated and

described in figure 6.1 and 6.2. This experiment focuses on the results of response

time available from the initial state to the difference update results states of GPS and

Network provider based mobile phones. Both of these evaluations are performed in

the indoor test and location updates are recorded within three minutes. The

comparison of each provider is discussed and the results are explained in each

provider.

6.2.1 Evaluation of Response Time by GPS

Figure 6.1 Client Application's Location Update by GPS

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
p

d
at

e
R

es
p

o
n

se
 T

im
e

(S
ec

o
n

d
)

Number of Location Update

Getting Location By GPS

The status of getting location by basic location provider called GPS with the

response time (second) is shown in figure 6.1. In this experiment, the client

application takes GPS location once every 2 seconds as the default step. It is the

indoor test and location update has been marked in 3 minutes. The result shows the

response time of the availability of location update by GPS. Generally, the normal

application usually takes the location from GPS more than 3 minutes to get a fix.

Subsequent updates are reasonably fast (like 5-10 seconds). According to the

experiment, the obtaining precise location at the start takes 30 seconds to 40 seconds.

The variation of location update occurs from 4 seconds to 8 seconds. By combining

the features and functions of Google API, it provides location over GPS in less than 1

minute at the first time. Besides, it gets location three times faster than normal GPS

based application at the first time. Moreover, the subsequent updates are reasonably

fast like 2 to 3 seconds.

6.2.2 Evaluation of Response Time by Network Provider

Figure 6.2 Client Application's Location Update by Network Provider

The result of the availability of location updates response time by Network

Provider is described in figure 6.2. In this experiment, accessing the location in the

client application based on the supportive of Network provider. It also tests the indoor

and location updates are marked in 3 minutes. To get the more accuracy with Network

provider's location, this experiment has enabled the WiFi in the setting. As the results,

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
p

d
at

e
R

es
p

o
n

se
 T

m
e

(S
ec

o
n

d
)

Number of Location Update

Getting Location By Network Provider

the precise location at the start time is obtained within the 10 seconds to 15 seconds.

The variation of location update has been found from 2 seconds to 6 seconds.

According to the experiment, the starting state of getting a location from network

provider is faster than the GPS.

As a result, the mobile network should be used if getting location is the initial

positioning or there is low satellite visibility. Besides, it is more compatible with

Google API features than GPS.

6.3 Evaluation of Message Arrival Time for Users

The required feature of sending notification message is receiving the right

users in a suitable period of time. Message arrival time is very important especially

for a limited-time alert or notification message. In this system, multicast notification

is provided to all of the client applications in the service range area. Therefore,

message arrival time is emphasized and prepared by mobile push services.

Then, the experimental results are tested based on the status of mobile users.

The evaluations of message arrival time are discussed in figure6.3 and figure 6.4.

These figures show the tested results of message arrival times to mobile phones. This

experiment is based on the two potential mobile phone positions such as Online and

offline mode.

6.3.1 Evaluation of Message Arrival Time for Online Users

Figure 6.3 Sending Continuous Messages to Mobile Users in the Range

0

5

10

15

20

25

30

1 2 3 4 5 6 7

M
es

sa
g

e
A

rr
iv

al
 T

im
e

(S
ec

o
n

d
)

Number of Message

Sending Continuous Message

The test for the application server to send a continuous message is shown in

figure 6.3. In this experiment, the client application is online and the server sends the

messages continuously with the message title and message text. The message arrival

time (second) is marked during a series of sending the message. The variation of

message arrival time is from 5second to 24second. It is because sending a message

based on the delay time of Scheduler and a database update message so that the

message arrival time is found a few changes.

6.3.2 Evaluation of Message Arrival Time for Offline Users

Figure 6.4 Sending Messages to Mobile Users Who are Offline

Figure 6.4 shows the sending messages to mobile users who are offline. This

experiment is tested while mobile phone offline and the receiving messages and their

arrival times are listed as soon as the mobile phone is online. The number of test

message has 7 letters and all of these were sent by the terms of the time in a range.

When a mobile phone online and the message arrival time has noted before the

messages expire. According to the experiment, the messages are received accurately,

as well as duration is also within the 2 seconds to 3 seconds after being online.

6.4 Performance Evaluation Metrics

In this chapter, performance evaluations are done as the following objectives.

• to analyze the ability of the proposed system

0

0.5

1

1.5

2

2.5

3

Msg(1) Msg(2) Msg(3) Msg(4) Msg(5) Msg(6) Msg(7)

M
es

sa
g
e

A
rr

iv
al

 T
im

e
(S

ec
o
n

d
)

Number of Message

Sending Offline Message

• to verify the purpose of the proposed methods

• to compare the advantages and requirements with other similar methods

 The important requirement for the proposed index structure is to access search

queries such as range query, nearest neighbor query efficiently. As the evaluation for

the above query searching time is measured, the other evaluations are done the

following criteria.

• Tree Construction Time

• Processing Time

• Execution Time

• Response Time

• CPU Time

6.5 Evaluation of Processing Time

Figure 6.5 Comparison of Processing Time

In figure 6.5 shows the evaluation of the processing time of the index structure

with the range searching implemented by this system. It has been conducted with

various location ranges with the number of mobile locations over index structure. The

processing time is tested and determined starting to the end of the computing time for

index-based range query and distance-based range query. The comparison of

processing time is calculated according to the following equation 6.1.

Tp=Tend-Tstart (6.1)

0

20

40

60

80

100

120

140

160

100km 200km 300km 400km 500km 600km

P
ro

ce
ss

in
g

 T
Im

e
(M

il
li

se
co

n
d

)

Location Range (km)

Proposed Tree based Range Search

Distance-based Range Search

Where, Tp= indexing with range search query/processing time

 Tstart= Computation start time

 Tend = Computation end time

The processing time comparison between presort-nearest location range search

and distance-based range search approach is displayed in figure 6.5. The experiment

is conducted upon 1million mobile locations in the database server. Each query was

done 25 times and the average was recorded. The results show that both of them

gradually increase in range search time along with the increasing number of location

range. But the processing time for index-based range search is about two times speedy

than the distance-based range searching.

