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ABSTRACT 

 

Replication plays an important role for storage system to improve data 

availability, throughput and response time for user and control storage cost. Due to 

different nature of data access pattern, data popularity is important in replication 

because of the unstable and unpredictable nature of popular files. In addition, the 

replica placement is important in consideration of system's performance. In data-

parallel applications, data locality is a key issue and the consequence of this issue 

occurs the decrement of system’ performance. Therefore, this thesis proposes a 

dynamic replication management scheme for effective cloud storage (ECS). The 

system contains two portions; replica allocation and replica placement. In the first 

portion, replica allocation, popularity is taken into account by analyzing the changes 

in data access pattern. Second for replica placement, replicas are placed and 

performed on dedicated assigned nodes in order to enhance data locality. The 

proposed placement algorithm is able to avoid the overloaded problem of nodes and 

the more effective storage utilization by considering the load of nodes; that is, disk 

utilization, CPU utilization and adjustable disk bandwidth.  

The proposed system is implemented as cloud storage system by using open-

source CloudSim simulator. The aims of the proposed scheme are (i) to reduce 

unnecessary replication cost for unpopular data (ii) to achieve load balancing in data 

placement and (iii) to increase replica number for popular data. The analysis results 

demonstrated that the proposed scheme can adapt the degree of replication based on 

data popularity, save storage cost for unpopular files and achieve more load balancing 

than existing replication strategy such as Latest Access Largest Weight (LALW) 

algorithm. 
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CHAPTER 1 

INTRODUCTION 

 

 Cloud computing is an internet-based distributed computing technology where 

services are provided to users on demand as pay per use basics. Storage, programs and 

application-development platforms can be accessed by users through the Internet with 

the aid of offering services of cloud computing providers. There have three service 

models in cloud computing. They are platform-as-a-service, infrastructure-as-a-

service, and software-as-a-service. The access to these services is performed by users 

with pay-per-usage model in that the infrastructure provider provides guarantees with 

customized service level agreements (SLAs). 

  Configures, de-provisions servers, reconfigures and provisions can be 

dynamically provided as needed by the cloud computing platform. The accessible 

applications can also be extended through the internet. These applications apply 

powerful servers and large data centers that host web services and applications. 

Hence, cloud storage systems play an important role for cloud computing 

infrastructures. 

 Data storage is a backend foundation of cloud computing where large volume 

of data is needed to store. Storing extremely large volumes of information in an 

effective manner is an essential issue in cloud computing. High availability and high-

performance accessible data storage are provided by high capacity electronic data 

storage devices through industry standard interface. However, they are costly to 

purchase.  

 Popular cloud storage systems as like hadoop distributed file system (HDFS) 

[3] and google file system (GFS) [29] are employed for huge amount of data for 

storage, processing and management in today data center. With the increasing amount 

of data stored and processed in cloud storage system, storage components are 

expanded in scale in cloud data center. However, as cloud storage system can be 

installed on commodity servers where components failures are common, the efficient 

storage, processing and management of data on cloud storage have raised significant 

concerns especially for the maintenance of the certain guarantee level of data.  Among 

the cloud storage systems, as HDFS is the most widely used and is an open source, 

this study is focused on HDFS.  



 
 

 The system is implemented with hadoop distributed file system by analyzing 

replication management. HDFS is suitable for the implementation and evaluation of 

the proposed replication management system. In this proposed replication 

management system, the system provides the suitable number of data replicas as well 

as increasing data locality and load balancing among the storage server nodes. In this 

thesis, therefore, the simulated cloud storage data centers are also implemented with 

the associated replication management system. 

 

1.1 Motivation and Main Issues 

 Nowadays, the significant technology trend is cloud computing and it reforms 

information technology (IT) marketplace and IT processes. In the past years, Amazon, 

Microsoft and Google companies have been constructing huge amount of data centers. 

This data centers are constructed by spanning geographic and administrative domains. 

Networking, storage and CPU can be provisioned by these data centers at 

considerable low prices by leveraging economics of scale that provides the move by 

many institutions to host their services in the cloud. 

 At the same time, keen interest of this cloud provider has been ignited by the 

advent of new technologies and the economic situation. Economics of scale are 

delivered by cloud storage providers with no different storage space for satisfying the 

requirements of users, at the savings of cost for their storage. High performance 

storage servers are deployed by cloud service providers as data center that is very 

reliable and expensive. But, information storage and storage management with 

restricted financial plan is a principal factor for large enterprises and small business. 

 In fact, replication is an essential corner stone in data storage not only for 

cloud computing but also for traditional storage systems because it can relatively 

impact the performance of cloud storage in terms of storage cost, network usage, 

response time, etc. In addition, as the cloud environment has less stable and highly 

skewed data access pattern, different data file may have different properties of 

popularity.  Therefore, maintaining static number of replicas in cloud storage for 

every data file would be inefficient for storage cost and data availability. As a 

consequence, the determination of the optimum number of replicas and the suitable 

nodes for replicas has become a key issue in the cloud computing. 

Cluster computing systems, featuring fault-tolerance data storage distribution 

have been widely applied for data-intensive applications. Huge clusters contain tens 



 
 

of thousands of devices and that are designed for searching and web indexing; small 

and medium sized clusters are designed for corporate data warehousing and business 

analytics. The more closer placement of data with computing node is a common 

routine of storage systems, also known as the data locality issue. These systems apply 

static data replication for (a) improvement of data locality by placing a task and its 

data at the same local storage (b) achievement of load balancing with distribution of 

work among the replicas (c) ensuring fault tolerance and data availability in system 

failure. 

 Data locality is one of the key issues in considering the performance of 

Hadoop. In order to provide data locality, Hadoop performs collocation of data with 

assigned nodes. However, as Hadoop randomly places data to nodes, there is a 

condition, that is, when assigned node load data blocks from different node that stores 

the same data block. Therefore, data locality problem has occurred. Data locality is 

interval between data block and the assigned node. This minimizes network 

congestion and increases the overall throughput of the system. The types of data 

locality are node locality, rack locality and rack-off locality. The greater node locality, 

the more throughput of the system. 

 Static replication is used in implementation of Hadoop. Static replication is not 

good because data access pattern always changes every time. Therefore, file 

popularity factor is necessary to be considered in replication. File popularity can be 

estimated from data access pattern. The consideration of file popularity in replication 

results in efficient storage because it avoids replicating unnecessary replicas. 

To manage replication in cloud environment, there are two main problems that 

impact on system performance. They are:  

(i) Replica Allocation Problem: The replication degree of files should be able to 

adapt the changing pattern of data access.  

(ii) Replica Placement Problem: Placement of various concurrent accessed data 

blocks into various data nodes for the contention reduction on a particular 

node. 

To address these challenges, this thesis proposes the dynamic replication 

method in order to support better locality in HDFS. It consists of two major parts. 

First part is the changes of file popularity which are computed by analyzing data 

access pattern with first order differential equation. For this part, Hadoop distributed 

file system is used as a framework of open source storage cluster. The second part is 



 
 

the calculation of replicas for each data and the replicas are placed on nodes in order 

to improve data locality. 

 

1.2 Objectives of the Thesis 

The major objectives of the thesis are as follows: 

 To overcome the problems of static replication in cloud storage 

 To reduce storage cost by replicating relevant file with suitable replication 

factor in accordance with data access frequency 

 To achieve the increased data locality and load balancing based on the storage 

utilization, disk bandwidth and CPU utilization of nodes 

 To apply the replica allocation algorithm and replica placement algorithm in 

simulated cloud environment by adjusting the replica degree based on the rate 

of change of file popularity 

 To evaluate and analyze the performance of replication management system in 

terms of the number of created replicas, storage cost and disk utilization. 

 

1.3      Contributions of the Thesis 

The thesis contributes to the field of cloud storage in several ways. The Major 

contribution is the implementation of effective storage cluster together with enhanced 

replication policy which has been published in [P1][P2][P3][P4][P5]. This 

contribution is divided as follows: 

 The rate of change of file popularity in timeslots is analyzed by applying first 

order differential equation. 

 Determination of the decrement and increment of the number of replicas for 

each file is computed. 

 While the replicas are placed into nodes, the load of nodes such as disk 

utilization, CPU utilization and bandwidth utilization are considered. 

 The predefined threshold is used to compute the overloaded condition of 

cluster. 

 If the overloaded condition of that assigned nodes occurs, the proposed replica 

replacement algorithm will be used. 

 This proposed replacement algorithm considers not only early used blocks but 

also the access frequencies for blocks. 



 
 

The last but the most important is the contribution of replication management over 

distributed cloud data centers which is published in [P6]. It consists of the following: 

 Simulation of prototype cloud data centers in java environment 

 Application of the replication algorithms suitable for distributed cloud data 

centers 

 Utilization of Yahoo Audit log data set to model data access pattern for the 

proposed algorithms 

 Comparison of proposed replication algorithms, namely Replica Allocation 

Algorithm and Replica Placement Algorithm, with other existing replication 

algorithms 

 Measuring the performance of the system in utilization, storage cost model 

and the number of created data replicas with other existing replication 

algorithm LALW. 

 

1.4      System Overview 

The basic idea of replication is based on the different replication degree per 

data file. Keeping the fixed number of replicas causes wasteful storage for unpopular 

data and inefficiency for popular data. Also, maintaining too much replicas than 

current access count for a file does not always guarantee better locality for all blocks. 

The objective of this system is to propose a replication strategy in order to achieve 

the improved data locality by more replicas for popular data while maintaining less 

replicas for unpopular data. 

 In this thesis, a replication management strategy is proposed for cloud 

storage. The system contains two portions; replica allocation and replica placement. 

In the first portion, replica allocation, popularity is taken into account by analyzing 

the changes in data access pattern. At this portion, first order differential equation is 

applied to compute the rate of change of file popularity. After that, the number of 

replicas for each file is defined using changes of file popularity that is the outcome of 

the first stage. Initially, existing replicas will be assumed as 3 like the default replica 

of HDFS. If the rate of change of change of file popularity (k) is less than 0.0, then 

existing replicas is decreased by 1. If k is greater than 0.0, then existing replicas is 

increased by 1. If k is equal to 0.0, then existing replicas is unvaried. Otherwise, if it 

is a new file, then existing replicas is determined 3 like the default replica of HDFS.  



 
 

 Second for replica placement, replicas are placed and performed on dedicated 

assigned nodes in order to enhance data locality. The proposed placement algorithm is 

able to avoid the overloaded problem of nodes by considering the load of nodes; i.e, 

disk utilization, CPU utilization and adjustable disk bandwidth while loading into 

assigned nodes. That replica is loaded if the load of assigned node is less than 

predefined threshold of its cluster. Otherwise, the replica block is needed to replace 

with existing block at assigned node. 

 

1.5 Organization of the Thesis 

 This thesis is organized as follows: 

 In this chapter, introduction to cloud computing, cloud storage infrastructure, 

replication management, motivations and contributions are presented with the 

objective of the thesis. 

 And, the overview of cloud computing and the state-of-the-art technology of 

cloud storage are reviewed in chapter 2. 

 In chapter 3, the literature, related work with different replication policies 

based on data popularity and data locality which are currently applied in traditional 

distributed system and/or cloud computing are looked in depth into. 

Chapter 4 describes a proposed replication strategy in order to achieve the 

improved data locality by more replicas for popular data while maintaining less 

replicas for unpopular data. 

 Chapter 5 proposes the replication algorithms together with comparisons of 

the existing approaches. The comparison of performance and evaluation of the 

proposed system are also discussed in this chapter.   

The final chapter of the thesis provides a conclusion and outlook on future 

work. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 2 

CLOUD STORAGE ARCHITECTURES 

 

Cloud computing has become popular as a cost-effective solution with reliable 

computing resources without possessing any infrastructure. Today, benefits of cloud 

computing for the technological advancements are communications, storage and 

computing. The basic idea is to take advantage of economies of scale so that IT 

services could be provided on demand with a decentralized infrastructure. Cloud 

storage is an interface of cloud computing where the storage can be managed on 

demand. Cloud storage infrastructures propose new architectures that provide various 

services over a potentially large set of users and geographically distributed storage 

capacity. There are many research areas in cloud storage. Many of them are file 

system-based storage systems such as HDFS [3], GFS [29] and some researchers such 

as VBS [28], Amazon EBS used block storage. Furthermore, cluster storage 

architecture like [15][59] and peer to peer architecture had also been implemented for 

cloud storage. In this chapter, cloud storage technology, different storage systems for 

cloud computing and challenges of cloud storage systems are identified. 

 

2.1 Cloud Computing 

This section aims to introduce cloud computing and its essential 

characteristics. Cloud computing is the scalable distributed computing environment in 

which a large set of virtualized computing resource, different infrastructures, various 

development platforms and useful software are delivered to customers as a service 

with pay per usage usually over the Internet. Cloud computing is defined by the U.S. 

National Institute of Standards and Technology (NIST) as follows: Cloud computing 

provides a model for ubiquitous, convenient, on-demand network access to a shared 

pool of configurable computing resources (e.g., networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction [58]. 

 

2.1.1 The Essential Characteristics of Cloud Computing 

The essential characteristics of the cloud computing are: 



 
 

• On-demand Self Service: Computing abilities such as emails, 

applications and network storage are provided to consumers without 

human interaction with service provider. Service providers providing 

these services contain Microsoft, IBM, Amazon Web Services (AWS), 

Google and Salesforce.com. 

• Broad Network Access: Computing Capabilities are available over the 

network and they can be accessed through standard mechanisms that 

raise the use of nonhomogeneous client devices such as mobile phones, 

laptops, tablets and workstations. 

• Resource Pooling: Cloud computing resources such as memory, 

storage, processing, network bandwidth and virtual machines are 

pooled to provide services to various consumers by a multi-tenant 

model with dynamic allocation and deallocation of various virtual and 

physical resources depending on demand of user. They provide 

location independence so that consumer does not need to know on 

exact location of computing resources but consumer may specify 

location with high level of abstraction like country, city or data center. 

• Rapid Elasticity: Cloud computing infrastructures can provide flexible 

computing platform with rapidly and elastically and in some cases, 

which can broaden or decrease in line with business demand, the 

available abilities for provisioning often appear to be unlimited and can 

be purchased in any quantity at any time. 

• Measured Service: The resource usage of cloud computing can be 

controlled, measured and reported providing transparency for both the 

provider and consumer of the utilized service. It uses a metering 

capability to various service types (e.g., processing, storage and 

network bandwidth) which enables to control and optimize resource 

use. These services are charged as pay per usage metrics. 

• Multi Tenacity: Users might utilize public cloud provider’s service 

offerings or actually be from the same organization, such as different 

business units rather than different organizational entities, but would 

still share infrastructure [61]. 

 

 



 
 

2.2 Open-Source Cloud Systems 

In this section, some of the current features of Cloud computing technologies 

are described. Eucalyptus, OpenNebula, OpenStack and Nimbus are major open-

source Cloud computing software platforms. 

 

2.2.1 Eucalyptus 

Eucalyptus cloud infrastructures such as Simple Storage Service (S3), Amazon 

EC2, and PaaS offerings, such as Google App Engine, crow higher usability and 

lower cost [9]. However, it is used to build private cloud infrastructure. Private cloud 

would be preferred over a public cloud, which might be characterized by special 

security requirements or the need to store critical company data. It can be imaginable 

to build up an internal data mirror (RAID-0) in order to increase availability of cloud 

infrastructure. 

Eucalyptus is an open source software platform for implementing 

Infrastructure as a Service (IaaS) in a private or hybrid cloud computing environment 

[40]. It converges together existing virtualized infrastructure to create cloud resources 

for infrastructure as a service, network as a service and storage as a service. 

Eucalyptus [40] is abbreviation for Elastic Utility Computing Architecture for Linking 

Your Programs To Useful Systems, and it was initiated at the University of California 

in Santa Barbara (UCSB). Eucalyptus allows setting up and operating an independent 

IaaS cloud infrastructure. It is compatible with Amazon EC2, S3, and Elastic Block 

Storage (EBS) [63].  Unlike Amazon EC2, which exclusively uses Xen for 

virtualization, Eucalyptus can cooperate with Xen and KVM. A prerequisite for using 

KVM is a CPU that supports hardware virtualization, i.e. AMD-V (Pacifica) or Intel 

VT-x (Vander pool). The commercially available Enterprise Version offered by 

Eucalyptus Systems supports VMware vSphere/ESX/ESXi. It is not planned to 

integrate VMware support into the free Eucalyptus version. 

The features of Eucalyptus are: 

 It supports both Linux and Windows virtual machines (VMs). 

 Its application program interface- (API) is compatible with Amazon 

EC2. 

 It is compatible with Amazon Web Services (AWS) and Simple 

Storage Service (S3). 



 
 

 It can work with multiple hypervisors including VMware, Xen and 

KVM. 

 Installation and deployment can be performed from source code or 

DEB and Red-hat Package Manager (RPM). 

 Internal processes communications are secured through Simple Object 

Access Protocol (SOAP) and WS-Security. 

 Multiple clusters can be virtualized as a single cloud. 

 Administrative features such as user and group management and 

reports can be done. 

The components of Eucalyptus are as follows: 

 Cloud Controller (CLC): The controller that manages virtual resources like 

servers, network and storage. It is at the highest level in hierarchy. It is a 

Java program with web interface for outside world. It can do resource 

scheduling as well as system accounting. There is only one cloud 

controller for each cloud. It can provide authentication, accounting, 

reporting and quota management in cloud. 

 Walrus: This is another Java program in Eucalyptus that is equivalent to 

AWS S3 storage. It provides persistent storage. It also contains images, 

volumes and snapshots similar to AWS. There is only one Walrus in a 

cloud. 

 Cluster Controller (CC): It is a C program that is the front end for a 

Eucalyptus cloud cluster. It can communicate with Storage controller and 

Node controller. It performs management of the instance operation in 

cloud. 

 Storage Controller (SC): It is a Java program equivalent to EBS in AWS. It 

can interface with Cluster Controller and Node Controller to manage 

persistent data via Walrus. 

 Node Controller (NC): It is a C program that can host a virtual machine 

instance. It is at the lowest level in Eucalyptus cloud. It downloads images 

from Walrus and creates an instance for computing requirements in cloud. 

 VMWare Broker: It is an optional component and provides AWS 

compatible interface to VMWare environment. 

A general architecture of the Eucalyptus is shown in Figure 2.1. 
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Figure 2.1 General Architecture of Eucalyptus 

 

2.2.2 OpenNebula 

 OpenNebula is an open-source cloud computing platform that provides the 

management of virtual machines with excellent performance and scalability, and 

creation of virtualized data centers on various types of clouds with the most advanced 

functionality [9]. It is the combination of virtualization technologies with advanced 

features in order to provide multi-tenancy, automated provisioning and elasticity. A 

virtual network manager performs the mapping operation of virtual and physical 

networks. It is freedom of vendor, platform- and API-agnostic. OpenNebula uses the 

Xen Hypervisor, KVM, and VMware vSphere approaches.  

Different from Eucalyptus, it provides the allowance of working instances 

between the connected nodes. It only supports basically on EC2 Query APIs and the 

EC2 Simple Object Access Protocol (SOAP). It may perform the retrieval of list of 

instances and images and operation of instances. Moreover, it can be used to control 

the resources of Amazon EC2. As node grouping capability, high performance 

computing is provided as a service (HPCaaS). It has no compatible storage service for 

EBS API and S3 like Eucalyptus and Nimbus. 
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2.2.3 OpenStack 

 Rackspace and NASA jointly developed an open source project called 

OpenStack [37] in summer 2010. It was managed by the OpenStack foundation in 

2016 which is a non-profit corporate entity to advance OpenStack software and its 

community. Many renowned companies such as Dell, Intel, Cloud.com and AMD 

support this project. OpenStack is an open-source and free software platform for 

cloud computing, and is used as a infrastructure-as-a-service (IaaS), whereby other 

resources and virtual servers are provided available to users. It contains interrelated 

components to manage diverse, multi-vendor hardware pools of processing, 

networking resources and storage throughout a data center. Users control it through 

command-line tools, a web-based dashboard and RESTful web services. Basically, it 

provides Object Storage and the Compute components. The object storage provides 

scalable and redundant storage space available and the compute service allows to 

manage virtual servers. Microsoft announced that adaption of the OpenStack software 

to their hyper-V virtualization technology will be provided. The aim is to have the 

ability to use open source programs and windows together in cloud systems. 

 

2.2.4 Nimbus 

 Nimbus [42] is an open source private cloud IaaS solution launched by the 

Globus Alliance. It mainly provides a configuration and deployment of virtual 

machines on remote resources in order to create the suitable environment for the 

users’ requirements. It contains two main products: 

 The infrastructure is an open source S3/EC2-compatible IaaS solution featured 

beneficially to interests of scientific community such as support for proxy 

credentials, auto-configuring clusters, best-effort allocations and batch 

schedulers, etc. 

 It is an integrated set of solutions for a multi-cloud environment that enables 

the simplification and automation of the work with infrastructure clouds 

(scaling, management and deployment of cloud resources) for scientific users. 

It supports the Xen hypervisor and KVM virtualization solutions. It has 

compatibility with S3 REST API clients, Amazon's Network Protocols via EC2 based 



 
 

clients, also REST API, and SOAP API which have been implemented in Nimbus. 

Moreover, it gives support for fast propagation, X509 credentials, compartmentalized 

dependencies and multiple protocols. It featured flexible group, workspaces and user 

management, per-client usage tracking and request authorization and authentication. 

Above version 2.4, it contains the Cumulus storage service which has compatible 

interface with the S3 REST API. Cumulus is used for storage of images. Installation 

and deployment of Cumulus may be done as a standalone service without Nimbus. It 

has no an EBS-compatible storage service [89]. 

 

2.2.5 AppScale 

 AppScale is an open-source cloud computing platform that supports the 

execution of applications developed by Google App Engine. AppScale enables 

multiple App Engine applications to be uploaded to a cloud. AppScale framework is 

an implementation of platform as a service [46]. It sits over any virtualization-

supported infrastructure to host and operate applications created in the Google App 

Engine. It supports the deployment of multiple applications over the cloud and 

supports deployment for major vendors operating as infrastructure as a service. Before 

being commercially released, AppScale framework was developed and maintained as 

a university research project at the Rapid Access Computing Environment Lab at the 

University of Santa Barbara. It is Google App Engine (GAE)-compatible API and 

operates GAE applications over other cloud infrastructures or on-premise no need for 

modification. 

Its possibility is to run and test Google App Engine-compatible applications 

within a public cloud (EC2) or a private cloud (Eucalyptus). Moreover, the 

implementation can be performed directly on the Xen hypervisor, without interposing 

an IaaS. AppScale is written in python, java and go for the google app engine and its 

execution is infrastructure-independent platforms. The operation can be implemented 

as a virtual machine over any virtualized infrastructure, including Eucalyptus and 

Amazon EC2 private clouds. It also supports the integration of applications developed 

for the google app Engine [47]. Moreover, it supports other APIs such as the message 

passing interface and mapreduce. It provides complete liberty in selection of private, 

public and hybrid cloud infrastructure. It also supports many different data stores, 

such as MongoDB, MySQL Cluster and Memcache DB. The general architecture of 

the AppScale is shown in Figure 2.2. 
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Figure 2.2 General Architecture of AppScale 

 

2.2.6 Apache CloudStack 

 Apache CloudStack [85] is a free open source cloud computing software 

enabling the management of large virtual machine networks. It provides an on-

premises cloud and a part of hybrid cloud to many companies and offers public cloud 

services to many service providers. Its features contain compute orchestration, user 

and account management, resource accounting, a first-class User Interface (UI), 

Network-as-a-Service and more. It provides the most popular hypervisors such as 

Citrix XenServer, Oracle VM server, KVM, VMware, Microsoft Hyper-V and Xen 

Cloud Platform (XCP). Management of cloud can be performed easily through web 

interface, a full-featured RESTful API and command line tools. Moreover, it provides 

an S3 and AWS EC2-compatible API for organizations wishing the deployment of 

hybrid clouds. It scales up and down depending on software, business, hardware and 

virtual machines in network. 
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2.3 Cloud Storage 

Cloud storage is the integrated product of virtualization technologies and 

distributed storage. It provides as storage devices on private network or the internet 

and as data storage services on remote hosted servers. It will have ability to offer 

storage service with more security and reliability and lower cost. The advantage is it 

enables users at any time access data. There are many cloud storage providers, such as 

Microsoft, HP, IBM, Amazon, Google and iCloud, etc.  Amazon S3 supports a simple 

web services interface for retrieving and storing any data, from anywhere on the 

cloud, and at any time. It supports any developer for accessing to the more reliable, 

fast, scalable, inexpensive and secure infrastructure that is used by Amazon for 

running its own global network. The service is intended in order to maximize 

scalability for developers. 

 

2.4 Design Assumptions and Characteristics of Cloud Storage  

When cloud storage is analyzed and reviewed, many critical points which are 

particularly different with traditional data storage are found. They are: 

 

2.4.1 Scaling out the hardware 

Scaling horizontally (or scale out) is the increment of nodes to a system, such 

as addition of a new computer is performed to a distributed software application. In 

case of scaling up, the machines specification is consolidated to obtain higher 

performance by addition of resources to a single node in a system, which contains the 

addition of memory or CPUs to a single computer. The cost performance in scale up 

usually is not so effective. To get the double speed up, the cost will be 10 times more 

than actual one. 

Instead of using costly scaling up strategy, the cloud computing data centers 

usually applied scaling out technique by taking the advantages of cost saving. In case 

of higher number of data access to web server, one web server system can be easily 

scaled out by adding more web servers which is more scalable and enable to obtain 

better performance. 

 

2.4.2 Highly Distributed Cluster 

The cloud storage cluster may contain more than hundreds of storage devices 

that are built with inexpensive commodity parts. These storage nodes are 



 
 

geographically distributed and the accessing is made from large number of client 

machines. Google [71] deploys large storage cluster for the processing and generation 

of data. Hundreds of terabytes of storage are provided by the largest cluster to date 

across thousands of disks over a thousand machines, and the accessing is made 

concurrently by hundreds of clients. 

 

2.4.3 Big Data Set 

In accessing the collection of shared data, data sets can be used as a unit in the 

cloud environment. It is only single large file that has specific format or collection of 

files at physical disk. Most file have large sizes in cloud data storage when they are 

compared with traditional standards. In cloud storage, most files are multi-GB-sized 

files. The file includes many application objects such as web documents. In cloud 

computing, most data storage system are especially designed for large-sized files. As 

a consequence, management of approximation of billions of KB-sized files is 

inefficient even if the file system could only support it. 

 

2.4.4 Immutable Objects 

As a web-based system, mutation of files in the cloud are performed by 

appendage of new data with no need for overwriting existing data. Writing randomly 

within a file are impractically existent. The files are sequential and read only once 

they are written. These characteristics are shared by a variety of data. Those files may 

be intermediate results formed by computation at one device and processing at 

another device, either later in time or simultaneously or may be data streams 

continuously generation from running applications. Otherwise, they can be archival 

data. Because of such appending feature, it becomes the focal point of atomicity 

guarantees and performance optimization. 

 

2.4.5 Multi-sharing 

In dedication of computing facilities to a single owner or user, cloud 

computing is based on a business model in that sharing of resources is performed 

unlike previous computing models. In order to share the resources in cloud 

computing, multi-tenancy system is deployed that permits sharing of infrastructure to 

several users, without awareness of it to users and without compromising the security 

and privacy of each customer’s data. It means a concept in architecture of software 



 
 

where a single software instance (such as database, storage, server, software, etc.) 

works on a server with supporting multiple client organizations (tenants). As a 

consequence of deploying multi-tenancy feature of cloud computing, the same 

resource can be used by multiple customers at the application level, network level and 

host level [57]. 

 

2.5 Key Mechanisms of Cloud Storage 

The architectural consideration of data storage in cloud computing needs more 

mechanisms compared with traditional data storage systems. This section presents the 

key mechanisms which need to be taken into account for cloud storage. 

 

2.5.1 Distributed File System 

A file system is a process that performs the management of data storage, 

access and operation. It is a logical disk component that controls a disk's internal 

operations as relation of computer and abstraction of human user. It is a set of an 

operating system which provides longstanding storage. It performs by operating files 

existed from specific creation until specific destruction and protection of temporal 

failures in the system. A distributed file system (DFS) is a file system which stores 

data on a server and its storage resources and files are shared by users. Accessing and 

processing of the data can be performed as data storage was at the local client 

machine. It is convenient for sharing of files and information to users on a network in 

the authorized and controlled manner. Sharing of files and storing of data as like 

storing of local information are allowed by the server to the client users. However, the 

servers give access control to the clients and have full control over the data [50]. 

 Its structure contains server, clients and service. A server is the software that 

services and operates on one device. A client is a task that can request a service with a 

set of functions forming the interface of its clients which is organized by a set of file 

operations such as delete, write, create and read. A service is an entity of software that 

runs on one or more devices and supports a certain kind of operation to earlier 

unknown users.  

In DFS, the dispersion of servers, storage devices and clients are performed 

over the devices in a distributed system. There have multiple independent storage 

devices substitution of a single centralized data repository and in that, the service has 



 
 

to be performed through the network. Popular file systems are google file system 

(GFS) [29] and hadoop distributed file system (HDFS) [3]. 

 

2.5.2 Service Load Distribution 

In cloud computing data centers, service load balancing is the key capability in 

order to absolutely perform distribution of the load of service among multiple 

locations and servers.  To do that, cloud providers should assist load balances and 

policies for cloud storage. Load distribution in the cloud may consist of several 

features such as redundancy, availability, regulatory issues, subscriber affinity, 

latency, capacity and security. 

 To meet the specific requirement of cloud data such as capacity, security, 

latency and availability, the following requirements should be considered;  

(1) number of data objects, 

(2) redundancy of data and application, and 

(3) proximity of users and data objects. 

 

2.5.3 Dynamic Data Allocation and Replication 

Generally, the same information is stored by cloud service providers on 

multiple devices. In Yahoo and Google, splitting of cloud back-end storage into huge 

clusters and breaking entirely of these into blocks/chunks at 64 MB is performed.  

The identification of each block is unique and replication of those blocks to many 

servers in their data centers are performed. In this case, how many numbers of 

replicas are suitable and which data centers should be chosen to allocate replica 

efficiently is a challenging issue. This is critical in cloud storage because it can affect 

the performance and the cost of storage concerning latency and data availability. 

 

2.5.4 Rapid Elasticity and Overload Control 

Rapid elasticity enables the cloud service capacity to expend and contract 

rapidly while the service is online. It is a powerful cloud mechanism that can support 

rescaling and automatic scaling of hardware resources. As a consequence, the usage 

of resources is more efficient and the risk of overloaded conditions is eliminated. In 

order to increase rapid elasticity, resource monitoring, thresholds and metrics must be 

put in place. Therefore, the system should be designed to support rapid elasticity with 

the following:  



 
 

(1) managing scaling and de-scaling,  

(2) accurate recording and monitoring of resources and performance; and  

(3) providing robust trigger mechanisms and well-defined policies to reliably 

accomplish the growth and de-growth of the application and automate them. 

By taking advantages of rapid elasticity, the cloud storage system may 

automatically result the mitigation and perhaps elimination of overloading. 

Traditional overload control mechanisms can contain thresholds based on exceeding 

defined capacity which will result the rejection or shedding of traffic according to the 

severity of the threshold alarms. 

 

2.6. File System for Cloud Storage  

There are two kinds of file systems such as general parallel file system and 

distributed file system. The first one is intended for computation of high-performance 

applications which require more concurrent and scalable storage I/O and are 

implemented on large clusters [55]. In this design, the metadata server may be a 

cluster organizing by some servers, featuring by various metadata server supporting 

server for various client simultaneously. Examples are parallel virtual file system 

(PVFS) [15] and Sun’s LustreFS [59].  

Internet services use widely the distributed file system and, the three main 

examples are hadoop distributed file system, amazon's simple storage service (S3), 

and google file system [29] at the complex cloud and internet environment. Moreover, 

HDFS are currently used by Facebook [32], Twitter [12] and so on. 

 

2.6.1 Google File System (GFS) 

The accommodation of the expanding data processing requirements of google 

are solved with the development and creation of a scalable distributed file system, 

google file system (GFS) by Google Inc. It supports the ability of reliability, 

availability, performance, fault tolerance and scalability for the connection of large 

networks to its nodes. It is built with various storage systems of low-cost commodity 

hardware components. It contains one master and many chunk servers and the access 

is done by many users. The general architecture of GFS is shown in Figure 2.3.  

The metadata information about all file system is kept at the master. It 

contains the access control information, the current locations of chunks, the 

namespace and the mapping of files and chunks. It performs the management of 



 
 

system activities as like garbage collection of wasteful chunks, the migration of chunk 

servers and the lease management of chunk. The communication of the master with 

each chunk server is performed periodically with sending the heartbeat messages in 

order to perform the collection of its conditions and giving the instructions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 General Architecture of GFS  

 

In GFS, input data is split into 64MB-sized chunks by the master in the 

creation of chunk. These chunks are stored at local disks by chunk servers as like 

linux files and write or read chunk data defined by a byte range and chunk handle. 

The replication of each chunk is performed at many chunk servers for reliability. The 

default replicas are three although various replica numbers can be specified by users 

for various regions of the file namespace. 

 

2.6.2 Hadoop Distributed File System (HDFS) 

Hadoop distributed file system (HDFS) is developed by yahoo and which is 

indistinguishable with GFS. However, HDFS is open-source and more light-weighted 

than GFS. It is scalable and is deployed with low cost hardware for providing reliable 

storage for huge amount of data and for streaming those data to user applications with 
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high bandwidth [3]. In the large cluster, direct attached storage is hosted by thousands 

of servers and these servers performs the operation of user applications. It is built up 

with the interconnection of nodes with clusters. It contains a NameNode for the 

management of the file system namespace and the regulation of client access to files. 

Moreover, DataNode operates the data storage as blocks within files. HDFS 

architecture is shown in Figure 2.4.  

It operates the separate storage of application data and file system metadata. 

As like other distributed file systems, metadata information is kept at a dedicated 

server, the NameNode and application data are kept at other servers, DataNodes. Full 

connection of all servers and communication with each other are operated using TCP-

based protocols. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 General Architecture of HDFS  

 

However, it has some key issues. The first one is that the dependency on name 

node for the management of all data block operations in the file system. As a 

consequence, it occurs a single point of failure and a bottleneck resource. To solve 

these issues, a distributed file scheme was proposed in [27]. The system applies a light 

weight front end server for making the connection of many name nodes with all 

requests. This provides workload distribution of a name node to many data nodes. 
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Since the management of all files is done by the name node in HDFS, the 

system performance of name node is significantly impacted by small files. The 

mechanism was proposed for the improvement storage utilization of metadata and the 

efficient storage of small files [54]. This strategy applies hadoop's harballing 

compression method for better utilization of HDFS. 

In order to eliminate the metadata burden on name node, a strategy was 

proposed for the increment of efficiency in accessing and storing small files on 

hadoop [26]. In this system, data access locality and file correlations characteristics 

remaining among small files are considered for accessing and storing them. The 

merging of all correlated small files of power point courseware into a larger file are 

operated and a two-level pre-fetching mechanism was proposed for the increment of 

efficiency in accessing small files [38]. 