6.6 Continuous Range Search Time

Figure 6.6 Comparison of Continuous Range Search Time

The execution time of range searches between proposed nearest-location index

tree and distance-based method are compared in figure 6.6. In this comparison, the

range queries are continuously searching in a period of time along with the number of

mobile locations. There is no significant difference in the number of mobile objects in

index-based range searching. Besides, all of the mobile locations are already ordered

before tree structure thus it saves time and support to query performance. The more

mobile variation occurs, the more execution time takes in distance-based range

searching. The results of range search for the number of mobiles less than 10000 are

not described in this figure 6.6. In fact, the distance-based range search execution time

0

200

400

600

800

1000

1200

1400

1600

10000 20000 30000 40000 50000 60000 70000

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
o
n

d
)

Number of Mobiles
Proposed Tree based Range Search

Distance based Range Search

with the number of mobiles less than 10000 is nearly the same time as the proposed

tree based range searching.

The distance-based approach requires a repeated calculation for each mobile

location because this experiment is based on not only changing the mobile locations

but also searching continuous range query for these locations. Therefore, it is not

difficult for small mobile location dataset but it is very time-consuming for large

moving mobile location dataset. To conclude this figure 6.6, distance-based range

search is slower than the proposed tree based range search especially for a large

number of a dataset.

6.7 Evaluation of Computational Responsiveness Time

Figure 6.7 Comparison of response time

This system is evaluated by response time that starts message list query from

the database to indexing with range query calculation. This experiment consists of

various location ranges, comparing index-based range and distance-based range. It

takes the time between marking a region for multicasting and sending notification by

searching range query. The total response time is calculated based on the following

equation 6.2.

 Tresp= Tmreg+ Tp+Tnoti (6.2)

Where, Tresp=Response Time of the notification service

Tmreg=acquiring message by admin and marking the service region

Tp= indexing with range search query/processing time

0

3000

6000

9000

12000

15000

18000

21000

24000

27000

200km 400km 600km 800km 1000km 1200km

R
es

p
o

n
se

 T
im

e
(M

il
li

se
co

n
d

)

Location Range (km)

Proposed Tree based Total Response Time

Distance based Total Response Time

Tnoti=sending notification by multicasting

The comparison of total response time based on the proposed presort-nearest

location index tree and the distance-based method is shown in figure 6.7. In this

experiment, different location ranges and range search times are marked on

millisecond. It conducts one million mobile locations in the database server. In this

experiment, the processing time of the two approaches is slightly increased when the

requested location range is greater. In summary, the total response time of the index-

based approach is about two times faster than the distance-based range search

approach.

6.8 Discussion

The experiment basically performs the comparison for range searching and

total execution along with processing time and response time of proposed presort-

nearest location index tree and distance-based method. The proposed index tree has

three activities such as preprocessing, querying, and updating. It is compared to

distance-based range searching for processing time, responsiveness time and

execution time on mobile locations. The range searching time of the proposed index

structure is about two times faster than the distance-based range searching. The index-

based range search takes better performance when it is used for both a larger range

area and the number of datasets. Especially, it needs the less number of seconds when

it is used for a large number of moving dataset.

6.9 Comparison of Tree Construction Time

Figure 6.8 Comparison of Tree Constructing Time

0

10

20

30

40

50

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ro

ce
ss

in
g

 T
im

e
(M

il
li

se
co

n
d

)

Number of Mobile

Presort Nearest Location based index structure

KD tree based index structure

Presort Range tree index structure

Figure 6.8 describes the results of the experiment on presort-nearest location

index tree, presort range tree and KD tree over tree construction time. To construct

presort tree structure; the first thing is preprocessing the data into the data structure. In

this process, presorting is done by each dimension and then it takes into the input

parameter for building tree. This sort operation is time consuming especially for a

large result set. According to values in one dimension is defined as ORDER BY

clause of SQL statement such as order by latitude and order by longitude. After taking

preprocessing, queries and updates on the data structure are performed. For this

comparison, the results are confirmed after testing an average of 15 times with the

dataset from 1000 to 10,000 mobile locations. In this experiment, the number of

mobiles is generated by a proposed generator which is initialized by adding the same

number of moving object types. It can be concluded that the proposed tree and presort

range tree is nearly the same in tree construction. Besides, the proposed tree

construction is one third faster than KD tree. This is because both comparative trees

are unbalancing two-dimensional trees but the proposed tree and presort range tree

input are being included the order queries that provide to be fast in tree construction.

In addition, the form of the proposed index tree provides nearest neighbor locations in

the range by level order in tree construction.

6.10 Comparison of Range searching Time

Figure 6.9 Evaluation of Range Searching Time

0

50

100

150

200

250

300

350

100km 200km 300km 400km 500km 600km 700km

E
x
ec

u
ti

o
n

 T
im

e
(M

il
li

se
co

n
d

)

Location Range

Presort Nearest Location based range

search

KD tree based range search

The figure 6.9 shows the experimental results of range searching time for

presort-nearest location based range search, presort range tree based range search and

KD tree based range search. It is the test for the duration of searching time within a

distance of 100 kilometers to 600 kilometers ranges search queries. This experiment

includes a dataset 10000 and a center latitude and longitude to take as University of

Computer Studies, Yangon GPS coordinate. It was not described the tested results

within a distance of less than 100 km range searching time because it was taken

nearly the same in (1 millisecond). In this experiment, the larger the range size, the

more increase the number of mobile locations. According to figure 6.5, all of these

three index structure are adequately supportive to range searching. Especially, presort

range tree supports to get fast range search than other two methods. The results

describe a fast access query which is regarded as one of the features of the index tree.

6.11 Comparison of Nearest Neighbor Search within a Range

Figure 6.10 Nearest Searching Time between proposed tree and KD tree

The figure 6.10 shows the comparison results of the presort-nearest location

index tree and KD tree that acts within a range of mobile locations from the nearest.

In this experiment, the circular range is used for finding range search. To undertake

the duration of the experiment, the mobile locations are firstly checked within the

range or not, which has marked the time. Then, the displaying the mobile user lists by

nearest called nearest neighbor search is tested and also marked the time. Such a

0

5

10

15

20

25

30

35

40

45

50

10000 20000 30000 40000 50000 60000 70000

E
x
ec

u
ti

o
n

 T
im

e
(M

il
li

se
co

n
d

)

Number of Mobiles

Presort Nearest Location based nearest search

KD tree based nearest Search

query can be used for not only static or stationary locations but also moving the

location query that repeatedly undertakes as a continuous range query. According to

the experimental results, the presort-nearest location index tree execution takes a half

time in the execution of KD tree. This is because although the searching time over

two comparison trees is nearly the same, the structure of presort-nearest location

index tree is already supported to the nearest neighbor since the tree construction thus

it can search for nearest neighbor within one millisecond.

6.12 CPU Time of Continuous Range Query

Figure 6.11 CPU Time for Continuous Range Query Over Moving

Objects

The CPU time of proposed index tree with the continuous range queries is

discussed in figure 6.11. As this system is based on moving mobile objects, it has

used multi-threaded functions. There has been to compare the CPU time analysis

because multiple operations such as continuous range search operation, update the

mobile location operation and dynamic index tree operation are simultaneously

executed in this system with some application active threads. To get an average

timing for each range query, this system uses the Nano time function which is suitable

for the exact calculation of programmed delays and actively working on a certain task.

This process is started from searching maximum and minimum coordinate points and

continuous range queries of the predefined service area. The new mobiles are allowed

0

50000

100000

150000

200000

250000

300000

350000

400000

290 305 282 295 190 184 157 193 124 167

C
P

U
 T

im
e

(n
se

c)

Number of Mobile

KD Tree based Index structure

Presort-Nearest Location based Index Tree

during this process and updating is done in the mobile use lists. The results show the

processing time is highest at the first time and half reduce at the second time. It has to

load classes and call static blocks the first time. The variation of processing times

occurs when the insertion of new mobiles is updated in the mobile lists.

6.13 Discussion

The calculation of the performance evaluation over three non-balanced trees

(presort-nearest index tree, presort range tree and KD tree) is based on the tree

construction time, execution time during range searches and nearest neighbor

searches. In this calculation, the generating of the latitude and longitude which is the

source of the synthetic mobile dataset is taken by Myanmar country boundaries within

the maximum and minimum latitudes and longitudes along with the proposed formula

to retrieve and update. One prominent characteristic within tests found that the

proposed tree (presort-nearest location index tree) and presort range tree are faster in

tree building due to ordered data by queries as the input data. It can be found that the

comparative trees (presort-nearest location index tree, presort range tree and KD tree)

are conveniently and fast in the range search without delay. Besides, the proposed tree

provided the nearest neighbor by level order since the tree building so that it does not

need to give private time in the nearest neighbor searching.

6.14 Summary

 This chapter focuses on the experimental results of range queries and nearest

query execution time over mobile objects. Normally, these queries are easily retrieved

by simple calculation such as distance-based formula. But, it may take too much time

for large mobile location data because it requires searching sequentially by each

object in the dataset. Presorting before search queries are appropriate for unbalanced

index structure along with the large and skewed mobile objects. Thus, the proposed

presort-nearest location index structure supports a powerful range search queries and

nearest queries. According to the experiments, the proposed structure, presort-nearest

location index tree is very suitable for continuous range queries in a fixed time.

Especially, it is more relevant to use skewed mobile objects indexing and range

searching. Besides, it supports to get nearest locations by level order thus notification

message can easily be sent to mobile users that exist from the nearest location in the

desired service range. According to the experimental results, the proposed presort-

nearest location tree structure provides a better outcome: taking less execution time

and processing time. The KD tree, presort range tree and proposed index tree are

relevant for mobile location range searching. Besides, the proposed index structure

offers more impressive range and nearest neighbor search than the distance-based

method. In addition, the system selects suitable index structure and procedures that

are jointly optimized to achieve availability and efficiency of delivering messages.

CHAPTER 7

CONCLUSION AND FUTURE WORKS

The use of location-based services is significantly increased day by day with

the numerous growths of mobile technologies. This system proposes a location-based

disaster notification system that has a client application, an application server and

Google cloud server for firebase cloud messaging.

This system provides the solution to find the location of mobile users in a

defined disaster region in a faster and efficient manner. Then, notification is sent by

FCM with multicast technology. As an imminent disaster notification is valuable for

mobile users so that people aware that the accurate disaster notification system is very

important. Disaster takes a loss of social and economic progress. The number of dead

and injured people is affected by lack of notification about the natural disaster. Thus,

the integration of mobile and location-based technology application is needed for

disaster information.

For this purpose, this system proposes the development of a disaster

notification system based on LBS technology by using FCM and Google API. Then,

the web-based prototype and system architecture are designed and developed as the

application server to provide current locations within the range of the disaster area.

Furthermore, an Android application is designed and created that automatically

received disaster information as the message with notification. The application

communicates with the server not only to send token ID but also the latitude and

longitude of user’s update position. For registered users who are located in the

disaster area, the server sends a notification to FCM. Afterward, the application

fetches the notification from FCM and store a message in the application.

The mapping of input locations from the application to the web-based

notification system has been tested. It shows that the current locations can be gained

by Google API timely and accurately and can be accessed directly by the application

server. This system takes not to be clients who receive the same message multiple

times and not to message expire before being accepted during the time-to-live period.

If the target mobile device is offline, the messages will be queued by FCM and then

delivered as soon as the device becomes online.