 

2.7 Role of Data Popularity in Cloud Storage 

In cloud storage systems, the increment of huge amount of processing and data 

storage requirements has caused to big data. The growth of the rate of change in file 

popularity has some key features in the architecture of cloud storage. As grow as the 

explosive amount of data in cloud environment day after day, the popularity of data in 

the system becomes an important factor in cloud computing. According to the 

analysis of [1][48], only a small fraction of the files typically counts for a large 

fraction of the access. There are only a small percentage of high popular files: less 

than 3% of the files count for 34% - 39% of the access. Young files count for a high 

fraction of accesses, but a small fraction of bytes stored.  

 The workloads are less skewness for popular files. Various types of storage 

media for various file types are combined as tiered storage systems that can be 

tailored to these workloads in order to increase system performance [21]. As data 

replication provides faster data access, improved data availability and decreased user 

waiting time by supporting the user with various replicas of the same service, the idea 

of tuning replication process based on data popularity is common. This approach is 

efficient when the amount of data in the system is large, especially of cloud storage. 

 

2.8 Role of Data Locality in Cloud Storage 

Cluster computing systems, featuring fault-tolerance data storage distribution, 

have been widely applied for data-intensive applications. Huge clusters contain tens 



 
 

of thousands of devices and that are designed for searching and web indexing; small 

and medium sized clusters are designed for corporate data warehousing and business 

analytics. The more closer placement of data with computing node is a common 

routine of storage systems, also known as the data locality issue. These systems apply 

static data replication for (a) improvement of data locality by placing a task and its 

data at the same local storage (b) achievement of load balancing with distribution of 

work among the replicas (c) ensuring fault tolerance and data availability in system 

failure. 

Static data replication and placement are applied in current mapreduce 

applications. In order to achieve the optimization of data locality, applications depend 

on the scheduler. There are two ways for the improvement of data locality: 

 Assignment of popular data with many data replicas are performed for 

the improvement of data locality with concurrent accesses 

 Placement of various concurrent accessed data blocks into various data 

nodes for the contention reduction on a particular node 

Low throughput due to the poor data locality can be eliminated with the 

improvement of the data locality. The number of data replicas is automatically 

increased with the duplication of data to fetched node in DARE [2]. However, the 

data replicas are decreased if the insufficiency of data storage occurs. Therefore, there 

is the limitation for supporting the suitable number of data replicas with the access 

history information. 

 

2.9 Challenges of Cloud Data Storage  

Nowadays, there are many challenges that must be solved in the combination 

of cloud storage in data-intensive environments.  

 Data transfer rating and system performance are key problems when the 

increment of interval between client and data that occurs in cloud.  

 The latency of the network protocols cannot be eliminated with even unlimited 

bandwidth and the speed of light limitations that occurs the client experience 

to be very poor. 

 There is no well suitable data access information to cloud, if there is, at remote 

locations. In that conditions, network bandwidth is both an issue and a key 

factor of financial environment.  



 
 

 There may be impossible for the replacement of the storage network in the 

data center by cloud storage any time, at least not for high performance, 

transactional applications, data-intensive, mission-critical data and low-

response time.  

 The cloud storage applies instances for less frequent data access natures such 

as backup, offsite data protection, archiving and DR. Data transfer rates and 

system performance become principal factors when the increment of interval 

between client and data that occurs in cloud.  

 There will be a hybrid cloud storage with a lot of that storage living in private 

clouds for many years. Many large enterprises deal with their processing and 

data petabytes [90].  

 

2.10 Summary  

This chapter presents overview of cloud computing and storage technology 

including design characteristics, key components and architectures. Moreover, 

distributed file system such as Google File System and Hadoop Distributed File 

System are also discussed. In addition, how is the role of data popularity and data 

locality important in cloud storage are also presented. Finally, the challenges of cloud 

storage are presented as last section in this chapter. According to the characteristics of 

cloud storage system mentioned in this chapter, the replication management, data 

popularity and data locality are designed in the following chapters.     

 

 

 

 

 

 

 



 
 

CHAPTER 3 

THEORETICAL BACKGROUND 

 

Data replication is a method of the duplication of an entity such as file, 

database and data, etc. In storage system, it is widely used in order to control cost for 

unnecessary storage and improve throughput, response time and availability for users. 

As data availability is a principal component for system performance improvement in 

cloud environment, replication is the key factor for performance improvement in 

cloud computing, that is, it provides services to users as service level agreements 

(SLAs). 

There have been much research for various techniques of data replication. 

These proposed techniques solve two replication problems such as replica allocation 

and replica placement problems. Replica allocation problem is the determination of 

the number of data replicas for each file and the placement of replicas to where. The 

management of replicas is a critical factor for data availability and efficiency of 

storage. In data-intensive systems, closer placement of data to computation is a 

common practice. Moreover, the concurrent placement of different data blocks with 

different data nodes is a replica placement problem. The performance of a distributed 

system is largely affected by the replication strategies and methods. 

 

3.1 Common Replication Strategies in Cloud Storage System 

In cloud storage system, there are two general data allocation strategies which 

are currently used in today enterprises. They are static replication strategy and 

dynamic replication strategy. 

 

3.1.1 Static Replication Strategy 

Objects are traditionally and generally replicated in a static manner, that is, the 

scheme of data replication is designed by the distributed database manager and it 

remains constant until the execution of manual reallocation by the manager. It is a 

reasonable solution if the read-write patterns are known a priori and are fixed. If these 

patterns change dynamically and are unpredictable, a static replication scheme may 

occur several problems of system performance.  



 
 

 Not only in cloud storage systems but also in traditional database systems, 

static replication is well and simple technique. In static replication, the 

predetermination and well definition of the replication strategy is performed. The pre-

configuration of the number of replicas is performed before data storage. As the pre-

configuration in storage setting, the replication mechanism will duplicate the static 

number of data replicas. In storage system in that data access nature of file system is 

rarely changed and quite stable, this static technique is very useful. Today popular 

cloud storage systems as like HDFS and GFS use this static replication technique for 

their data centers. In HDFS, the fixed replicas are 3 and these replicas are assigned 

into data nodes with rack-awareness policy in order to achieve availability and 

reliability. The disadvantage of this static replication is non-adaptability of changes in 

dynamic user behaviors. 

 

3.1.2 Dynamic Replication Strategy 

 In spite of the easy management and the usefulness of static replication, it has 

the rare adaptability of dynamic conditions as like the higher access of popular files or 

rarely used files. It may occur delay response time and network bottleneck as the very 

frequent and the more access of those files than others. In order solve this issue, the 

static replication is not effective in data availability and response time and it requires 

the replication of more than the default replicas for those popular files. However, the 

dynamic replication has the ability of determination on the dynamic nature in the 

number of replicas and assignment of those replicas into nodes based on the recent 

status of storage systems. However, the drawback of this replication is that it requires 

a replication decision center in order to perform the collection of the runtime 

information of all nodes in the system. 

 

3.2 Dynamic Replication Strategies for Data Popularity 

In order to decide replication strategies dynamically, the system requires the 

central decision maker and runtime information such as data access history. Access 

history record is a key factor in order to identify the data popularity which is usually 

applied for dynamic data replication. In this section, dynamic replication techniques 

based on data popularity are discussed. 

 



 
 

3.2.1 History-based Proactive Approach 

Replication of files are periodically performed according to prediction of 

popularity in proactive replication scheme. To perform the implementation of this 

technique, the accurate prediction of data popularity is critical. Otherwise, too few or 

too many replicas will be created which leads unalleviated contention or to waste both 

storage and network bandwidth. While minimal interfering with running jobs, Scarlett 

[6] performed the replication based on access information and assigned with nodes in 

order to avoid hotspots. A proactive approach, Tempo, is proposed by Emil Sit and 

et.al.,. Tempo performed effectively the adjustment of the replication level with the 

constraints of bandwidth budget while systems defined the number of replicas 

corresponding to failures by changing the consumption of bandwidth to remain 

unchanged that replication level [69]. 

The comprehensive reliability model was proposed that considered not only 

probability of data loss but also bandwidth allocation in the recovery process [77]. 

They used proposed reliability model for analyzing reliability and system repair rate 

for different data layout schemes, namely copyset replication, shifted de-clustering 

and random de-clustering layouts.  

A novel cost-effective data reliability management mechanism based on 

proactive replica checking (PRCR)  was proposed that checked the availability of 

replicas to maintain reliability [51]. They showed that default three-way replication 

strategy consumed storage space for rarely accessed files. Thus, they proposed a 

reliability model with the aim of reducing storage cost and demonstrated that wide 

range of data reliability can be assured with the maximum of two replicas stored in 

the cloud. 

 A distributed hash table is used for the allowance of defining a maximum 

maintenance bandwidth and to perform the proactive replication. It evens out bursts in 

maintenance of traffic by varying in time at which bandwidth is used. In the idle time, 

a proactive system performs regularly in the system background in order to increase 

levels of replication. Hence, this consequences in a sudden split of failures and a 

predictable bandwidth load: nodes will not occur to a respective split in usage of 

bandwidth that might occur the disturbance of the network. However, a deducible 

knowledge of failure condition is required to support durability. If there has no precise 

or true knowledge, the compromising of durability may be occurred. 

 



 
 

3.2.2 Load-adaptive Reactive Approach 

Reactive approach has adaptable and dynamic nature than proactive approach. 

Therefore, this approach has ability to changes in popularity in smaller time periods 

and can eliminate non-recurrent and recurrent hotspots. In DARE [2], data replication 

scheme was proposed to be efficient in cluster scheduling by using the nature of this 

reactive approach. In DARE, the replica allocation and replica placement algorithms 

are adaptable to the changes in workload. In replica allocation, it finds the most 

popular data and generating replicas for this data. Data popularity has the nature of 

the large number of access and the high intensity of access.  

 Although reactive approach only generates required replicas resulting in 

minimization of total bytes sent, crash in network usage can be occurred after a 

failure. These crashes may occur the disturbance of application traffic and bandwidth 

provision may be difficult. 

 

3.2.3 Greedy Replication to Popular Data 

The approach that makes adjustment in changes of data popularity is greedy 

approach. The assumption of the greedy approach is that the access of nonlocal data is 

worth replicating. This approach performs the unnecessary replication of unpopular 

data as some jobs tend the achievement of poor locality. For instance, in the map-

reduce processing of DARE, the insertion of data into the fetched node at HDFS when 

a remote data is processed by a map task. The automatic increment of the number of 

replicas by one is done without explicit incursion of network traffic in this process. 

An eviction is needed to be performed as the limited assignment of storage space for 

dynamic creation of the replicas. Conventional eviction methods contain least 

frequently used (LFU) and least recently used (LRU). Choices between LRU and 

LFU should be made after profiling typical workloads. 

 

3.2.4 Probability-based Greedy Approach 

A problem that may arise from Greedy approach is thrashing. In this context, 

thrashing is a high rate of replica creation and eviction. To add stability and prevent 

thrashing, probabilistic approach is an optimal option so that blocks are not 

dynamically replicated immediately after a remote read, but rather they are replicated 

with a probability p. The algorithm iterates through the list of dynamically replicated 

blocks if the budget limitation occurs and the replication triggered by the remote 



 
 

access. By adopting a probabilistic approach, most unpopular nonlocal accesses can 

be ignored while replicating popular data. 

 

3.2.5 LALW Algorithm for Data Grids 

A data replication management scheme, Latest Access Largest Weight 

(LALW), is proposed in [18] for data grids. In this proposed system architecture, 

replication management is performed by the replication policymaker which is the 

centralized data replication management mechanism. The cluster header performs the 

management of each cluster and the policymaker performs the collection of the access 

information of all headers.  The detailed information of file is kept at each cluster site 

and the cluster header takes the aggregation and summarization of all records in the 

same cluster. The summary of all records is sent to the Policymaker which selects the 

popular file according to the number of accesses for files and weight of records. At 

each time period, the algorithm searches the most popular file and performs the 

computation of the number of replicas for popular file and the suitable placement of 

the replicas at grid sites. Analysis of the access information of files was used in order 

to decide the popular file in this system. After the determination of most popular file, 

the investigation of the generation of the most accesses of popular file and placement 

of the new replica are operated. 

 

3.2.6 PopStore Algorithm for Cloud Storage 

 As the popular growth of cloud computing, the role of storage system is 

important to perform the efficient storage and distribution of the massive amount of 

data to data centers. There is the random and dynamic nature of data popularity in 

cloud environment as the growth in the explosive amount of data day after day. 

Moreover, the maintenance of the fixed number of replicas in the system 

consequences in inefficiency of the most accessed data and non-effective and wasteful 

storage cost for unpopular data. In [34], adaptive data replication approach, PopStore 

is introduced by applying popularity thresholds and history of data access information 

in order to solve these issues. To evaluate the performance analysis of this system, 

Yahoo hadoop audit log file is used as a data source in order to perform the extraction 

of data access pattern.  

 A replication algorithm, PopStore is proposed using half-life concept as like 

LALW algorithm in grid computing. Half-life concept is the decaying of the weight of 



 
 

the records to half of its previous weight in an interval. LALW searches the most 

popular file at each time interval. However, PopStore finds out not only popular file 

but also non-popular file. After that, it computes the different number of replicas for 

various files at each time period with different popularity thresholds. In order to point 

out the importance of history information, time-based weight setting is used. Smaller 

weights are set to older history information. Moreover, PopStore specified different 

number of replicas based on different thresholds of popularity. After the calculation of 

the number of replicas for each file, the effective placement of replicas to data center 

is operated. The assignment of data replicas to the nearest replica site is performed for 

reducing the storage cost. PopStore is adaptable to the changes in data popularity of 

cloud storage not as like the existing methods because its consideration of data 

popularity. 

 

3.3 Replication Strategies Based on Blocking and Anti-blocking Probability 

Replication is the common strategy in cloud storage systems in order to 

increase data availability at where the failures are normally occurred. In [78], a 

dynamic replication technique for cloud storage called CDRM is introduced for 

performance improvement, data availability and load balancing. It considers the 

relationship between the number of replicas and data availability. In order to satisfy 

the data availability requirement, it calculates and keeps the minimum number of 

replicas. According to blocking probability and storage capacity of nodes, the 

placement of replicas is performed. It adjusts data replicas and assigns data replicas to 

nodes based on changes in node capacity and workload. It can operate the dynamic 

redistribution of workloads at nodes in heterogeneous cloud environment. 

In cloud computing, there is a challenge for effective access to widely and 

huge distributed data for replication. To solve this issue, an Efficient Data Access 

Scheme (EDAS) is proposed for HDFS for adaptive selection of data replicas among 

nodes. Data distribution and replication is performed at cluster with commodity nodes 

in HDFS. Depending upon the load of nodes, this scheme provides the determination 

of the access nodes for data replicas to users for getting quick access to nodes. It 

supports high performance replication access and load balancing of nodes. It is 

implemented based on history access information of HDFS metadata and anti-

blocking probability of nodes [8]. 

 



 
 

3.4 Replication Strategies for Load Balancing 

As the rapid development of many storage applications such as Google Drive, 

Megaupload and YouTube, data storage nodes that have popular data storage have led 

to the bottleneck in system performance. As a consequence, high request loss rate, 

low resource utilization and long-latency response could be occurred by load 

imbalance. The architecture of an effective load balancing scheme is a key issue in 

order to solve this shortcoming. In general, replication is a general way to satisfy such 

requirement. Data replication is the technique of keeping many duplicates of same 

data on same or different servers. In cloud computing, data replication means the 

storage of many duplicates of same data on distinct places, local or remote locations. 

There will be very hard for handling the access requests if the existence of data is at 

one-sided. As a consequence, the server will encounter system performance 

degradation and heavy load condition. Moreover, there is failure at that site, this is 

also a serious concern as the loss of all that data. For keeping the level of 

performance, data availability, load balance and back up data storage, data replication 

is the essential technique. A simple and efficient load balancing scheme, namely, 

ARM was proposed [80]. The uniform distribution of the hotspot data access to other 

nodes can be performed with active replication and the effective utilization of storage 

resources can be operated with the execution of on-demand dereplication. The 

excellent load balancing can be obtained with the accomplishment of the optimal 

number of data duplicates for hotspot data on adequate storage nodes as the 

consideration of long-term and short-term data access natures. 

The data placement is need to be considered as a critical factor in evaluation of 

the system performance such as load balancing. In HDFS, the current replica 

placement policy the replicas of data blocks cannot be evenly distribute across cluster 

nodes, so the current HDFS has to rely on load balancing utility to balance replica 

distributions which results in more time and resources consuming. In [4], the heuristic 

approach is introduced in order to handle the problems in assignment of data into 

nodes. It distributes replicas to cluster data nodes as evenly as possible, and also meet 

all replica placement requirements of HDFS, as a result, there is no need to run the 

balancing utility. The proposed policy in this paper is the first that addresses the load 

balancing problem by generating an even replica distribution to the data nodes at the 

beginning of distribution then during the normal operations on data nodes. 



 
 

The load balancing approach is introduced with the consideration of all 

conditions affecting the load balancing. In the proposed algorithm, a new role named 

BalanceNode is introduced to help in matching heavy-loaded and light-loaded 

DataNodes, so light-loaded nodes can share load from heavy-loaded ones [81]. 

 

3.5 Replication Strategies Design for Heterogeneous Clusters 

The architecture of hadoop distributed file system (HDFS) is intended for 

supporting data streaming high bandwidth to customer implementations and provides 

the reliable storage of big data. However, the assumption of the block placement 

policy of HDFS is that the homogeneity of all nodes and the random placement of 

data blocks no consideration of resource utilization of nodes which occurs the 

decrement in system self-adaptability. To solve the shortcomings in data placement of 

HDFS, an advanced block placement approach is proposed [84]. In this system, it 

considers the non-homogeneous features of nodes such as disk space utilization of 

nodes. The concept of this proposed approach is that it divides nodes into two groups: 

small network load and high network load. The network load difference between two 

groups is not greater than the predefined threshold, the selection of the nodes in the 

small load group with much disk space can be performed in preference. If not, the 

nodes in the high load group with much disk space is selected by this strategy. This 

strategy mainly focuses on load balancing with the selection of the suitable node for 

data placement instead of realizing balance by the default balancer procedure. 

HDFS places randomly the data replicas into nodes without consideration of the 

heterogeneous feature of nodes. The placement policy of HDFS is not effective for 

heterogeneous environments, where nodes have the same disk capacity and same 

computing power. Practically, the holding of the assumptions of homogeneous 

environment is not always easy. The scheduler of Hadoop will occur the serious risks 

in dissipation of energy in heterogeneous environments and degradation of system 

performance as the placement policy of HDFS. To address these issues in large-scale 

non-homogeneous hadoop cluster, the novel snakelike data placement mechanism 

(SLDP) is introduced in [79]. Adoption of heterogeneous features, SLDP proposes an 

algorithm that separates nodes into several virtual storage tiers (VST) and then assigns 

that blocks into nodes in each VST with a circular path according to data popularity. 

Moreover, it applies an efficient power control function and a popularity-aware 

replication for decrement of disk space consumption. 



 
 

3.6 Replication Strategies Design for Energy Efficiency 

The huge amount of file transactions such as storage, transfer and processing are 

simultaneously operated in large distributed data clusters. Many file systems perform 

the creation of three replicas and the random placement of these replicas into nodes 

among various racks for the increment of data availability. However, they do not 

consider the heterogeneous nature of nodes and file that can support further 

improvement of system efficiency and data availability. As the dynamic nature of file 

popularity, the fixed number of replicas may not be adequate for supporting 

immediate response to larger number of data access to popular files and waste 

unnecessary storage resources of unpopular files. It is critical in the choice of nodes 

for low delay of data access and replication as the heterogeneous features of nodes 

such as system configuration, network bandwidth and the maximum capacity of 

simultaneous data access requests.  

 In order to achieve the efficiency of energy in data replication, the energy-

efficient adaptive file replication system (EAFR) is introduced [52]. In order to obtain 

a balance between efficiency and availability, it is adaptable to changes in data 

popularity over time periods. Increment of data popularity occurs more data replicas 

and decrement of data popularity occurs less replicas and so on. In order to obtain 

efficiency of energy, it splits servers into cold and hot servers with various 

consumption of energy and performs storage of popular files at hot servers and 

storage of unpopular files at cold servers. It chooses the server that has the sufficient 

storage and network bandwidth for keeping the replica. It introduced the adjustment 

approach of dynamic transmission rate in order to avoid congestion potentially in 

replication of data to the server, the replica maintenance approach based on load for 

the creation of files quickly when node failure occurs and the node selection approach 

based on network for eliminating file access latency.  

The cost of energy consumption is one of the considerable factors of the overall 

costs of the data center as the requirement of much energy for the execution of 

applications on large clusters. Therefore, in execution of each mapreduce jobs of data 

centers, eliminating of the energy consumption is a principal issue. In order to 

improve the energy efficiency in mapreduce applications with the achievement of the 

service level agreement (SLA), a framework was proposed [56]. In this system, a 

mapreduce job was designed as an integer program based on the scheduling of energy. 

Then, two heuristic algorithms were proposed to make the assignments of machine 



 
 

slots with map and reduce tasks to get the minimum energy consumption in the 

application execution. These experiments are performed on hadoop cluster to make 

the determination of the time for execution and the consumption of energy for various 

workloads on the benchmark suite such as PageRank, Terasort and K-means 

clustering and this data are used in the simulation for the analysis of the system 

performance.    

In order to manage data processing in hadoop cluster, a hybrid, energy-saving and 

logical multi-regional alternative was proposed [41]. Green hdfs's data-classification 

placement policy scales down with the substantial assurance for long periods of 

idleness in a set of servers in the datacenter designated as the cold zone. These servers 

are transformed into energy-saving and inactive power modes with no impact on 

system performance of hot zone. This shows that the servers in the clusters are under-

utilized and the existence of abilities for better integration of the workload on the hot 

zone. The analysis of the traces of Yahoo hadoop cluster showed the dynamic nature 

of data access patterns can be applied for the placement policies based on energy. 

 

3.7 Elastic Replication Management Scheme 

While the improvement of system performance by the replication strategy, the 

more than half of workload in the object-based storage system are the metadata 

operations. Therefore, elastic replication strategy based on the communication model 

of logical elements and physical nodes in storage system was proposed [53]. In this 

system, the formalization of the replication and the popularity of metadata was 

specified. After that, the capability of the metadata server-based replication of the 

metadata is performed in the cluster using the access history information of data. The 

evaluation and analysis show that this replication scheme can perform the 

improvement of the metadata efficiency in the storage system that can perform the 

further improvement of system performance.   

With the replication of default three data replicas, HDFS supports reliability, 

availability and high performance. The pattern of data popularity is dynamic over 

time periods. The HDFS replication strategy should be adaptable with the nature of 

data popularity in order to achieve high disk utilization and improvement of system 

performance. Therefore, an elastic replication management scheme for HDFS was 

proposed [20]. This scheme proposes elastic replication for various data types and 

provides an active/standy model taking advantages of high-performance complex 



 
 

event processing in order to classify current data types. It applied Condor for the 

removal of unnecessary data replicas after the data becomes unpopular and the 

increment of data replicas for popular data in standby nodes.  

As the data becomes unpopular, the erasure codes are applied for storage and 

network bandwidth saving. It operates the management of replica allocation and 

replica placement in the cluster. To classify real-time data types, it applies CEP and 

the system metrics was obtained from the cluster. Scheduling of replication manager 

tool and erasure coding tool could be done for replication management depending on 

the different data types. 

 

3.8 Replication Strategies based on QoS-aware data replication  

A replication management scheme based on the awareness of QoS is proposed 

[68]. This scheme calculates the suitable places for data replicas in order to minimize 

the overall replication cost. Moreover, this scheme focuses on the reduction of access 

latency and the improvement of data availability while achieving the maximum QoS 

requirement. This issue is designed by applying dynamic programming. For the 

demonstration of this proposed scheme, widely observed access history information 

are applied in order to implement the simulation experiments. For cloud computing 

environment, two data replication algorithms based on QoS are proposed [19]. One 

algorithm assumes the concept of high QoS first replication (HQRS) for replication. 

However, this greedy approach could not reduce the QoS-violated data replicas and 

the cost of replication. Another algorithm changes this issue as minimum cost 

maximum flow (MCMF) issue in order to obtain these two objectives. To solve this 

problem, the second algorithm provides the ideal key to this issue in polynomial time 

by using current MCMF algorithm. However, more computation time is required than 

the first algorithm. The approach that applies the combination of node was introduced 

for the reduction of much replication time in cloud computing. 

 The authors proposed the balanced and file reuse replication scheduling 

(BaRRS) approach for the optimal arrangement of scientific workflows in cloud 

environment [16]. To achieve the balance between parallelization and system 

utilization, it divides workflows into multiple sub-workflows. Replication and data 

reuse approaches are applied in runtime for achieving the suitable amount of data 

transported on jobs. The key features of workflows such as dependency patterns, task 

execution time and file size are analyzed for the adjustment of current replication and 



 
 

data reuse approaches in cloud environment. Moreover, a trade-off analysis is taken 

for the selection of the suitable key based on two constraints: monetary cost of 

running workflows and execution time. 

 

3.9 Replication Strategies for Peer-to-Peer Architecture 

In peer-to-peer system, unreliable connection, unpredictable node failure and 

bandwidth limitation confuse effective sharing of data. Data replication can increase 

response time and data availability. In order to achieve improvement of system 

performance in massive storage systems with random network features, dynamic 

behaviors of user and large files and users, determination of where and when for data 

replication is yet very hard. A dynamic replication model is proposed by Ranganathan 

et al. The optimal number of data replicas are computed with storage cost of files, 

system availability, accuracy of data placement and latency between nodes while 

satisfying the required availability [64]. This system is evaluated with the simulation 

environment for showing this replication approach outperforms than default 

replication. It also shows that this approach provides the exact prediction of the 

number of replicas in this system. However, there is problems such as wasteful 

replication for unnecessary data at sometimes and incomplete information of nodes. 

 The efficiency of replication is determined by many features containing data 

placement approach. A priori data replication approach for P2P data grid systems was 

proposed by Challal and Bouabana-Tebibel [17]. This approach implements dynamic 

replication with the suitable assignment of initial replicas to nodes before the starting 

of the tasks. The improved availability can be achieved by minimizing the intervals 

between various data replicas and maximizing the interval between the same data 

replicas. It ensures that each data node has various copies of various file in its 

surroundings. In the simulation environment, comparative analysis of this approach 

with no initial data placement and dynamic initial data placement. The proposed 

approach minimizes file transfer time and maximizes job completion time no 

increment of storage cost and network bandwidth. 

 An economic-aware replication scheme was proposed [11]. It performed the 

optimization of dynamic creation of data replicas at grid environment and selection of 

data replicas for running tasks. In this system, it applies an auction protocol for 

selection of the suitable copies of a file and an estimation function for determination 

about local replication. It placed optimization agents on grid environment. Files are 



 
 

bought by computing things and its objective is the minimization of buying cost. 

Likewise, storage elements increase the profits and provides investments depending 

upon the predictions of data access pattern in order to maximize revenue. 

 A peer to peer network supports interconnection of nodes and is one of the 

most usable local area networks. However, the increase in the workload on the server 

or some centralized nodes occurs as the increase in the communication over the 

network. In this condition, the distribution of network workload is performed for the 

setup requirement of some sub systems that are replication servers on the network. 

There are full or the partial copy of the actual centralized server. The key issue is the 

computation of the required number of these replication servers in system.  In [66], 

the network model for distributed system is proposed in order to achieve the effective 

replication across the network with an easy manner. This proposed model is defined 

depending upon the estimation of cost. This model contains the following key 

features:     

 The wireless connection of multiple access points to each other 

 The constant and predefined location of all access points 

 Only part of the access points has a physical link to the Internet, and thus act 

as gateways. 

 The connection of the internet with multiple mobile clients through the 

gateways. The connection of a client to one gateway is at each time point. 

 Either direct connection or connection through a series of forwarding access 

points to the gateways  

 Dynamic switching gateways and/or routes performed by clients in the 

simulation. A nomadic service assignment algorithm operates the assignment 

of a gateway with a client. 

 

3.10 Replication Strategies of Cloud Storage Systems with Master/Slave 

Architecture 

 Master/slave architectures are commonly used in today popular cloud 

enterprises such as Google and Hadoop. Depending on the master/slave architecture, 

the replication techniques are different on management of replicas and control 

strategy. This section presents replication approaches which are currently used in 

master/slave cloud storage architectures. 



 
 

3.10.1 Master-Push Replication for Multiple Storage Clusters 

The architecture pattern of Master-Push replication is originally used in HBase 

storage cluster which provides the same data structure of google BigTable such as 

row keys, column names, tables, column families, cell values and time stamps. 

Amongst multiple clusters of HBase cluster, one cluster acts as a master cluster and 

others can participate as slave clusters. Each server in master cluster has its own 

write-ahead log and that log provides the easier tracking of the current replication. 

Replication of any slave clusters can be performed by a master cluster and replication 

of own stream of edits will be participated by each region server. This replication is 

asynchronous replication as the geographical distance of the clusters and the insertion 

of rows on the master cluster will be unavailable at the same time on the slave 

clusters. The overview of HBase architecture is shown in Figure 3.1. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Overview of HBase Replication Architecture 
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Rack-aware replication is designed for large scale storage cluster, the storage 

nodes are organized by spreading multiple racks. Each rack has a switch which are 
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shared by multiple nodes and rack switches are connected each other. Figure 3.2 

shows the example of HDFS rack organization.  

 The communication between nodes in various racks are performed with many 

switches. In replica placement, the first one is placed at the local storage by HDFS, 

the second and third ones are placed at two distinct data nodes in distinct racks. If 

there are another replicas, these rest replicas are placed with random placement. 

However, it does not place more than two data replicas in the same rack. By placing 

with that policy, data availability is increased even in the unexpected unavailability of 

the whole rack. To push data to the selected nodes, pipeline mechanism is used in the 

order of proximity. Thanks to rack-aware policy and the pipeline mechanism, the 

inter-node write traffic and the inter-rack are eliminated which generally improves 

write performance. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2 HDFS Rack Organization 

 

3.11 Replication Models 

Analysis and modeling may also be interested to support the concept of the 

interdependencies contained in cloud computing [62].  It is particularly suitable for 

evaluating the system and defining suitable values. In this section, some modeling 

approaches for replicated system are reviewed. 
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3.11.1 Full Replication Model 

Most systems are modeled as full replication to consider performance 

evaluations. Full replication is the replication of all data objects at all places so that 

each place keeps a full duplicate of the distributed database. There is an extreme event 

of replication and it has been recognized that for many applications neither full nor no 

replication is the optimal configuration [22], [62], [5]. 

 

3.11.2 One-dimensional Partial Replication 

Partial replication is designed in the way that the replication of some data is 

done to all places or the replication of each data is performed to some places. In the 

first case, the replication of some data to all places, the number of data replicas r is 

defined as r ϵ [0;1] that represents the portion of logical fully replicated data items to 

all places. A data object is either not replicated at all or fully replicated. A value of 

r=1 describes full replication and r=0 represents no replication. These replication 

models have been considered by [62], [5]. However, [7] argues that full replication is 

only the assumption that are acceptable in the worst-case determinations. 

 In the latter case, the number of data replicas r is defined as r ϵ {1,2,....,n}, that 

represents each logical data item is denoted by r physical replicas, where n is the 

number of places. A value of r=n describes full replication, r > 1, every data object is 

replicated and r=1 represents no replication. As a consequence, either all data objects 

or no is replicated. The assumption is that copies are distributed evenly across the 

places, however it is still specified which replicas are assigned at that places, such that 

distinct number of data replicas for a replication scheme can be modeled. 

 

3.11.3 Two-dimensional Partial Replication 

In 2D-model, replication is designed in the way that some data objects to some 

places. It is represented as a set (r1, r2) ϵ [0;1]x {2, ..,n} so that r1 ϵ [0;1]  that 

represents the partition of data objects denoted as r2 replicas, such that these data 

objects are duplicated to r2 replicas at the n places.  The sharing of 1-r1 data objects 

left unduplicated, i.e. are described by only one data replica.  Full replication is 

represented with (r1=1, r2=n). No replication is denoted with r1=0. This model does 

not specify the placement of data objects or the selection of data objects for 

replication. The exploited property of unspecified data placement and data objects 

selection can be used for the designing the quality of replication. 



 
 

 It is difficultly affordable for replication of some data objects in all places that 

occurs high update propagation and others into none that causes the decrement of data 

availability in large wide area distributed database. Therefore, the strategy for 

replication of some data objects in all places is not realistic. Moreover, there has read 

intensive data for duplication to many sites while updated intensive data for 

duplication to very few places in many systems. It may not be designed by the 

strategy for replication of all data items in some places. 

 

3.11.4 Replication-per-Objects Models 

The 2D model has limitation in the assumption that the replication degree is 

static for replication of all data objects although it is obviously more indicative than 

previous one-dimensional strategies. It can be solved if the number of data replicas is 

considered as a variable on a per data item basis at the cost of a considerable higher 

design complexity. 

  The number of data replicas for each item is specified individually for each 

item in that model. For each of the d data items are assumed as 1, 2,....,d, and the 

operation of replication scheme is r: {1,2,..d}→ {1,...n} so that r(i) is the replication 

degree of object i. The distribution or assignment of the replicas over the n places lefts 

undefined although the replication degree is defined separately for each object.  

 Therefore, the extension can be made by defining not only the number of 

replicas but also the assignment at places separately for each object. For d objects and 

n places, the operation of the replication scheme is specified by r: {1,...n}× 

{1,2,...,d}→{0:1} so that r(i, j) =0 if place i does not keep a copy of object i and r (i, 

j)=1 if place i keeps a copy of object i. This scheme specification may be found in 

[14].  

 True replication per object designs are of reasonable complexity as they 

require that distinct places keep the distinct number of copies and will hence be 

exposed to various workloads [60]. Therefore, the non-heterogeneous assumption 

applied at the analysis of system performance of distributed databases is violated such 

that the separate computation of system performance factor would be done for each 

place. 

 

 

 



 
 

3.12 Data Locality 

Data locality means the distance to which the processing and data for a 

operation are co-located on the local storage. Maximizing data locality is an important 

goal for many data intensive systems because it can have an obvious effect on the 

system performance in the data intensive jobs. The less data transfer across the 

network can be achieved by increasing data locality. Hadoop attempts the automatic 

collocation of the processing node with the data for achieving data locality. Map tasks 

are scheduled for setting the data on the same rack and the same node. Data locality is 

a critical key factor in consideration of the performance of hadoop. The delay 

scheduler is applied as the scheduler based on only data locality among the current 

schedulers of yarn and hadoop. There are potential performance problems concerning 

with data locality in YARN. First, the policy of a fixed number of replicas in Hadoop 

Distributed File System (HDFS) does not help to improve the data locality as the data 

access frequencies from different applications may vary. Second, when a YARN 

container requests a remote data block for processing, YARN does not keep a local 

copy of this data block for future containers that may require the same data block.  

 

 

 

 

 

 

 

 

 

Figure 3.3 Types of data locality 

Rack 2 Rack 1 

Rack Rack 
Node Locality 

Rack-off  Locality 

Rack Locality 

Node A 

Node B 

 

Node D 

 

Map 

 

Node W 

Data 

 

Node Z 

 

Node Y 

 

Node A 

Node B 

 

Node D 

 

Data & Map 

 

Data 

Node B 

 

Node D 

 

 Map 

 



 
 

Figure 3.3 describes types of data locality in hadoop. That types of data locality 

are recognized by the delay scheduler as follows: 

 Node locality: In this locality, the determination for the scheduling of the 

input task with a node kept the needed data block for processing are made by 

the delay scheduler and that locality is the most effective type among locality. 