This system includes monitoring of mobile locations and updating them to the

server. In getting location, when there is low satellite visibility, or it is the initial

positioning, the mobile network should be used. This system explains how to

incorporate dynamic attributes in presort-nearest location index tree and a model is

added to deal with the overall system. There is a finding that better performance was

achieved when the presorting index structure was used for a larger number of data sets

for range search. The more volumes of data tests, the less number of seconds needs in

the presort-nearest location index tree. It makes less computational complexity

because of balancing structure. It removes the duplicate tuples thereby avoids the

requirement for any further sorting when building a tree structure.

7.1 Advantages and Limitation of the Proposed System

The advantages of this system are the following. First, the message can send to

all without using an operator. Second, it remains notification as a message and users

can get it without missing any alert. Third, the system mostly works on the server that

is reducing and managing the information overload. Besides, the system will be

compromised frequency of update due to the locations of mobile objects. It supports

the nearest query in the range with dynamic object locations.

This system is cheap, less amount of memory needed, save time to get current

locations and query processing. The cost is reduced since this system uses most of the

open source software like Android and MySQL. This system sends notification by

firebase cloud messaging. It is a service provided by Google and inherited by Google

cloud messaging that allows sending or receiving the message between the server and

mobile devices equipped with Android. FCM retains offline messages for mobile

users who are in the imminent disaster area. The notification appears whether mobile

users are using an application or not.

According to the cloud-based messaging system, it needs the internet

connection for both of updating location to the server and sending the notification.

This system supports only for the mobile users that are already registered to get

notifications. The system has a program demonstration together with range query

evaluation and message sending by virtual mobile locations. The testing of range

query is suitable for mobile users up to 1000 service range. To test for the service

range 1000 and above, the system needs to re-configure multithread functions with

delay time.

7.2 Conclusion

This system provides the solution to find the location of mobile users in a

defined disaster region. Then, notifications or alerts will be delivered to users that

save lives and properties. Therefore, the system is done for the monitoring of mobile

objects, to be able to efficiently locate and answer queries related to the position of

these objects in the desired time. Firstly, the system maintains the moving mobile

locations and then the circular range query is available from the server. Besides, it

included storing mobile locations based on the index tree structure and updating

location appropriately. The system will help to be tradeoff unnecessary update due to

the locations of mobile objects.

According to the difficulties of getting millions of mobile locations, a

synthetic mobile dataset model is proposed along with the required framework and its

process flowchart.

This system also focuses on range queries over mobile objects. Normally,

these queries are easily retrieved by simple calculation such as normal distance-based

formula. But, it is enough for only small data because it requires searching

sequentially by each object in the dataset. It takes more time along with the large and

skewed mobile objects. In fact, tree-based indexing has its own building time but it

can neglect with a powerful range search queries. The presort-nearest location index

tree is proposed that systematically to address and update the locations of mobile and

to support desired range queries and nearest neighbor queries over mobile objects.

According to the experiments, the proposed structure is very suitable for

continuous range queries in a fixed time. Besides, it is more relevant to use skewed

mobile objects indexing and range searching.

The processing time of proposed index tree is faster than normal distance-

based calculation. Then the response time is calculated that starts message list query

from the database to range query calculation over various location ranges. The result

shows that the response time for both approaches is gradually increased depending on

the size of the location range; the proposed index tree is about two times faster than

distance-based range searching.

7.3 Future Works

This research is concerned with dynamic attributes that represent mobile

location coordinates, but it can be used for other hybrid systems, in which dynamic

attributes present, for example, moving cars and temperature. The system is

implemented for push-based location-based services that automatically send a

message by the application server. This proposed application has a future plan to add

for rescue and relief operation in the application. The system also prefers a better

server-side application that can detect automatically disaster-prone area based on

geographical analytic. Moreover, this system will do authentication that confirms the

message sends by an unadulterated server. The system is composed of firebase cloud

messaging service thus it exists as a persistent network maintaining thousands of

connections for each client app between the server and user's device. As a further

extension, all of the web services at the server side can be implemented using cloud

computing technology.

 This system focuses on an android phone for now but this system will do for

windows and ios phones about push notifications as further research areas. The

required security for a location-based application will be added to the client app. The

proposed Hybrid Update approach at the client app will be carried out other index

structures (e.g. the Quadtree, the K-D-B tree) by finding relevant threshold values.

Moreover, this proposed index structure can be used to apply other moving objects

such as temperature, vehicle location and so on. The results obtained from the other

index tree structure can be compared to this system's results. This system will not

send the duplicate message to the clients and the server keeps the message not to be

during a time-to-live period.

AUTHOR'S PUBLICATIONS

[P1] Thu Thu Zan, Sabai Phyu “Mobile Location Based Indexing of

Notification System”, International Multi Conference of Engineers and

Computer Scientists IMECS (IAENG conferences), HONG KONG,

ISBN: 978-988-14047-8-7 ISSN: 2078-0958 (Print); ISSN: 2078-0966

(Online), March 2018. Lecture Notes in Engineering and Computer

Science (Scimago index) Page [88-93]

[P2] Thu Thu Zan, Sabai Phyu “Mobile Location Based Indexing for Range

Searching", First International Conference on Big Data Analysis and

Deep Learning Applications (ICBDL), Miyazaki, JAPAN, May 2018.

Advances in Intelligent Systems and Computing (Book Series

Volume: 744), Springer. (Scopus index) Page [240-249]

[P3] Thu Thu Zan, Sabai Phyu “Range Tree based Indexing of Mobile

Tracking System”, The 1
st
 International Conference on Advanced

Information Technologies (ICAIT, 2017), Yangon, MYANMAR,

February 2017. Page [145-150]

[P4] Thu Thu Zan, Sabai Phyu “Implementing Mobile Tracking System on

Disaster Notification”, 15
th

 International Conference on Computer

Applications (ICCA, 2017), Yangon, MYANMAR February 2017.