In this condition, the retrieval of data from remote location is needed to be 

done. 

 Rack locality: If there is no node locality, as the local nodes do not have the 

available sufficient resources, the delay scheduler wastes a few seconds for the 

desired availability of one node of the local storage. If not, the delay scheduler 

makes the assignment of the input task with one of the local nodes on the same 

rack. 

 Rack-off locality: It is the worst case of data locality, if there is no the 

available rack locality, the delay scheduler wastes further a few seconds, and if 

there is no the available local node on the same rack, the delay scheduler 

makes the assignment of the input task with a node on a distinct rack for the 

avoidance of task starvation. The delay scheduler. This locality makes the 

most high-cost determination for this locality. 

 

3.13 Research Methodologies in Data Locality 

Recently, a few studies attempted to improve data locality in Hadoop. This 

section categorizes the approaches to data locality management in the literature. 

 

3.13.1 Locality-Aware Replication 

Pegasus is a scheme for the management of workflow and it applies replica 

location service (RLS) for the achievement of data locality [25]. RLS is a distributed 

replica management system and it keeps file name mappings information of logical to 

physical data and the available distributed indexes. Its algorithms query RLS for the 

retrieval of replica places for the input tasks. 

 Ranganathan and Foster found that scheduling algorithms that target only 

processor utilization by mapping jobs to idle processors without regard the cost of 

retrieving the data from a remote site are inefficient [65]. A decoupled scheduling 

framework was introduced for data intensive operations that uses the separation of the 



 
 

separates the replication policy and the job scheduling policy. This framework 

contains three components: a local scheduler (LS) designed at each node to make the 

decision  for the priority of the arrived jobs at this node, the dataset scheduler (DS) to 

detect the popularity of the data items and make the decision of which data items are 

to be deleted or to be replicated and the external Scheduler (ES) to make the decision 

for the submitting of the nodes with the jobs. In simulation experiments, the ES did 

the scheduling of jobs to either the place where the data is stored or the least utilized 

place. The DS either did random replication or no replication or replication at the least 

workload place among its surroundings. The system concluded that scheduling a job 

to a machine where the data is available results in better response time than an 

scheduling a job that fetches the data remotely. Also, the proposed technique causes 

some places kept the data to form skewness condition and, in that condition, dynamic 

replication should be applied. 

Scarlett is an offline replication system that performed the replication of data 

blocks according to the observed probability from the hadoop job history logs in last 

time periods [6]. It uses a sample of the historical statistics from running systems and 

tries to predict the files' popularity. Scarlett allocates the available disk space budget 

to the popular files using two main approaches. The first one is called the priority 

approach where Scarlett sorts the popular files according to their sizes and replicates 

them one by one until it runs out of the disk budget. The intuition behind the priority 

approach is that the files with a large size are accessed more often compared to the 

small files. However, the priority approach distributes the disk budget over a small 

number of files. Alternatively, the round-robin approach increases the replication 

factor of each file by at most one in each iteration and continues to iterate over the file 

list until the budget runs out. This approach distributes the budget as many files 

instead of allocating all the disk space budgets to a small number of large files. 

Regarding the replica placement, Scarlett distributes the blocks of each popular file 

over as many racks as possible to ensure spreading the load uniformly across all the 

machines and racks. During the replication process, Scarlett tracks the load of each 

rack and each machine to control the placement of each block. For de-replication, 

Scarlett deletes the blocks of the unpopular files in a lazy manner by overwriting them 

when another block needs to be written on the disk. 

The adaptive data replication for efficient cluster scheduling (DARE) scheme 

was proposed for HDFS [2]. It made the assumption that the origination of any remote 



 
 

data access is worth replicating with a certain probability value without additional 

network cost. It aids the scheduler for the achievement of better data locality with the 

replication of data blocks into remote nodes using the budget of disk space. It did not 

depend on the scheduler and could work with any scheduler of hadoop for the 

improvement of the data locality. It follows a greedy approach to assign the disk 

space budget to the replicas. The greedy approach assumes that any block that is 

requested remotely from a remote map task should be replicated. However, this 

approach leads to poor locality when unpopular blocks are replicated. Hence, DARE 

adopts a randomized approach such that the toss of coin is applied for making the 

decision if the remote data block should be replicated or not. This approach helps to 

decrease replicating the unpopular blocks; however, it may miss replicating popular 

blocks as well. The approach requires a careful adjustment of the probability 

threshold. 

Jungha Lee, JongBeom Lim; [49] proposed a data replication scheme 

(ADRAP) that is adaptive to overhead, associated with the data locality problem. The 

algorithm works based on access count prediction to reduce the data transfer time and 

improves data locality thereby reducing total processing time. Maintaining the larger 

replication factor than the current access count for a data file does not always give the 

guarantee for the increment of data locality for all data blocks. To determine the 

number of replicas, an approach for predicting the next access information is needed. 

To accomplish this work, the amount of changes of access counts with time can be 

expressed as a mathematical formula. However, because the access for a data file can 

be made at random, a constant function is inappropriate. Therefore, we adopt 

Lagrange’s interpolation using a polynomial expression to obtain a predicted access 

count for a data file. Each time access is made for a data file, the algorithm determines 

whether the data file will be replicated or it will be used as cache, by comparing the 

predicted access count with the number of replicas. In addition, to effectively reduce 

the number of data nodes with rack-off or rack locality, the adaptive data replication 

scheme uses the replica placement algorithm that chooses the nodes where the replica 

will be placed. When replicating a data block, in turn, it traverses the circular linked 

list of racks to check whether the rack has the data block or not. If the rack has the 

data block, it traverses the next rack in the circular linked list of racks until it finds the 

rack that does not have the data block. If it cannot find a satisfied rack after traversing 

all the elements in the circular linked list of racks, it replicates the data block to the 



 
 

rack which it selected first. Conversely, if the rack does not possess the data block, it 

selects a node whose number of data blocks is minimal, and then replicates the data 

block to the node. With the replica placement algorithm, the data blocks to be 

replicated will be distributed evenly throughout the nodes. In addition to this, the 

algorithm will reduce the number of tasks with rack-off locality effectively. 

In PHFS [43], the authors proposed a data placement scheme that balances the 

data load, considering the processing speed of nodes. PHFS provides the initial data 

placement and data redistribution algorithms to improve data locality in 

heterogeneous cluster environments. In PHFS, however, the performance is dependent 

on applications because it considered data locality on scientific applications only. As 

far as data locality is concerned, it is more important to consider applications that 

share data across the nodes in the system. 

 

3.13.2 Locality-Aware Scheduling 

To illustrate the conflict among data locality and fairness in scheduling, 

Zaharia.M, Borthakur.D; [82] introduced a delay scheduling approach by introducing 

a fair scheduler for hadoop cluster that has 600 nodes. It performs the scheduling of 

jobs based on the fairness and wastes a few time periods for permitting other jobs to 

launch the tasks. It raises throughput into to two times in preservation of the fairness 

and gains the optimum data locality in various workloads. The approach is useful 

among various scheduling policies over fair sharing as like the hadoop fair scheduler. 

Hadoop fair scheduler has two main objectives: data locality and fair sharing. To gain 

this objective, the scheduler performs the reallocation of resources among jobs as the 

amount of jobs varies by waiting for operating tasks to complete and eliminating 

operating tasks to provide space for the new tasks. It operates well in hadoop 

workloads and is useful over fair sharing. The generalization of delay scheduling in 

HFS is taken for the implementation of a hierarchical scheduling policy with the 

requirement of users. It split slots among users according to weighted fair sharing at 

top-level and permits users for scheduling of their own jobs using either fair sharing 

or FIFO. 

Zhenhua et al. formulated the MapReduce data locality problem as a 

mathematical model that is used to find the optimal scheduling that maximizes the 

data locality [31]. It shows that scheduling multiple tasks all at once outperforms the 

delay scheduling approach, where the scheduling is performed task by task. Delay 



 
 

scheduling assigns the tasks one by one without considering the impact of this 

assignment on the other tasks. To reach the global minimum of data transfer over the 

network, a scheduling approach should calculate the cost of each assignment and the 

impact of the other tasks. 

The authors introduced scheduling approach based on data locality for non-

homogeneous environments [83]. Data transfer time and estimation of waiting time 

was applied for scheduling the tasks. It makes dynamic determination of whether 

scheduling of the task to the requesting node with transferring the data to the 

requesting node or reservation of the task for the stored node.   

The authors proposed scheduling algorithm for map tasks designed with the 

policies of the maxweight and the join the shortest queue and introduced the new 

queueing model [75]. Firstly, an outer bound was set at the capacity portion of a 

mapreduce cluster based on data locality and this capacity portion contains all arrival 

rate vectors for the existence of scheduling algorithm which provides the stability for 

the system. In this new queueing model, each device has one local queue, a common 

queue for all devices and that devices store local tasks. According to this new 

queueing model, a two-stage scheduling algorithm was introduced under that routing 

of a new incoming task with one of the three local queues or the common queue 

applying the policy of the join the shortest queue; if a device has availability, a task 

from its local queue or the common queue applying the policy of the maxweight is 

selected. We proved that the maxweight and joint JSQ scheduling algorithm has 

throughput optimality, so that in the exact outer bound of this capacity portion, it has 

stability on any arrival rate vector and which also proves that the coincidence of the 

actual capacity portion with the outer bound. We remarked that the existing outcomes 

of maxweight scheduling algorithms made the assumption of geometrically 

distributed service time or deterministic service time with tasks preemption.  

The stability of maxweight scheduling with random processing time and non-

preemptive task execution has not been accomplished before. Moreover, the 

optimality of throughput, the number of backlogged tasks were studied, that has the 

direction relation with the performance delay according to Little’s law. We took the 

consideration of the event that the assumption of a heavy local traffic condition and 

the service times that have the nature of geometric distributions. Then, the maxweight 

and joint JSQ scheduling algorithm is showed for heavy-traffic optimality, so that the 

number of backlogged tasks was reduced when the boundary of the capacity portion 



 
 

approaches the arrival rate vector. Therefore, the proposed system performed the 

optimal balance between load balancing and data locality and was both delay and 

throughput optimality in the heavy-traffic condition. 

A flexible and powerful framework is proposed for scheduling fine-grain 

resource sharing with concurrent distributed jobs [36]. The problem of scheduling is 

depicted with a graph data structure, at where capacities and edge weights compress 

the competitive requests of fairness, freedom of starvation and data locality and the 

optimum online schedule is calculated by a standard solver based on the global cost 

model. The implementation of this framework was evaluated at Quincy, on a cluster 

of a few hundred computers using various workload of CPU and data intensive jobs. 

We performed the evaluation of Quincy against an existing queue-based algorithm 

and various policies for each scheduler was implemented, with and without fairness 

constraints. Quincy achieved better fairness as fairness is demanded, while 

substantially increasing data locality. 

Although there have been many methods for the improvement of data locality, 

most of them either ignored global optimization and were greedy, or suffered from the 

complexity of high computation. To solve these issues, a scheduling algorithm for 

heuristic task, balance-reduce (BAR), was presented [39]. Firstly, a task allocation 

was proposed, and then the completion time for job can be decreased gradually with 

tuning of the initial task allocation. Data locality can be adjusted dynamically 

depending upon cluster workload and network status.  

A new approach was proposed for mapreduce clusters in order to improve data 

locality [33]. The aim of this approach was to provide a fair chance to every slave 

node for grabbing local tasks before assignment of slave node with non-local tasks. 

As it tried in order to find a matching, so that a slave node including incoming data, 

with every map task that has no assignment. Firstly, the matchmaking algorithm 

provides freedom of the strict order of job order for task assignment as like the delay 

scheduling algorithm. If there was no a local map task at the first job, the continued 

searching of succeeding jobs will be performed by the scheduler.  

Second, to provide a fair chance to every slave node for grabbing its local 

tasks, as a local task could not be found by a node in the queue at start time in a row, 

there is no assignment for the node to non-local map task. So that, no map task is 

achieved by the node in this heartbeat period. In a heartbeat period, local task 

assignment was considered for all free slave nodes and their heartbeats have likely 



 
 

given by these free slave nodes, as a local task could not be found by a node in the 

queue at later time in a row in order to avoid inefficient spending of computing 

resources, the assignment of a non-local task with the node would be performed by  

this matchmaking algorithm. In this way, both higher cluster utilization and higher 

data locality rate were achieved by our algorithm. A locality marker was provided to 

each slave node for marking its conditions. If jobs at the queue did not have local map 

task with a slave node, according to the marked value of that slave node, whether or 

not the assignment of a non-local task with that slave node would be determined by 

this algorithm. Third, one slave node was allowed for taking at most a non-local map 

task by this matchmarking algorithm every heartbeat period. Finally, locality markers 

of all slave nodes would be deleted as the adding of a new incoming job to the job 

queue was taken. As new local map tasks at some slave nodes may be comprised by a 

new job, according to the arrival rate of new job, all nodes' conditions were reset and 

the matchmaking process of all to all task to node was started again. 

Various studies of hadoop pointed out that, separation from the phase of 

shuffling, the huge amount of map task operations for remote data was the other 

origin of massive network traffic. These consequences occurred an unbalanced 

operations of map tasks and a massive amount of inefficient map tasks operations 

among various devices. Those factors led a noticeable degradation of system 

performance. Hence, Maestro, the scheduling algorithm for map tasks, was introduced 

for the improvement of overall system performance in the mapreduce operation [35]. 

The map tasks was scheduled by this algorithm in two waves: firstly, free slots of 

each node was filled according to the hosted amount of map tasks and the replication 

plan; second, the possibility of scheduling a map task at a specified device was taken 

into account by runtime scheduling based on the replication degree of incoming data. 

At the shuffling phase, the more balanced in data distribution and the improvement of 

locality at the map tasks operations were achieved with these two waves.  

Many current schedulers omitted data locality for reduce tasks when the 

intermediate data was fetched although data locality issues have been considered for 

map tasks. As a consequence, it led to degradation of system performance. Therefore, 

recently, the issue of decreasing the fetching cost of reduce tasks has been specified. 

But, the introduced schemes are purely relied on the greedy strategy, depending upon 

the suspicion for assigning the slots with reduce tasks that slots are closest with the 

recent produced intermediate data. As a consequence, in the existence of job arrivals 



 
 

and departures, assignment of the reduce tasks of the current job to the nodes with the 

lowest fetching cost can preclude a subsequent job with even achieving improved data 

locality from being launched on the recent slots. At last, a stochastic optimization 

framework was formulated for achieving the improved data locality for reduce tasks, 

with the suitable assignment policy showing a threshold-based structure [72]. For the 

easier implementation, a receding horizon control policy was introduced depending 

upon the optimal key in restricted conditions. 

The authors provided the first complete theoretical data locality analysis of the 

Map phase of MapReduce, and more generally, for bag-of-tasks applications that 

behaves like MapReduce [10]. We show that if tasks are homogeneous (in term of 

processing time), once the chunks have been replicated randomly on resources with a 

replication factor larger than 2, it is possible to find a priority mechanism for tasks 

that achieves a quasi-perfect number of communications using a sophisticated 

matching algorithm. In the more realistic case of heterogeneous processing times, we 

prove using an actual trace of a MapReduce server that this priority mechanism 

enables to complete the Map phase with significantly fewer communications, even on 

realistic distributions of task durations.  

Although existing hadoop schedulers are quite successful, there still have 

issues to be solved for the optimal joint improvement for map tasks and reduce tasks, 

albeit there is a strong dependence between them. This can lead to unfavorable data 

locality and job starvation. A scheduler for hadoop based on resource was proposed 

and evaluated [73]. It paired the advances of map and reduce tasks, applying random 

peeking scheduling and wait scheduling at map and reduce tasks to achieve the 

optimal joint task assignment. This improved the overall data locality and eliminated 

the problem of starvation.   

In order to achieve better load balance, a work stealing approach based on data 

was introduced and there has still tries for getting best data locality [76]. Basically, 

both shared task ready and dedicated queues are kept by each scheduler and these 

queues were evaluated as descending order of priority queues according to the size of 

data that a task requires. During the migration of tasks at the shared queue was done 

on schedulers to balance workloads by stealing of work, the scheduling and execution 

of tasks at the dedicated queue was done locally with no applying special policy. One 

ready task would be placed in the queue according to location and size of requested 

data of task. Moreover, the pushing of a task at others might be done by the scheduler 



 
 

if the source of requested data is remote data. It performed more than many current 

stealing works that applies a ready queue based on locality of task  and these queues 

were evaluated as double-ended deque or normal queue. The distributed key-value 

store was utilized as the service of metadata for keeping all tasks 'efficient data 

locality information. This proposed approach performed well in not only 

heterogeneous but also homogeneous environments. 

 

3.13.3  Locality-Aware Prefetching and Pre-shuffling 

Because devices in mapreduce clusters are large-sized memories, that are 

often underutilized, prefetching of incoming data to memory was an efficient 

technique for the improvement of data locality. But it still had key issues for designers 

of clusters on when and what to prefetch. To achieve the efficient usage of 

prefetching, the high-performance scheduling optimizer (HPSO), that is also the 

scheduler for data prefetching, was designed for the improvement of data locality in 

jobs of mapreduce [70].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  Figure 3.4 The intra-block prefetching 
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The principal concept was the prediction of the most suitable data nodes for 

the future assignment of map tasks and the prefetching of the incoming data at 

memory with no delay on setting new tasks. Sangwon Seo, and Ingook Jang; [67] 

proposed optimization schemes such as pre-shuffling and prefetching to solve the 

problems of sharing. The implementation of these two schemes were performed at 

high performance mapreduce engine (HPMR). The scheme of prefetching could be 

divided into two kinds: prefetching of inter-block and intra-block. The entire data 

block was prefetched at inter-block prefetching as only an intermediate output or an 

input split was prefetched at intra-block prefetching. Those prefetching schemes were 

utilized for all phases of map and reduce.  