Page [190-194]

[P5] Thu Thu Zan, Sabai Phyu “Query and Update Efficient Presort Range

Tree based Indexing of Mobile Tracking System”, The World Congress

on Engineering 2018 (WCE 2018), (IAENG conferences), LONDON,

U.K, ISSN: 2078-0958 (Print), July 2018. Lecture Notes in

Engineering and Computer Science (Scimago index) Page [201-204]

[P6] Thu Thu Zan, “Location-based Disaster Notification System”, NAM

S&T Centre Publication on The Impact of Extreme Natural Events:

Science and Technology for Mitigation (IRENE), COLOMBO, SRI

LANKA, July 2018.

[P7] Thu Thu Zan, Sabai Phyu “Mobile Location Indexing Based On

Synthetic Moving Objects” , International Journal of Electrical and

Computer Engineering (IJECE) , Indonesia, December 2018.

(Scimago index –Q2)

[P8] Thu Thu Zan, Sabai Phyu “Reliable Multicast Notification System on

Mobile Location Indexing”, International Journal of Computer

Science and Information Security (IJCSIS), ISSN: 1947-5500.

Pittsburgh, PA, 15213, USA, July 2018. (Scopus index)

BIBLIOGRAPHY

[1] R.A.Abdeen, "An Algorithm for String Searching Based on Brute-Force

Algorithm". IJCSNS International Journal of Computer Science and

Network Security, Vol 11 (7), July 2011.

[2] H.M.Abdul–Kader, "Location Updating Strategies in Moving Object

Databases". International Journal of Computer Theory and Engineering, Vol

1 (1), 1999.

 [2]

[3] F.B.Adamu, A.Habbal, S.Hassan, I.Abdullahi, "A Survey On Big Data

Indexing Strategies". 4th International Conference on Internet Applications,

 Protocol and Services (NETAPPS2015), Cyberjaya, Malaysia, December

2015.

 [4]

[4] P.K.Agarwal, L.Arge, O.Procopiuc, and J.S.Vitter. "A framework for index

bulk loading and dynamization". Proceeding of 28
th

 International

Collaboration Automative Language and Program, 2001.

[5] K.N.Ahire, "Revolutionary mobile operating system: Android".

International Research Journal of Engineering and Technology (IRJET),

Vol 3 (7), July 2016.

[6] M.Ahmadi, B.Biggio, "Detecting Misuse of Google Cloud Messaging in

Android Badware". 6th Annual ACM CCS Workshop on Security and

Privacy in Smartphones and Mobile Devices (SPSM), October 2016.

[7] E.Alpaydin, “Voting Over Multiple Condensed Nearest Neighbors”.

Artificial Intelligent Review, 1997.

[8] L.Arge, M.d.Berg, H.J.Haverkort,"The priority R-Tree: A Practically

Efficient and Worst-Case Optimal R-tree". SIGMOD, June 2004.

[9] İ.Ayabakan, P.Kilimci, "Moving Object Databases-Indexing Algorithms".

International Journal of Computer Theory and Engineering, Vol 6 (6),

December 2014.

[10] B.Aydin, R.A.Angryk, "ERMO-DG: Evolving Region Moving Object

Dataset Generator". Proceedings of the Twenty-Seventh International

Florida Artificial Intelligence Research Society Conference, 2014.

[11] S.Azri, U.Ujang, F.Anton, A.A.Rahman, "Review of Spatial Indexing

Techniques for Large Urban Data Management". International Symposium

& Exhibition on Geoinformation (ISG), January 2013.

[12] S.C.Bagui, K.Pal, “Breast Cancer Detection using Nearest Neighbor

Classification Rules”. Pattern Recognition, Vol (36), 2003.

[13] T.Bailey, A.K.Jain, “A Note on Distance weighted k-Nearest Neighbor

Rules”. IEEE Transactions Systems, Vol.8, 1978.

[14] Prof.H.Barapatre, “Disaster Management Using Android Technology”.

IJRIT International Journal of Research in Information Technology, Vol 2

(4), April 2014.

[15] N.Beckmann, H.P.Kriegel, R.Schneider, B.Seeger, "The R*-tree: An

Efficient and Robust Access Method for Points and Rectangles”. Proceeding

of ACM SIGMOD intl. conf. management of Data, 1990.

[16] A.Beygelzimer, S.Kakade, J.Langford, "Cover Trees For Nearest

Neighbor". Proceedings of the 23
 rd

 International Conference on Machine

Learning, Pittsburgh, PA, 2006.

[17] K.C.Brata, D.Liang, S.H.Pramono," Location-based Augmented Reality

Information for Bus Route Planning System". International Journal of

Electrical and Computer Engineering (IJECE), Vol 5(1), 2015.

[18] D.Burgstahler, U.Lampe, N.Richerzhagen, R.Steinmetz, "Push vs. Pull: An

Energy Perspective". Proceedings of the 2013 6
th

 IEEE International

Conference on Service Oriented Computing & Applications (SOCA 2013),

Institute of Electrical and Electronics Engineers (IEEE), December 2013.

[19] N.Chan, "Introduction to Location-Based Service". Geo Information

Systems, August 2003.

[20] S.Chen, B.C.Ooi, K.L.Tan, M.A.Nascimento. "ST 2 B-tree: A Self-Tunable

Spatiotemporal B+-Tree Index For Moving Objects". Proceedings of the

2008 ACM SIGMOD international conference on Management of data,

ACM New York, USA, 2008.

[21] M.Cheng, P.Fan, X.Lei, R.Q.Hu, "Cost Analysis of A Hybrid-Movement-

Based and Time-Based Location Update Scheme in Cellular Networks".

IEEE Transactions on Vehicular Technology, Vol 64(11), November 2015.

[22] H.H.Chern, H.K.Hwang, "Partial Match Queries in Random k-d Trees".

Society for Industrial and Applied Mathematics SIAM Journal on

Computing, Vol 35 (6), 2006.

[23] H.J.Cho, "Efficient Shared Execution Processing of k-Nearest Neighbour

Joins in Road Networks. Mobile Information Systems, Article ID 1243289,

April 2018.