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 3.5 The inter-block prefetching 

 

Figure 3.4 and Figure 3.5 describes the intra-block prefetching and the inter-

block prefetching. The amount of intermediate output for shuffling was reduced with 

the pre-shuffling scheme. At pre-shuffling, HPMR searched the incoming block 

before the starting of the map phase and predicted the targeted reducer at which the 

partition of key-value pairs was done. If the splitting of key-value pairs of 

intermediate result at the local storage was performed, the amount of shuffling 

operations across the network could be decreased. In this system, the task scheduler 

only for pre-shuffling at reduce phase was proposed. Briefly, this scheme achieved 
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better data locality, and the reduced amount of the shuffling overhead at reduce phase. 

The pre-shuffling scheme is presented in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 Figure 3.6 Pre-shuffling 

 

Kousiouris et al. [45] studied multiple time steps ahead prediction of files 

based on fourier series analysis and used prediction results to determine replication 

factor that balanced the increment in availability and disk usage. 

 

3.14. Summary 

In this chapter, different strategies and models of data replication and data 

locality are reviewed. Among replication strategies, static method is more common in 

today cloud storage system because of simple and straightforward technique. 

However, it results more storage cost and less availability in very large storage 

systems as some data files may not need as many as static replication factor due to 
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lack of usage. At the same time, some have to be replicated more than static 

replication factor to recover highly concurrent access. As a result, dynamic replication 

becomes an important strategy to cope the weakness of static method. Therefore, most 

parts of this chapter present different approaches of dynamic replication which are 

intended to play a vital role in today cloud storage systems. In the following chapters, 

approaches to dynamic replication are formulated and evaluated in various 

environments. Also, in this chapter, several research areas have been studied to 

improve the performance of data locality and evaluated their research outcomes in 

various environments such as dedicated and shared environment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 4 

DYNAMIC REPLICATION MANAGEMENT SCHEME FOR 

EFFECTIVE CLOUD STORAGE (ECS) 

 

Replication is one of the important roles in cloud storage to improve data 

availability, fault tolerance and throughput for users and control storage cost. As data 

access pattern changes every time, the nature of popular files is unpredictable and 

unstable. Therefore, data popularity is taken into account as an important factor in 

replication. Data popularity in replication impacts an efficient storage because it is 

able to reduce waste storage for unpopular files. Also, data locality is a key issue in 

storage system and this consequence occurs performance overhead of system. This 

chapter presents a dynamic replication management scheme for effective cloud 

storage (ECS). The system contains two portions; replica allocation and replica 

placement.  

In the first portion, replica allocation, popularity is taken into account by 

analyzing the changes in data access pattern. Second, for replica placement, replicas 

are placed and performed on dedicated assigned nodes in order to enhance data 

locality. The proposed placement algorithm is able to avoid the overloaded problem 

of nodes by considering the load of nodes; i.e, disk utilization, CPU utilization and 

adjustable disk bandwidth. The contributions of this proposed system are as follows: 

1. The rate of change of file popularity in timeslots is analyzed by 

applying first order differential equation. 

2. Determination of the decrement and increment of the number of 

replicas for each file is computed. 

3. While the replicas are placed into nodes, the load of nodes such as disk 

utilization, CPU utilization and bandwidth utilization are considered. 

4. The predefined threshold is used to compute the overloaded condition 

of cluster. 

5. If the overloaded condition of that assigned nodes occurs, proposed 

replica replacement algorithm is used. 

6. This proposed replacement algorithm considers not only outgoing 

blocks but also the access frequencies for blocks. 

The basic idea of replication is based on the different replication degree per 

data file. Keeping the fixed number of replicas causes wasteful storage for unpopular 



 
 

data and inefficiency for popular data. Also, maintaining too much replicas than 

current access count for a file does not always guarantee better locality for all blocks. 

Figure 4.1 presents the proposed system flow diagram for ECS. The objective of this 

system is to propose a replication strategy in order to achieve the improved data 

locality by more replicas for popular data while maintaining less replicas for 

unpopular data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. System Flow Diagram 
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4.1 Replica Allocation 

At first step, first order differential equation is applied to compute the rate of 

change of file popularity. Pop-Store and LALW algorithms utilized the concept of 

half-life that denotes the weight of the access information at a period degrades to half 

of the weight of the last period. The assumption of popularity is that the popularity of 

an item which grows at a definite period has the relationship with total popularity of 

that item at that period. Mathematically, this assumption can be expressed as  

𝑑𝑃

𝑑𝑡
= 𝑘𝑃(𝑡)                                      Equation 

(4.1) 

where k is the growth or the decay constant and P(t) is popularity at time t. If k 

is less than 0, there is decay and else if k is greater than 0, there is growth, and so on. 

Then, this linear differential equation is resolved into 

                                               𝑃(𝑡) =  𝑃0 𝑒𝑘𝑡                                   Equation 

(4.2)                                                    

Then,  

𝑘 =  
𝐿𝑛(

𝑃(𝑡)

𝑃0
)

𝑡
                                        Equation 

(4.3) 

 

Where 𝑃0 is the starting popularity, i.e. p (0) = 𝑃0. The Yahoo HDFS user audit log 

format is shown in Figure 4.2.  

 

 

 

 

 

 

Figure 4.2. Yahoo HDFS User Audit Log Format 

 

The input log file is broken into smaller files based on timeslot in order to 

compute the access frequency information of each file. And, the extraction of fields 

such as date, time and src from this log file is performed. Then, from the src link 

shown in Figure 4.2, access frequency is counted and kept for each file in each 

timeslot. The extracted grouping result can be viewed in Table 4.1. 

2019-06-17 11:11:59,693 INFO 

org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit: ugi=hadoopuser 

ip=/132.42.210.34  cmd=delete src=/app/hadoop/temp/test1.txt  dst=null 

perm=null 

 



 
 

Table 4.1. Example of Grouping Result of Frequency Counts for one 

Timeslot 

 

Date File path Access Frequency Count 

2019-06-17 src = abc/cde/a 3000 

2019-06-17 src = abc/cde/b 2000 

2019-06-17 src = ggh/ccd/dd 600 

 

However, as data popularity is based on access history, it still needs to 

combine access counts on previous timeslots. Therefore, the resulted formats such as 

Table 4.1 are combined into aggregated frequency counts to process data popularity. 

The aggregated format is shown in Table 4.2. And, the computation of the rate of 

change of file popularity for individual files is done in each timeslot according to 

Figure 4.3 and Table 4.3. 

 

Table 4.2. Aggregated Frequency Counts for Three Timeslots 

Date File path Access Frequency Count 

Timeslot 1 Timeslot 2 Timeslot 3 

2019-06-17 src = abc/cde/a 3000 6088 370 

2019-06-17 src = abc/cde/b 2000 1800 300 

2019-06-17 src = ggh/ccd/dd 600 700 670 

 

 

Table 4.3. Notations Used in File Popularity Algorithm 

 

Notation Description 

𝑃(𝑡𝑓) 

 

The values of popularity of file f 

𝐴𝐹(𝑡𝑓) 

 

The total access frequency counts of file f at each timeslot 

logFile The audit log file 

𝑘 The rate of change of file popularity 



 
 

Algorithm 4.1: File Popularity Algorithm 

 

Input: inLog 

Output: 𝑘 

1.  Read logFile  

2.  Compute the access frequency of each file by   using 

𝑃(𝑡𝑓) = 𝐴𝐹(𝑡𝑓), ∀ 𝑓 ∈ 𝐹 

3. Compute the rate of change of file popularity 𝑘 of each file with the substitution of 

𝑃(𝑡) = 𝑃(𝑡𝑓)  in Equation (4.3)  

4.    return 𝑘. 

  

Figure 4.3. File Popularity Algorithm 

 

 In order to verify the proposed rate of change of file popularity algorithm, three 

files are supposed (x1, x2 and x3) in three time slots. Each time slot duration is set as 

10 seconds, therefore, (t1= t2 = t3= 10 seconds). Let P0 = 1, P (t) = AF(tf) and 

calculate k by using Equation (4.3). Suppose that access frequencies of file x1, x2 and 

x3 in time slot 1 are 40, 1100 and 200. In time slot 1, the growth rate k in file x1, x2 

and x3 is 0.3688, 0.7003 and 0.5298. Also, in time slot 2, access frequencies of file 

x1, x2 and x3 are 400, 100 and 900. Therefore, the growth rate k in file x1, x2 and x3 

for time slot 2 is 0.5991, 0.4605 and 0.6802. Also, in time slot 3, access frequencies 

of file x1, x2 and x3 are 2200, 1200 and 20. Therefore, the growth rate k in file x1, x2 

and x3 for time slot 3 is 0.7696, 0.7090 and 0.2996. 

 At second stage, the number of replicas for each file is defined using changes 

of file popularity that is the outcome of the first stage. Initially, existing replicas will 

be assumed as 3 as like the default replica of HDFS. If k is less than 0.0, then existing 

replicas is decreased by 1. If k is greater than 0.0, then existing replicas is increased 

by 1. If k is equal to 0.0, then existing replicas is unvaried. Otherwise, if it is new file, 

then existing replicas is determined 3 as like the default replica of HDFS. The process 

of the number of replicas calculation is shown in Equation 4.4 and Figure 4.4. 

 

𝑛𝑜𝑂𝑓𝑅𝑒𝑝𝑙𝑖𝑐𝑎 = {

𝑛𝑜𝑂𝑓𝑅𝑒𝑝𝑙𝑖𝑐𝑎 + +, 𝑘 > 0
𝑛𝑜𝑂𝑓𝑅𝑒𝑝𝑙𝑖𝑐𝑎 − −, 𝑘 < 0
𝑛𝑜𝑂𝑓𝑅𝑒𝑝𝑙𝑖𝑐𝑎,              𝑘 == 0
3,                              𝑓𝑖𝑙𝑒 𝑖𝑠 𝑛𝑒𝑤

 

                               Equation (4.4) 



 
 

 

 

Algorithm 4.2: Calculation of the Number of Replicas 

 

Begin 

 If k > 0.0 then 

  noOfReplica++ 

 Else if k < 0.0 then 

  noOfReplica-- 

 Else if k == 0.0 then 

  noOfReplica remain unchanged 

 Else file is new then 

  noOfReplica = 3 

 End If 

 Return noOfReplica 

End 

 

Figure 4.4 Replica Allocation Algorithm 

 

4.2 Replica Placement 

The replica placement is one of the principal key problems for replication 

management in cloud storage. After the calculation of data replicas for each file in 

previous section, the last one is to assign the replicas into nodes effectively. The 

replica placement is an important issue for gaining the improvement of load balancing 

and data locality in cloud storage. If the replica is placed in suitable nodes, data 

locality and load balancing can be improved. At this step, replicas are placed into 

assigned nodes to achieve greater data locality. We will make the assumption that the 

incoming jobs must have to access these replicas at next timeslot. The entering job is 

split into tasks and assignment of task with nodes in the cluster is performed. Each 

input block has one map task. It is assumed that one data block represents one data 

file. We will let that maximum replicas are total nodes in the cluster and minimum 

replicas is 1. Node locality of task is checked and if there has node locality, then 

placement of task at that assigned node is performed. If the condition, that is, lack of 

replica at computing node for map task will occur, prefetching needed replica block 



 
 

into this node. In this system, the load of assigned node is considered to avoid 

overloaded condition while loading into assigned nodes. That replica is loaded if the 

load of assigned node is less than predefined threshold. Otherwise, replacement of 

needed replica block with existing block at assigned node is performed.  

The default placement policy of Hadoop is randomness and it assumes that all 

nodes within cluster have equality condition. Moreover, it does not consider 

utilization of nodes in placement. This condition results in imbalance load to Hadoop. 

The proposed system considers inequality condition of nodes within the cluster. In 

this system, we consider disk utilization, disk bandwidth and CPU utilization as the 

load of nodes. Then, the disk utilization of the node is carried out as      

                                                       𝑈(𝐷𝑖) =  
𝐷𝑖(𝑢𝑠𝑒)

𝐷𝑖(𝑡𝑜𝑡𝑎𝑙)
                               Equation (4.5) 

                                                                            

Where,  𝑈(𝐷𝑖) is the disk utilization of the ith DataNode, 𝐷𝑖  (𝑢𝑠𝑒) is the utilized 

disk capacity of the ith DataNode and 𝐷𝑖 (𝑡𝑜𝑡𝑎𝑙) is the total disk capacity of the ith 

DataNode. Then, the disk bandwidth of the node is carried out as 

                   𝐵𝑊(𝐷𝑖) =  
𝑇𝑏

𝑇𝑠
                              Equation (4.6) 

 

Where, 𝐵𝑊(𝐷𝑖) is the disk bandwidth of the ith DataNode, 𝑇𝑏 is the total amount 

of bytes transferred and 𝑇𝑠 is the total time taken between the first request for service 

and the completion of the last transfer. Then, the adjustable disk bandwidth of node 

for load factor is considered as  

                                         𝐴𝐵𝑊(𝐷𝑖) =  
𝐵𝑊(𝐷𝑖)

𝑇𝑜𝑡𝑎𝑙𝑖 (𝐵𝑊)
                                   Equation (4.7) 

 

 Where, 𝐴𝐵𝑊(𝐷𝑖) is the adjustable bandwidth of the ith DataNode and 

𝑇𝑜𝑡𝑎𝑙𝑖 (𝐵𝑊) is the total bandwidth of the ith cluster. Then, the CPU utilization of the 

node is carried out as      

             𝐶𝑈(𝐷𝑖) = 100% − (% 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑖𝑑𝑙𝑒 𝑡𝑎𝑠𝑘)   Equation (4.8) 

 

Where, 𝐶𝑈(𝐷𝑖) is the CPU utilization of the ith DataNode. To compute the load 

factor of assigned node, ∝, 𝛽 and 𝛾 are set as the coefficients of storage utilization, 

disk bandwidth and CPU utilization. Then, the load factor of the node is carried out as  

                         𝐿𝑜𝑎𝑑(𝐷𝑖) = ∝ 𝑈(𝐷𝑖) +  𝛽 𝐴𝐵𝑊(𝐷𝑖) +  𝛾 𝐶𝑈(𝐷𝑖)         Equation (4.9) 

 



 
 

 To compute the overloaded condition of cluster, the sum of maximum disk 

utilization, maximum disk bandwidth and maximum CPU utilization in cluster is 

divided by the number of nodes in the cluster is defined as the predefined threshold Oi 

of the ith cluster. Therefore, the predefined threshold Oi of the cluster Ci is carried out 

as 

                                   𝑂𝑖 =  
𝑀𝑎𝑥𝑖(𝑈)+ 𝑀𝑎𝑥𝑖 (𝐴𝐵𝑊)+ 𝑀𝑎𝑥𝑖 (𝐶𝑈)

𝑁
                             Equation (4.10) 

 

That replica is placed at that node if the load of assigned node is less than 

predefined threshold. Otherwise, replacement of needed replica block with existing 

block at assigned node is performed. The proposed replacement algorithm is based on 

the concept of least recently used (LRU) [74]. It outperforms efficiently and is more 

reliable than LRU because it takes into account not only outgoing blocks but also 

access frequencies for blocks in replacement. In the proposed data replacement 

algorithm, the block that has minimum access frequency is considered as first for 

replacement. If there is one or more blocks that have minimum access frequencies, 

outgoing block (least recently accessed block) is determined for replacement 

according to the concept of LRU mechanism. The proposed replacement algorithm is 

described in Figure 4.5 and the proposed data placement algorithm is in Figure 4.6 

and Table 4.4. 

 

Algorithm 4.3: Proposed Replacement Algorithm 

Step 1: It computes total access frequencies of all blocks at that assigned node as the 

replica is loaded into the assigned node. 

Step 2: That replica is selected to evict from the node if only one block that has 

minimum access frequencies is found. 

Step 3: If there have more than one block that have minimum access frequencies are 

found, outgoing block is chosen to remove from that assigned node as LRU. 

 

Figure 4.5 Proposed Replacement Algorithm 

 

 

 

 

 

 



 
 

Table 4.4. Notations Used in Data Placement Algorithm 

 

Notation Description 

 

DN DataNodes List 

 

ABW 

 

Adjustable Bandwidth 

U 

 

Disk Utilization 

RP  

 

Replica List 

MT 

 

Map Task List 

CU 

 

CPU Utilization 

C 

 

Cluster List 

LF 

 

Load Factor List 

O 

 

Predefined Threshold of the Cluster 

 

 

Algorithm 4.4: Proposed Placement Algorithm 

Input: DataNodes List DN= {DN1, DN2,.., DNn }, Replica List RP ={ RP1, RP2, 

RP3,…., RPn }, Map Task List MT = {MT1,MT2,MT3,…,MTn}, Load Factor List 

LF = {LF1,LF2,LF3,…., LFn}, Predefined Threshold Oi, Cluster List C = {C1, C2, 

C3,…., Cn} 

Output: DataNodes List DN 

for each incoming map task MT do  

for each DataNode DN do  

Check node locality of task MTi  

if there is node locality then assign task MTi to that DataNode DNi  

else  

Perform remote data replica retrieval for task MTi  

Calculate storage utilization U of this assigned DataNode DNi 

using Equation (4.5)  

Calculate adjustable disk bandwidth ABW of this assigned 

DataNode DNi using Equation (4.6) and (4.7) 



 
 

Calculate CPU utilization CU of this assigned DataNode DNi 

using Equation (4.8)  

Calculate load factor LFi for this assigned DataNode DNi using 

Equation (4.9)  

Calculate predefined threshold Oi for the cluster Ci using 

Equation (4.10)  

if LFi > threshold Oi then  

Perform replacement by using Algorithm 4.3  

Place replica RPi for this task on that DataNode DNi  

break  

else  

Place replica RPi for this task on that DataNode DNi  

break  

end if  

end if  

end for  

end for  

 

Figure 4.6 Proposed Placement Algorithm 

 

4.3 Summary 

In this chapter, replication algorithms are proposed for replica allocation and 

replica placement. To test actual situations, Yahoo web log data set is used to apply as 

data access pattern, which is the critical input for the proposed algorithm. In the first 

portion, replica allocation, popularity is taken into account by analyzing the changes 

in data access pattern. Second, for replica placement, replicas are placed and 

performed on dedicated assigned nodes in order to enhance data locality. The 

proposed placement algorithm is able to avoid the overloaded problem of nodes by 

considering the load of nodes; that is, disk utilization, CPU utilization and adjustable 

disk bandwidth. 