[24] Ch.Y.Chow, M.F.Mokbel, "Privacy in Location-Based Services: A System

Architecture Perspective". ACM New York, USA, Vol 1(2), July 2009.

[25] J.H.Christensen, "Using RESTful Web-Services and Cloud Computing to

Create Next Generation Mobile Applications." Proceedings of the 24th

ACM SIGPLAN conference companion on Object oriented programming

systems languages and applications (OOPSLA), October 2009.

[26] T.M.Cover, P.E.Hart, “Nearest Neighbor Pattern Classification”. IEEE

Transaction of Information Theory, Vol. IT-13, January 1967.

[27] S.Dhanabal, S.Chandramathi, "A Review of various k-Nearest Neighbor

Query Processing Techniques". International Journal of Computer

Applications, Vol 31(7), October 2011.

[28] J.Dizdarevic, F.Carpio, A.Jukan, X.Masip-Bruin, "A Survey of

Communication Protocols for Internet-of Things and Related Challenges of

Fog and Cloud Computing Integration". International Joint Conference on

Advances in Signal Processing and Information Technology, ACM

Computing Surveys, Vol 1 (1), April 2018.

[29] Y.Dong, H.Chen, "Grid-Index Algorithm for Reverse Rank Queries". 20
th

International Conference on Extending Database Technology EDBT, 2017.

[30] A.Elashry, A.Shehab, A.Riad, A.Aboelfetouh, "2DPR-Tree: Two-

Dimensional Priority R-Tree Algorithm for Spatial Partitioning in

SpatialHadoop". International Journal of Geo-Information, Vol 7(5), May

2018.

[31] A.Elazab, B.Shababa, H.Hefny, "Location Based Approach for Messaging

Services". Egyptian Computer Science Journal, Vol 42 (2), May 2018.

[32] A.Fax, C.E.Berger, J.Hughes, S.Lyon, "Spatio-temporal Indexing in Non-

relational Distributed Databases". IEEE International Conference on Big

Data, December 2013.

[33] G.W.Gates, “Reduced Nearest Neighbor Rule”. IEEE Transactions of

Information Theory, Vol 18 (3), September 1971.

[34] S.Ghorbani, M.H.Mobini, B.M.Bidgoli, "Continuous Mutual Nearest

Neighbour Processing on Moving Objects in Spatiotemporal Datasets".

International Journal of Information and Education Technology, Vol. 7(5),

May 2017.

[35] V.C.Giner, P.G.Escalle, "An Hybrid Movement-Distance-Based Location

Update strategy for Mobility Tracking". CICYT (Spain) for financial

support under project number TIC2001-0956-C04-04.

[36] A.Gosavil, S.S.Vishnu, “Disaster Alert and Notification System via Android

Mobile Phone by Using Google Map”. India International Journal of

Emerging Technology and Advanced Engineering, Vol 4 (11), November

2014.

[37] G.Graefe, F.Halim, S.Idreos, H.Kuno, S.Manegold, "Concurrency Control

for Adaptive Indexing". Proceedings of the VLDB Endowment, Vol 5(7),

August 2012.

[38] R.H.Guting, M.Schneider, "Moving Objects Databases", Theory Book,

2005.

[39] A.Gutmann, "R-trees: A Dynamic Index Structure For Spatial Searching”.

Proceeding ACM SIGMOD international Conference Management of Data,

1984.

[40] M.Ilyas, I.Mahgoub, Mobile Computing Handbook. 2013.

[41] C.S.Jensen, D.Lin, B.C.Ooi, "Query and Update Efficient B+-Tree Based

Indexing of Moving Objects". Proceedings of the Thirtieth international

conference on Very large databases, Vol 30, September 2004.

[42] Z. Ji, I. Ganchev, M.O.Droma, Q.Zhao, "A Push-Notification Service for

Use in the UCWW". 2014 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery, IEEE Computer Society,

Shanghai, China, 2014.

[43] A.John, M.Sugumaran, R.S.Rajesh, "Indexing And Query Processing

Techniques In Spatio-Temporal Data". ICTACT Journal On Soft

Computing, Vol 6 (3), April 2016.

[44] H.R.Jung, M.B.Song, H.Y.Youn, U.M.Kim, "Evaluation of Content-

Matched Range Monitoring Queries over Moving Objects in Mobile

Computing Environments". Sensors (Basel), Vol 15 (9), September 2015.

[45] S.Kamur, M.A.Qadeer, A.Gupta," Location based services using android

(LBSOID)". 2009 IEEE International Conference on Internet Multimedia

Services Architecture and Applications (IMSAA), January 2010.

[46] T.Kanda, K.Sugihara,"Two-Dimensional Range Search Based on the

Voronoi Diagram". Lecture Notes in Computer Science Vol 15, January

2005.

[47] H.Y.Kang, J.S.Kim, K.J.Li, "Similarity measures for trajectory of moving

objects in cellular space". Proceedings of the 2009 ACM Symposium on

Applied Computing (SAC), January 2009.

[48] G.Kollios, D.Gunopulos, V.J.Tsotras, "On Indexing Mobile Objects".

Proceeding of ACM, 1999.

[49] M.Kratky, V.Snasel, J.Pokorny, P.Zezula, "Efficient Processing of Narrow

Range Queries in Multi-dimensional Data Structures". International

Database Engineering & Applications Symposium, December 2006.

[50] S.Kumar, Veeramani, “GPS Location Alert System”. IOSR Journal of

Computer Engineering (IOSR-JCE), Vol 16 (2), April 2014.

[51] D.Kwon, S.Lee, S.Lee, "Indexing the Current Positions of Moving Objects

Using the Lazy Update R-Tree". Proceedings Third International

Conference on Mobile Data Management MDM, February 2002.

[52] K.Y.Lam, Ö.Ulusoy, T.S.H. Lee, E.Chan and G.Li, "Efficient Method for

Generating Location Updates for Processing of Location-Dependent

Continuous Queries". Proceedings Seventh International Conference on

Database Systems for Advanced Applications, Hong Kong, China, April

2001.

[53] F.Lardinois, “Google Acquires Firebase to Help Developers Build Better

Real-Time Apps”. October, 2014.

[54] L.Lazareska, K.Jakimoski, "Analysis of the Advantages and Disadvantages

of Android and iOS Systems and Converting Applications from Android to

iOS Platform and Vice Versa". American Journal of Software Engineering

and Applications, Vol 6 (5), 2017.

[55] Y.Lee, S.Song. "Distributed Indexing Methods for Moving Objects based

on Spark Stream". International Journal of Contents Vol 11(1), 2015.

[56] M.Li.Lee, W.Hsu, C.S.Jensen, B.Cui, K.L.Teo, "Supporting Frequent

Updates in R-Trees: A Bottom-Up Approach". Proceedings of the 29th

VLDB Conference, Berlin, Germany, 2003.

[57] .J.A.C.Lema, L.Forlizzi, R.H.Gauting, E.Nardelli, M.Schneider,

"Algorithms for Moving Objects Databases". The Computer Journal, 2003.

[58] L.Liu, R. Moulic, D. Shea, "Cloud Service Portal for Mobile Device

Management." Proceedings of IEEE 7th International Conference on e-

Business Engineering (ICEBE), January 2011

[59] F.Meng, R.Akella, M.L.Crow, B.McMillin, "Distributed Grid Intelligence

For Future Microgrid With Renewable Sources And Storage". North

American Power Symposium 2010, September 2010.

[60] H.Munaga, V.Jarugumalli, "Performance Evaluation: Ball-Tree and KD-

Tree In The Context of MST". International Joint Conference on Advances

in Signal Processing and Information Technology, October 2012.

[61] M.A.Nascimento, "Synthetic and Real Spatiotemporal Datasets". Bulletin of

the IEEE Computer Society Technical Committee on Data Engineering,

2003.

[62] D.F.Nettleton, "A Synthetic Data Generator for Online Social Network

Graphs". Research Gate, July 2016.

[63] S.J.Oh, "Mobile Locality based Location Management Scheme".

International Journal of Software Engineering and Its Applications, Vol 8

(2), 2014.

[64] R.Panigrahy, "An Improved Algorithm Finding Nearest Neighbor Using

Kd-trees". Lecture Notes in Computer Science, Springer, 2008.

[65] J.Pauty, D.Preuveneers, P.Rigole, Y.Berbers, "Research Challenges in

Mobile and Context-Aware Service Development". Workshop on Research

Challenges in Mobile and Context-Aware Service Development FRCSS,

2006.

[66] V.A.Paz-Soldan, R.C.Reiner, A.C.Morrison, S.T.Stoddard, U.Kitron, T.

W.Scott, J.P.Elder, E.S.Halsey, "Strengths and Weaknesses of Global

Positioning System (GPS) Data-Loggers and Semi-structured Interviews for

Capturing Fine-scale", HumanMobility: Findings from Iquitos, Peru, June

2014.

[67] N.Pelekis, C.Ntrigkogias, P.Tampakis, "Hermoupolis: A Trajectory

Generator for Simulating Generalized Mobility Patterns". Part of the

Lecture Notes in Computer Science book series (LNCS, volume 8190),

2015

[68] G.P.Pollini, C.Lin, "A Profile-Based Location Strategy and Its

Performance". IEEE Journal on Selected Areas in Communications, Vol 15

(8), October 1997.

[69] K.A.Popat, P.Sharma, "Various Location Update Strategies in Mobile

Computing". International Journal of Computer Applications (IJCA) (0975

– 8887) Proceedings on National Conference on Emerging Trends in

Information & Communication Technology (NCETICT 2013).

[70] K.Popat, "Analysis, Design and Comparative study on Location Updating

Strategies in Mobile Computing". Ph.D. Thesis, Gujarat Technological

University, 2015.

[71] Prof.Dieter, C.S.Jensen, Y.Theodoridis, "Novel Approaches to the Indexing

of Moving Object Trajectories". Proceedings of the 26
th

 International

Conference on Very Large Databases, Egypt, 2000

[72] Prof.Dieter, C.S.Jensen, "Querying the trajectories of on-line mobile

objects". Proceedings of the 2nd ACM international workshop on Data

engineering for wireless and mobile access, USA, 2001.

[73] K.Raptopoulou, Y.Manolopoulos, A.N.Papadopoulos, "Fast Nearest-

Neighbor Query Processing in Moving-Object Databases". Kluwer

Academic Publishers, 2003.

[74] S.Razzaq, M.N.Abd, E.G.Muhssan, "Object Tracking based on GPS

Technology". International Journal of Advanced Research in Science

Engineering and Technology, Vol 4(5), May 2017.

[75] M.Rundle, M.Huffington, “Future of Technology". Whitepaper, 2015.

[76] S.Saltenis, C.Jensen, S.Leutenegger, M.Lopez, "Indexing the Position of

Continuously Moving Objects". Proceedings of ACM SIGMOD

Conference, 2000.

[77] Y.Selim, B.Aydin, M.Demirbas, "Google Cloud Messaging (GCM): An

Evaluation". Symposium on Selected Areas in Communications: GC14SAC

Internet of Things, Globecom, 2014.

[78] J.Selke, W.T.Balke, "SkyMap: A Trie-Based Index Structure for High-

Performance Skyline Query Processing". Part II of Lecture Note in

Computer Science, 2011.

[79] L.Sharma, B.Sharma, D.P.Sharma, "Implementation of Compressed Brute-

Force Pattern Search Algorithm Using VHDL". Advanced Computing,

Networking and Informatics , Part of the Smart Innovation, Systems and

Technologies book series, Vol (28), Springer, 2014.

[80] D.Sidlauskas, S.Saltenis, C.W.Christiansen, J. M.Johansen, D.Saulys,

"Trees or Grids? Indexing Moving Objects in Main Memory". A Database

Technical Report, December 2009.