 

 

 



 
 

CHAPTER 5 

IMPLEMENTATION OF ECS 

 

This chapter describes the proposed dynamic replication management scheme 

for cloud storage (ECS). The proposed replication scheme is based on individual file 

and replication factor is considered upon the popularity of each file. CloudSim 

[13][86]is applied as the simulation environment to perform the evaluation of the 

proposed replication scheme. This simulator has the discrete event for providing the 

simulation and modeling of the components of cloud like hosts, RAM, VMs, internal 

network topology, data centers, CPU components, power aware provisioning policies 

and storage. Since there is the ability of extensible, the modification and 

customization can be easily made by the extension of the class, making a little 

adaptation to its core component. There have restrictions for disk I/O processing 

although fundamental components like SAN storage, files and hard drives are 

provided for the simulation of cloud data storage.  

 The additional modeling of disk I/O processing and CPU processing for   

operation of jobs is extended by CloudSimEx [30][87]. CloudSimEx combines the 

disk I/O processing modules in the CloudSim simulator. The extensions of some 

native class of CloudSimEx have been performed for the simulation of the proposed 

replication scheme. 

A replication module has extended in CloudSim simulator for the simulation 

of HDFS environment such as heartbeat mechanism for monitoring the utilization of 

the datanode and metadata management on the namenode. The simulator for HDFS 

environment designed in [24] is more closer to the original system. This simulator has 

the discrete event and is implemented with java language like CloudSim. Hence, some 

functions are extracted from that simulator and combined to CloudSim with a few 

changes. The main classes for the implementation of replica management are: 

a. Replication Scheduler:  This entity performs the replication by accessing the 

replica catalog. The management of replication scheduling and maintenance of 

metadata is done by the namenode in the actual system of HDFS. This is not 

deployed within a node as it is a separate entity.  

b. Heartbeat: This entity describes the heartbeat mechanism in the HDFS that 

periodically sends the signal to the namenode to inform the resource 



 
 

utilization information of the nodes. Before starting the simulation, the 

initialization of this class needs to be done as like any other entities of 

CloudSim. 

c. Replica Catalog: This entity is responsible for keeping the current location of 

blocks stored in various datanodes. It also maintains access information of the 

data blocks for making the determination of data popularity. 

This simulation is run for 24-hour period. In the simulation environment, 8 

cluster having 50 heterogeneous datanodes are created and the placement of these 

nodes at these cluster is performed by using CloudSim [13][86] and CloudSimEx 

[30][87]. The reason behind creating simulation environment that consists of 400 

nodes was that the work in [23] showed that there is almost guarantee to occur data 

loss event if the cluster scales up beyond 300 nodes. At the start of the simulation, the 

equal distribution of blocks at nodes in the cluster is performed for ease of evaluation 

and simplicity. The replication element is assumed as one data block and this block 

represents one file. 

 

5.1 Replication Algorithms in Cloud Storage 

Among different replication strategies presented in Chapter 3, static strategy 

and LALW (Latest Access Largest Weight) algorithm are commonly used in cloud 

data replication for centralized system. In this section, the proposed replication 

strategy is presented and compared with LALW algorithm. 

 

5.1.1 Static Replication 

Static replication is the simplest commonly used replication approach in Cloud 

computing. The number of replicas is preconfigured before the system starts and the 

system replicates the static number of data whenever data is stored. The popular file 

systems in today cloud environment such as HDFS and GFS apply this static 

replication strategy and the default is tri-replication. 

 

5.1.2 LALW Algorithm 

LALW (Latest Access Largest Weight) algorithm is widely used in Grid 

system for dynamic replication. Detailed description of LALW algorithm is presented 

in chapter 3. In LALW, only the most popular file is selected and considered to 

replicate more numbers. Every time interval, it finds out one popular file but not 



 
 

others. Actually, there can be unpopular files which are rarely accessed in the cluster. 

In the proposed strategy, therefore, different numbers of replicas are considered for 

different data in every time interval. 

 

5.2 Proposed Dynamic Replication Management Scheme (ECS) 

Based on the consideration of cloud data popularity, data locality and the 

problems of existing approaches, a scheme (ECS) is proposed which is able to adapt 

the data popularity changes in cloud storage. To evaluate the proposed replication 

algorithms, Yahoo Audit log dataset [48] is used and the description of dataset is 

mentioned in Table 5.1. In order to count data access frequency in each timeslot, the 

dataset is divided depending on date and time. To simplify the analysis, each time 

slot is defined as 3 minutes period. 

 

Table 5.1 Description of Tested Dataset 

  

 

Test data description 

Yahoo Webscope user audit logs 

(2010-01-12 00:00:00 to 2010-01-12 

00:29:59)  

Number of timeslots tested in the algorithm 10 

Each Timeslot duration  3 minutes 

 

 

 

 

 

 

 

 

 

Total records 

 

 

Timeslot 1 

 

496,845 

Timeslot 2 

 

492,357 

 

Timeslot 3 

 

536,221 

Timeslot 4 

 

425,188 

Timeslot 5 

 

542,627 

Timeslot 6 

 

580,447 

Timeslot 7 

 

538,569 

Timeslot 8 

 

358,455 

Timeslot 9 

 

107,786 

Timeslot 10 

 

92,255 

 



 
 

From these 10 timeslots, timeslot 1, 2 and 3 are set as timeslot 1, timeslot 2, 3 

and 4 are set as timeslot 2, and timeslot 3, 4 and 5 are set as timeslot 3 and so on for 

the computation of the rate of change of data popularity using differential equation. 

From this dataset, 1000 files are extracted to perform the evaluation of proposed 

system. At the beginning of simulation, the number of existing replicas is set as 3 for 

all 1000 files. From Figure 5.1 to 5.10 show the access frequencies of 1000 files in 8 

timeslots. According to the analysis output, data access pattern fluctuates in different 

timeslots. Therefore, we propose differential equation to find out the rate of change of 

file popularity. 

 

 

 

Figure 5.1 Access Frequency of First 100 Files for 8 Timeslots 

 

 

 

Figure 5.2 Access Frequency of Second 100 Files for 8 Timeslots 
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Figure 5.3 Access Frequency of Third 100 Files for 8 Timeslots 

 

 

 

Figure 5.4 Access Frequency of Fourth 100 Files for 8 Timeslots 

 

 

 

Figure 5.5 Access Frequency of Fifth 100 Files for 8 Timeslots 
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Figure 5.6 Access Frequency of Sixth 100 Files for 8 Timeslots 

 

 

 

Figure 5.7 Access Frequency of Seventh 100 Files for 8 Timeslots 

 

 

 

Figure 5.8 Access Frequency of Eighth 100 Files for 8 Timeslots 
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Figure 5.9 Access Frequency of Ninth 100 Files for 8 Timeslots 

 

 

 

Figure 5.10 Access Frequency of Tenth 100 Files for 8 Timeslots 

 

From Figure 5.11 to 5.20 show the popularity index of 1000 files in 8 

timeslots according to their access frequencies. 

 

 

Figure 5.11 Popularity Index of First 100 Files for 8 Timeslots 
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Figure 5.12 Popularity Index of Second 100 Files for 8 Timeslots 

 

 

Figure 5.13 Popularity Index of Third 100 Files for 8 Timeslots 

 

 

Figure 5.14 Popularity Index of Fourth 100 Files for 8 Timeslots 
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Figure 5.15 Popularity Index of Fifth 100 Files for 8 Timeslots 

 

 

 

Figure 5.16 Popularity Index of Sixth 100 Files for 8 Timeslots 

 

 

 

Figure 5.17 Popularity Index of Seventh 100 Files for 8 Timeslots 
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Figure 5.18 Popularity Index of Eighth 100 Files for 8 Timeslots 

 

 

 

Figure 5.19 Popularity Index of Ninth 100 Files for 8 Timeslots 

 

 

 

Figure 5.20 Popularity Index of Tenth 100 Files for 8 Timeslots 

 

 

-2

0

2

P
o

p
u
la

ri
ty

 I
n
d

ex
0       10       20       30       40       50       60       70       80       90     100

File ID

Popularity Index of Eighth 100 Files for 8 Timeslots

Timeslot 1 Timeslot 2 Timeslot 3 Timeslot 4

Timeslot 5 Timeslot 6 Timeslot 7 Timeslot 8

-2

0

2

P
o

p
u
la

ri
ty

 I
n
d

ex

0       10       20       30       40       50       60       70       80       90     100

File ID

Popularity Index of Ninth 100 Files for 8 Timeslots

Timeslot 1 Timeslot 2 Timeslot 3 Timeslot 4

Timeslot 5 Timeslot 6 Timeslot 7 Timeslot 8

-2

0

2

P
o

p
u
la

ri
ty

 I
n
d

ex

0       10       20       30       40       50       60       70       80       90     100

File ID

Popularity Index of Tenth 100 Files for 8 Timeslots

Timeslot 1 Timeslot 2 Timeslot 3 Timeslot 4

Timeslot 5 Timeslot 6 Timeslot 7 Timeslot 8



 
 

5.3 Evaluation Metrics 

The replication algorithms are implemented and tested. The experiments are set up 

by using three evaluation parameters: number of replicas, storage cost, and disk 

utilization. Detailed explanations are presented in the following: 

 

5.3.1 Number of Replicas 

 To get the effective availability level and to reduce delay time, a reasonable 

number of replicas of data files are needed. Instead of maintaining static replica 

number, numbers of replicas should be adaptable to the data popularity in every time. 

After the calculation of the rate of change of data popularity, the number of replicas 

for each file is defined using changes of data popularity, which is the outcome of the 

first stage. Initially, existing replicas will be assumed as 3 like the default replica of 

HDFS. If k is less than 0.0, then existing replicas is decreased by 1. If k is greater than 

0.0, then existing replicas is increased by 1. If k is equal to 0.0, then existing replicas 

is unvaried. Otherwise, if it is a new file, then existing replicas is determined 3 like 

the default replica of HDFS. According to the evaluation results, the number of 

replicas is changeable with access counts changing in proposed system and LALW 

algorithm and however, LALW algorithm creates more replicas than the proposed 

system ECS. 

 

 

Figure 5.21 Total Number of Created Replicas for 8 Timeslots  

 

5.3.2 Storage Cost 

The performance of the proposed replication algorithm is measured in terms of 

storage cost. In the proposed system, a cost model is applied which takes not only 
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physical storage cost but also maintenance cost and data access cost into account. 

Equation 5.1 presents the general formula of the cost model which has been used in 

(Kim & Fox n.d.) [44].  

   

               𝐶𝑜𝑠𝑡𝑠(𝑟) = 𝐶𝑜𝑠𝑡𝑝ℎ𝑦(𝑟) + 𝐶𝑜𝑠𝑡𝑎𝑐𝑐𝑒𝑠𝑠(𝑟) + 𝐶𝑜𝑠𝑡𝑚𝑎𝑖𝑛(𝑟)       Equation (5.1) 

                𝐶𝑜𝑠𝑡𝑝ℎ𝑦(𝑟) = 𝑟 ∗ 𝑆𝑖𝑧𝑒𝑛 ∗ 𝐶𝑝ℎ𝑦                                               Equation (5.2) 

                  𝐶𝑜𝑠𝑡𝑎𝑐𝑐𝑒𝑠𝑠(𝑟) = (
𝐴𝑓𝑖𝑛

𝑟
) ∗ 𝐶𝑎𝑐𝑐𝑒𝑠𝑠                                     Equation (5.3) 

                   𝐶𝑜𝑠𝑡𝑚𝑎𝑖𝑛(𝑟) = (𝜆𝑇)𝑟 ∗ 𝐶𝑚𝑎𝑖𝑛                                                Equation (5.4) 

 

In Equation 5.1 to 5.4, 𝐶𝑜𝑠𝑡𝑠(𝑟), 𝐶𝑜𝑠𝑡𝑝ℎ𝑦(𝑟), 𝐶𝑜𝑠𝑡𝑎𝑐𝑐𝑒𝑠𝑠(𝑟) and  𝐶𝑜𝑠𝑡𝑚𝑎𝑖𝑛(𝑟) 

are functions of total storage cost, physical storage cost, data access cost and 

maintenance cost for replication factor r. The size of file n is defined as 𝑆𝑖𝑧𝑒𝑛 and 

access frequency of file n in time interval i is 𝐴𝑓𝑖𝑛. For maintenance cost 

𝐶𝑜𝑠𝑡𝑚𝑎𝑖𝑛(𝑟), 𝜆 and 𝑇 are failure rate and transaction time. Finally, 

𝐶𝑝ℎ𝑦 , 𝐶𝑎𝑐𝑐𝑒𝑠𝑠 and 𝐶𝑚𝑎𝑖𝑛 are constant parameters for physical cost, access cost and 

maintenance cost for all equations. To compare the cost of replication by using 

Equation 5.1, the system parameters are tuning according to Table 5.2. However, 

constant value 𝐶𝑎𝑐𝑐𝑒𝑠𝑠 for data access overhead is set to 2 for each Data Center 

deployment in each comparison. The failure rate in the system is 0.001, 0.002 and 

0.003. The file size in the system is 64 MB, 128 MB and 512 MB. The transaction 

time is 10. The constant parameter for physical cost, is 1, 2, 3, 4, and 5 and the 

constant parameter for maintenance cost is the thrice of physical cost so that 3, 6, 9, 

12, and 15 because maintenance effort includes the correction effort, evolution effort 

and management effort [88]. 

 

Table 5.2 Parameters for Storage Cost 

𝐶𝑝ℎ𝑦 𝐶𝑚𝑎𝑖𝑛 𝜆  𝑇 𝑆𝑖𝑧𝑒𝑛  

1 3 0.001 10 64 

2 6 0.001 10 64 

3 9 0.001 10 64 

4 12 0.001 10 64 



 
 

5 15 0.001 10 64 

1 3 0.002 10 128 

2 6 0.002 10 128 

3 9 0.002 10 128 

4 12 0.002 10 128 

5 15 0.002 10 128 

1 3 0.003 10 512 

2 6 0.003 10 512 

3 9 0.003 10 512 

4 12 0.003 10 512 

5 15 0.003 10 512 

 

Figure 5.22 to 5.26 shows the comparison of storage cost ECS and LALW for 

8 timeslots with various physical cost and maintenance cost when failure rate in the 

system is 0.001. From the evaluation results, ECS costs few than LALW at timeslot 1, 

however, it does not cost more than LALW at other 7 timeslots because ECS 

considers the number of replicas for both popular and unpopular data.  

 

 

Figure 5.22 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟏, 𝑪𝒎𝒂𝒊𝒏 = 𝟑, 𝝀 = 𝟎. 𝟎𝟎𝟏, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟔𝟒) 
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Figure 5.23 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟐, 𝑪𝒎𝒂𝒊𝒏 = 𝟔, 𝝀 = 𝟎. 𝟎𝟎𝟏, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟔𝟒) 

 

 

Figure 5.24 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟑, 𝑪𝒎𝒂𝒊𝒏 = 𝟗, 𝝀 = 𝟎. 𝟎𝟎𝟏, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟔𝟒) 

 

 

Figure 5.25 Storage Cost of ECS and LALW for 8 Timeslots  
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Figure 5.26 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟓, 𝑪𝒎𝒂𝒊𝒏 = 𝟏𝟓, 𝝀 = 𝟎. 𝟎𝟎𝟏, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟔𝟒) 

 

Figure 5.27 to 5.31 shows the comparison of storage cost of ECS and LALW 

for 8 timeslots with various physical cost and maintenance cost when failure rate in 

the system is 0.002. From the evaluation results, ECS costs few than LALW at 

timeslot 1, however, it does not cost more than LALW at other 7 timeslots.  

 

 

Figure 5.27 Storage Cost of ECS and LALW for 8 Timeslots  
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Figure 5.28 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟐, 𝑪𝒎𝒂𝒊𝒏 = 𝟔, 𝝀 = 𝟎. 𝟎𝟎𝟐, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟏𝟐𝟖) 

 

 

Figure 5.29 Storage Cost of ECS and LALW for 8 Timeslots  
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Figure 5.30 Storage Cost of ECS and LALW for 8 Timeslots  
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Figure 5.31 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟓, 𝑪𝒎𝒂𝒊𝒏 = 𝟏𝟓, 𝝀 = 𝟎. 𝟎𝟎𝟐, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟏𝟐𝟖) 

 

Figure 5.32 to 5.36 shows the comparison of storage cost of ECS and LALW 

for 8 timeslots with various physical cost and maintenance cost when failure rate in 

the system is 0.003. From the evaluation results, ECS costs few than LALW at 

timeslot 1, however, it does not cost more than LALW at other 7 timeslots.  

 

Figure 5.32 Storage Cost of ECS and LALW for 8 Timeslots  
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Figure 5.33 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟐, 𝑪𝒎𝒂𝒊𝒏 = 𝟔, 𝝀 = 𝟎. 𝟎𝟎𝟑, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟓𝟏𝟐) 

 

 

Figure 5.34 Storage Cost of ECS and LALW for 8 Timeslots  
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Figure 5.36 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟓, 𝑪𝒎𝒂𝒊𝒏 = 𝟏𝟓, 𝝀 = 𝟎. 𝟎𝟎𝟑, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟓𝟏𝟐) 

 

5.3.3 Disk Utilization 

In this proposed system, the replicas are almost uniformly distributed for 

achieving the load balancing in nodes in the cluster. Disk utilization of the proposed 

system are compared with LALW algorithm in order to avoid overload condition. 