[81] M.Singhal, A.Shukla, "Implementation of Location based Services in

Android using GPS and Web Services". IJCSI International Journal of

Computer Science Issues, Vol 9(1), January 2012.

[82] N.Srivastava, U.Shree, N.R.Chauhan, D.K.Tiwari "Firebase Cloud

Messaging (Android)". International Journal of Innovative Research in

Science, Engineering and Technology, Vol. 6 (9), May 2017.

[83] Y.X.Sunil, S.Prabhakar, “Q+Rtree: Efficient Indexing for Moving Object

Database”, Eighth International Conference on Database Systems for

Advanced Applications IEEE, April 2003.

[84] N.Syafie, Y.Nurdin, R.Roslidar, "The Development of Online Disaster

Information System Using Location Based Service LBS Technology".

International Journal of Informatics and Communication Technology (IJ-

ICT), Vol 3(1), 2014.

[85] S.Tabbane, "An Alternative Strategy for Location Tracking". IEEE Journal

on Selected Areas in Communications, Vol 13 (5), June 1995.

[86] C.Tamilselvi, B. Kumar,” Cloud to Device Messaging with Voice

Notification Using GCM”. Proceedings of the World Congress on

Engineering and Computer Science 2015 WCECS 2015, Vol I, October,

2015.

[87] Y.Tao, D.Papadias, "Mv3r-tree: A Spatio-Temporal Access Method for

Timestamp and Interval Queries". Proceeding of 27
th

 International

Conference on Very Large Data Bases, 2001.

[88] Y.Tao, D.Papadias, J.Sun, "The TPR*-tree: An Optimized Spatio-Temporal

Access Method for Predictive Queries". Proceedings of the international

conference on very Large databases, 2003.

[89] J.Tayeb, O.Ulusoy, O.Wolfson," A Quadtree-Based Dynamic Attribute

Indexing Method". The Computer Journal, 1998.

[90] G.L.Turnquist, Learning Spring Boot 2.0, Second Edition, Theory Book.

November 2017.

[91] H.L.Truong, S.Dustdar, "A Survey on Context-aware Web Service

Systems". The International Journal of Web Information Systems, Vol 5(1),

 August 2009.

[92] M.Varsha, S.Sonwane, "Disaster Management System on Mobile Phones

Using Google Map". (IJCSIT) International Journal of Computer Science

and Information Technologies, Vol. 5 (5), 2014.

[93] B.Wang, "Mobile Location-Based Services in New Zealand". Auckland

University of Technology, Master of Computer and Information Sciences,

February 2008.

[94] M.Wasif, "Mobile Location Update using Distance Method", HCL

Technologies Ltd, Chennai, Tamil Nadu, India, 2000.

[95] O.Wolfson, L.Jiang, S.Chamberlain, B.Xu, "Moving Object Databases:

Issues and Solutions". Statistical and Scientific Database Management

(SSDBM), 1998.

[96] O.Wolfson, H.Yin, "Accuracy and resource consumption in tracking and

location prediction". Proceedings of 8th International Symposium on Spatial

And Temporal Databases", July 2003.

[97] K.L.Wu, P.S.Yu, L.Liu, "Processing Moving Queries over Moving Objects

Using Motion Adaptive Indexes". IEEE Transactions on Knowledge and

Data Engineering, Vol 18 (5), May 2006.

[98] M.L.Yiu, Y. Tao, and N. Mamoulis, "The Bdual-tree: Indexing Moving

Objects by Space Filling Curves in the Dual Space VLDB", 2008.

[99] M.Yuan, "A Typology of Spatiotemporal Information Queries". Article,

January 2002.

[100] V.Zalud, "Wireless Cellular Mobile Communications Radio engineering".

Wireless Cellular Mobile Communications, Vol 11(4), December 2002.

[101] J.H.Zhand, J.W.Mark, "A Local VLR Cluster Approach To Location

Management For PCS Networks". Wireless Communications and

Networking Conference, Vol 1, 1999.

[102] W.Zhang, W.Wu, X.Yang, G.Xiang, "An Optimized Query Index Method

Based on R-Tree". Computational Sciences and Optimization (CSO), 2011

Fourth International Joint Conference, May 2011.

[103] “Firebase Cloud Messaging”, https://firebase.google.com/docs/cloud-

messaging/

https://firebase.google.com/docs/cloud-messaging/
https://firebase.google.com/docs/cloud-messaging/

LIST OF ACRONYMS

2D Two-Dimensional

AMM Adaptive Monitor Method

API Application Programming Interface

ATM Automatic Teller Machine

CPU Central Processing Unit

CNN Condensed Nearest Neighbor

DBMS Database Management System

DAT Direct Access Table

DGI Distributed Grid Index

FCM Firebase Cloud Messaging

GSTD Generating Spatio-Temporal Datasets

GPS Global Positioning System

GCM Google Cloud Messaging

HTTP Hypertext Transfer Protocol

ID Identification

J2SE Java 2 Standard Edition

J2EE Java 2 Enterprise Edition

JDK Java Development Kit

JSON Javascript Object Notation

KD K Dimensional

KNN K Nearest Neighbor

KDNN K Dimensional Nearest Neighbor

KDB K Dimensional Ball

LUR Lazy Update R

LA Location Areas

LBS Location-Based Service

MACID Media Access Control Identification

MBR Minimum Bounding Rectangle

MCC Mobile Cloud Computing

MOD Moving Object Database

MV3R Multi Version 3 Dimensional R

NN Nearest Neighbor

PMR Polygonal Map Region

RAM Random Access Memory

RF Radio Frequency

RNN Rank Nearest Neighbor

RNN Reduced Nearest Neighbor

SQL Structured Query Language

STR Spatio Temporal R

TPR Time Parameterized R

TB Trajectory-Bundle

WKNN Weighted K Nearest Neighbor

WIFI Wireless Fidelity

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