LALW does not obey the placement policy of hadoop because it places the same data 

replicas at one host. Therefore, LALW does not achieve the load balancing like the 

proposed system. Figure 5.37 shows the disk utilization comparison of the proposed 

system and LALW at timeslot 1. From the evaluation results, ECS achieves more load 

balancing than LALW at this timeslot 1 because ECS considers the overload 

condition of the nodes in the cluster. 

 

 

Figure 5.37 Disk Utilization of ECS and LALW at Timeslot 1  
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Figure 5.38 shows the disk utilization comparison of ECS and LALW at 

timeslot 2. From the evaluation results, ECS achieves more load balancing than 

LALW at this timeslot 2. 

 

 

Figure 5.38 Disk Utilization of ECS and LALW at Timeslot 2  

 

Figure 5.39 shows the disk utilization comparison of ECS and LALW at 

timeslot 3. From the evaluation results, ECS achieves more load balancing than 

LALW at this timeslot 3. 

 

 

Figure 5.39 Disk Utilization of ECS and LALW at Timeslot 3  

 

Figure 5.40 shows the disk utilization comparison of ECS and LALW at 

timeslot 4. From the evaluation results, ECS achieves more load balancing than 

LALW at this timeslot 4. 
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Figure 5.40 Disk Utilization of ECS and LALW at Timeslot 4  

 

Figure 5.41 shows the disk utilization comparison of ECS and LALW at 

timeslot 5. From the evaluation results, ECS achieves more load balancing than 

LALW at this timeslot 5. 

 

 

Figure 5.41 Disk Utilization of ECS and LALW at Timeslot 5 

  

Figure 5.42 shows the disk utilization comparison of ECS and LALW at 

timeslot 6. From the evaluation results, ECS achieves more load balancing than 

LALW at this timeslot 6. 
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Figure 5.42 Disk Utilization of ECS and LALW at Timeslot 6 

 

Figure 5.43 shows the disk utilization comparison of ECS and LALW at 

timeslot 7. From the evaluation results, ECS achieves more load balancing than 

LALW at this timeslot 7. 

 

 

Figure 5.43 Disk Utilization of ECS and LALW at Timeslot 7 

 

Figure 5.44 shows the disk utilization comparison of ECS and LALW at 

timeslot 8. From the evaluation results, ECS achieves more load balancing than 

LALW at this timeslot 8. 
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Figure 5.44 Disk Utilization of ECS and LALW at Timeslot 8 

 

Figure 5.45 shows the average disk utilization comparison of ECS and LALW 

for 8 timeslots. From the evaluation results, ECS achieves more load balancing than 

LALW for 8 timeslots. 

 

 

Figure 5.45 Average Disk Utilization of ECS and LALW for 8 Timeslots 
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In this data placement, load factor of host or node is considered. The 

experiment is tested with varying the coefficient values of disk utilization 𝛂, disk 

bandwidth 𝜷 and CPU utilization 𝜸. If the value of load factor at host is less than the 

predefined value of cluster, data is placed into node and if not, it is performed by 

replacing the replica having minimum access frequency with the new replica. To 
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achieve the optimal coefficient values of disk utilization 𝛂, disk bandwidth 𝜷 and 

CPU utilization 𝜸, the system parameters are varied according to Table 5.3. 

Table 5.3 Parameters for Load Factor 

𝛂 𝜷 𝜸 

0.35 0.33 0.32 

0.35 0.34 0.31 

0.35 0.35 0.3 

0.4 0.35 0.25 

0.4 0.4 0.2 

0.45 0.35 0.2 

0.45 0.3 0.25 

0.45 0.4 0.15 

0.45 0.45 0.1 

0.5 0.45 0.05 

0.5 0.3 0.2 

0.5 0.35 0.15 

0.5 0.4 0.1 

0.5 0.25 0.25 

0.6 0.3 0.1 

0.6 0.25 0.15 

0.6 0.35 0.05 

0.6 0.2 0.2 

0.7 0.2 0.1 

0.7 0.25 0.05 

0.7 0.15 0.15 

0.8 0.1 0.1 

0.8 0.15 0.05 

0.85 0.1 0.05 

 

In the analysis of load factor, I varied the coefficient values of 𝛂, 𝜷 and 𝜸 in 

order to get the optimal parameter of load factor. Firstly, I varied the coefficient value 

of 𝛂 while the coefficient value of 𝜷 and 𝜸 are set with fixed value. In that condition, 



 
 

I found that 0.35 is the best optimal value for disk utilization 𝛂. And then, I varied the 

coefficient value of 𝜷 while the coefficient value of 𝛂 and 𝜸 are set with fixed value 

in second evaluation. In that condition, I found that 0.33 is the best optimal value for 

disk bandwidth 𝜷. And then, I varied the coefficient value of 𝜸 while the coefficient 

value of 𝛂 and 𝜷 are set with fixed value in third evaluation. In that case, I found that 

0.32 is the best optimal value for CPU utilization 𝜸. 

From the evaluation results, disk utilization 𝛂 = 0.35, disk bandwidth 𝜷 = 0.33 

and CPU utilization 𝜸 = 0.32 is the optimum parameter for the calculation of load 

factor in data placement. From Figure 5.46 to 5.53 shows the comparison of the 

optimal parameter (𝛂 = 0.35, 𝜷 = 0.33, 𝜸 = 0.32) and the worst non-optimal parameter 

(𝛂 = 0.85, 𝜷 = 0.1, 𝜸 = 0.05) for 8 clusters in the system. Figure 5.46 shows the load 

factor condition of fifty nodes in the cluster 1. According to first parameter, there is 

only one overload condition in this cluster, however, there is four overload condition 

in this cluster according to second parameter. Actually, there are enough storages for 

new replica for placement in nodes in this cluster. Therefore, the second parameter is 

not optimal as the first parameter. 

 

Figure 5.46 Load Factor of Cluster 1 

 

Figure 5.47 shows the load factor condition of fifty nodes in the cluster 2. 

According to first parameter, there is four overload condition in this cluster, however, 

there is almost seven overload condition in this cluster according to second parameter. 

Actually, there are some enough storage for new replica for placement in nodes in this 

cluster. Therefore, the second parameter is not optimal as the first parameter. 
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Figure 5.47 Load Factor of Cluster 2 

 

Figure 5.48 shows the load factor condition of fifty nodes in the cluster 3. 

According to first parameter, there is almost five overload condition in this cluster, 

however, there is almost six overload condition in this cluster according to second 

parameter. Actually, there are some enough storage for new replica for placement in 

nodes in this cluster. Therefore, the second parameter is not optimal as the first 

parameter. 

 

       

Figure 5.48 Load Factor of Cluster 3 

 

Figure 5.49 shows the load factor condition of fifty nodes in the cluster 4. 

According to first parameter, there is only two overload condition in this cluster, 

however, there is almost five overload condition in this cluster according to second 

parameter. Actually, there are many enough storage for new replica for placement in 

nodes in this cluster. Therefore, the second parameter is not optimal as the first 

parameter. 
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            Figure 5.49 Load Factor of Cluster 4 

 

Figure 5.50 shows the load factor condition of fifty nodes in the cluster 5. 

According to first parameter, there is only two overload condition in this cluster, and 

there is only three overload condition in this cluster according to second parameter. 

Actually, there are some enough storage for new replica for placement in nodes in this 

cluster. Therefore, the second parameter is not much different as the first parameter. 

 

    
 

            Figure 5.50 Load Factor of Cluster 5 

 

Figure 5.51 shows the load factor condition of fifty nodes in the cluster 6. 

According to first parameter, there is only one overload condition in this cluster, 

however, there is seven overload condition in this cluster according to second 

parameter. Actually, there are some enough storage for new replica for placement in 

nodes in this cluster. Therefore, the second parameter is not optimal as the first 

parameter. 
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            Figure 5.51 Load Factor of Cluster 6 

 

Figure 5.52 shows the load factor condition of fifty nodes in the cluster 7. 

According to first parameter, there is three overload condition in this cluster, and 

there is almost five overload condition in this cluster according to second parameter. 

Actually, there are some enough storage for new replica for placement in nodes in this 

cluster. Therefore, the second parameter is not much different as the first parameter. 

 

     

            Figure 5.52 Load Factor of Cluster 7 

 

Figure 5.53 shows the load factor condition of fifty nodes in the cluster 8. 

According to first parameter, there is four overload condition in this cluster, however, 

there is almost nine overload condition in this cluster according to second parameter. 

Actually, there are some enough storage for new replica for placement in nodes in this 

cluster. Therefore, the second parameter is not optimal as the first parameter. 
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            Figure 5.53 Load Factor of Cluster 8 

 

From the evaluation results, the less the coefficient values of disk utilization, 

disk bandwidth and CPU utilization, the more getting the optimal parameter for load 

factor in data placement. The most optimum parameter can give the accurate detection 

of the overload condition in the cluster.  

To perform the next evaluation of the proposed replication algorithms, 

different timeslots of Yahoo Audit log dataset [48] is used and the description of 

dataset is mentioned in Table 5.4. In order to count data access frequency in each 

timeslot, the dataset is divided depending on date and time. To simplify the analysis, 

each time slot is defined as 3 minutes period. 

Table 5.4 Description of Tested Dataset 

  

 

Test data description 

Yahoo Webscope user audit logs 

(2010-01-12 00:30:00 to 2010-01-12 

00:59:59)  

Number of timeslots tested in the algorithm 

 

10 

Each Timeslot duration 

 

 3 minutes 

 

 

 

Total records 

 

 

 

 

 

 

 

Timeslot 1 

 

97,834 

Timeslot 2 

 

96,735 

 

Timeslot 3 

 

74,733 

Timeslot 4 

 

100,393 

Timeslot 5 

 

87,786 
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Timeslot 6 

 

78,902 

Timeslot 7 

 

87,880 

Timeslot 8 

 

91,403 

Timeslot 9 

 

52,452 

Timeslot 10 

 

42,534 

 

 

From these 10 timeslots, timeslot 1, 2 and 3 are set as timeslot 1, timeslot 2, 3 

and 4 are set as timeslot 2, and timeslot 3, 4 and 5 are set as timeslot 3 and so on for 

the computation of the rate of change of data popularity using differential equation. 

From this dataset, 1000 files are extracted to perform the evaluation of proposed 

system. At the beginning of simulation, the number of existing replicas is set as 3 for 

all 1000 files.  

 

5.5 Evaluation Metrics 

The replication algorithms are implemented and tested. The experiments are set up 

by using three evaluation parameters: number of replicas, storage cost, and disk 

utilization. Detailed explanations are presented in the following: 

 

5.5.1 Number of Replicas 

 To get the effective availability level and to reduce delay time, a reasonable 

number of replicas of data files are needed. Instead of maintaining static replica 

number, numbers of replicas should be adaptable to the data popularity in every time. 

After the calculation of the rate of change of data popularity, the number of replicas 

for each file is defined using changes of data popularity, which is the outcome of the 

first stage. According to the evaluation results, the number of replicas is changeable 

with access counts changing in ECS and LALW algorithm and however, LALW 

algorithm creates more replicas than ECS. 

 



 
 

 

Figure 5.54 Total Number of Created Replicas for 8 Timeslots  

 

5.5.2 Storage Cost 

The performance of the proposed replication algorithm is measured in terms of 

storage cost. In the proposed system, a cost model is applied which takes not only 

physical storage cost but also maintenance cost and data access cost into account.  To 

compare the cost of replication by using Equation 5.1, the system parameters are 

varied according to Table 5.4. However, constant value 𝐶𝑎𝑐𝑐𝑒𝑠𝑠 for data access 

overhead is set to 2 for each Data Center deployment in each comparison. The failure 

rate in the system is 0.001, and 0.002. The file size in the system is 64 MB, and 128 

MB. The transaction time is 10. The constant parameter for physical cost, is 1, 2, 3, 4, 

and 5 and the constant parameter for maintenance cost is the thrice of physical cost so 

that 3, 6, 9, 12, and 15 because maintenance effort includes the correction effort, 

evolution effort and management effort. 

 

Table 5.5 Parameters for Storage Cost 

 

𝐶𝑝ℎ𝑦 𝐶𝑚𝑎𝑖𝑛 𝜆  𝑇 𝑆𝑖𝑧𝑒𝑛  

1 3 0.001 10 64 

2 6 0.001 10 64 

3 9 0.001 10 64 

4 12 0.001 10 64 

5 15 0.001 10 64 

1 3 0.002 10 128 
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2 6 0.002 10 128 

3 9 0.002 10 128 

4 12 0.002 10 128 

5 15 0.002 10 128 

 

Figure 5.55 to 5.59 shows the comparison of storage cost of ECS and LALW 

for 8 timeslots with various physical cost and maintenance cost when failure rate in 

the system is 0.001. From the evaluation results, ECS does not cost more than LALW 

at 8 timeslots.  

 

 

Figure 5.55 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟏, 𝑪𝒎𝒂𝒊𝒏 = 𝟑, 𝝀 = 𝟎. 𝟎𝟎𝟏, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟔𝟒) 

 

 

Figure 5.56 Storage Cost of ECS and LALW for 8 Timeslots  
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Figure 5.57 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟑, 𝑪𝒎𝒂𝒊𝒏 = 𝟗, 𝝀 = 𝟎. 𝟎𝟎𝟏, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟔𝟒) 

 

 

Figure 5.58 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟒, 𝑪𝒎𝒂𝒊𝒏 = 𝟏𝟐, 𝝀 = 𝟎. 𝟎𝟎𝟏, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟔𝟒) 

 

 

Figure 5.59 Storage Cost of ECS and LALW for 8 Timeslots  
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Figure 5.60 to 5.64 shows the comparison of storage cost of ECS and LALW 

for 8 timeslots with various physical cost and maintenance cost when failure rate in 

the system is 0.002. From the evaluation results, ECS does not cost more than LALW 

at 8 timeslots.  

 

 

Figure 5.60 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟏, 𝑪𝒎𝒂𝒊𝒏 = 𝟑, 𝝀 = 𝟎. 𝟎𝟎𝟐, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟏𝟐𝟖) 

 

 

Figure 5.61 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟐, 𝑪𝒎𝒂𝒊𝒏 = 𝟔, 𝝀 = 𝟎. 𝟎𝟎𝟐, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟏𝟐𝟖) 

 

0

200000

400000

600000

1 2 3 4 5 6 7 8

C
o

st

Timeslot

Storage Cost

ECS LALW

0

500000

1000000

1500000

1 2 3 4 5 6 7 8

C
o

st

ECS

Storage Cost

ECS LALW



 
 

 

Figure 5.62 Storage Cost of ECS and LALW for 8 Timeslots  

(𝑪𝒑𝒉𝒚 = 𝟑, 𝑪𝒎𝒂𝒊𝒏 = 𝟗, 𝝀 = 𝟎. 𝟎𝟎𝟐, 𝑻 = 𝟏𝟎, 𝑺𝒊𝒛𝒆𝒏 = 𝟏𝟐𝟖) 

 

 

Figure 5.63 Storage Cost of ECS and LALW for 8 Timeslots  
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Figure 5.64 Storage Cost of ECS and LALW for 8 Timeslots  
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5.5.3 Disk Utilization 

In this proposed system, the replicas are almost uniformly distributed for 

achieving the load balancing in nodes in the cluster. Disk utilization of ECS is 

compared with LALW algorithm in order to avoid overload condition. LALW does 

not obey the placement policy of hadoop because it places the same data replicas at 

one host. Therefore, LALW does not achieve the load balancing like the proposed 

system ECS. Figure 5.65 shows the average disk utilization comparison of ECS and 

LALW for 8 timeslots. From the evaluation results, ECS achieves more load 

balancing than LALW for 8 timeslots except cluster 1. 

 

 

Figure 5.65 Average Disk Utilization of ECS and LALW for 8 Timeslots 

 

5.6 Analysis of Load Factor in Data Placement 

In this data placement, load factor of host or node is considered. The 

experiment is tested with varying the coefficient values of disk utilization 𝛂, disk 

bandwidth 𝜷 and CPU utilization 𝜸. If the value of load factor at host is less than the 

predefined value of cluster, data is placed into node and if not, it is performed by 

replacing the replica having minimum access frequency with the new replica. To 

achieve the optimal coefficient values of disk utilization 𝛂, disk bandwidth 𝜷 and 

CPU utilization 𝜸, the system parameters are varied according to Table 5.6. 

Table 5.6 Parameters for Load Factor 
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0.35 0.34 0.31 

0.35 0.35 0.3 

0.4 0.35 0.25 

0.4 0.4 0.2 

0.45 0.35 0.2 

0.45 0.3 0.25 

0.45 0.4 0.15 

0.45 0.45 0.1 

0.5 0.45 0.05 

0.5 0.3 0.2 

0.5 0.35 0.15 

0.5 0.4 0.1 

0.5 0.25 0.25 

0.6 0.3 0.1 

0.6 0.25 0.15 

0.6 0.35 0.05 

0.6 0.2 0.2 

0.7 0.2 0.1 

0.7 0.25 0.05 

0.7 0.15 0.15 

0.8 0.1 0.1 

0.8 0.15 0.05 

0.85 0.1 0.05 

 

In the analysis of load factor, I varied the coefficient values of 𝛂, 𝜷 and 𝜸 in 

order to get the optimal parameter of load factor. Firstly, I varied the coefficient value 

of 𝛂 while the coefficient value of 𝜷 and 𝜸 are set with fixed value. In that condition, 

I found that 0.35 is the best optimal value for disk utilization 𝛂. And then, I varied the 

coefficient value of 𝜷 while the coefficient value of 𝛂 and 𝜸 are set with fixed value 

in second evaluation. In that condition, I found that 0.33 is the best optimal value for 

disk bandwidth 𝜷. And then, I varied the coefficient value of 𝜸 while the coefficient 

value of 𝛂 and 𝜷 are set with fixed value in third evaluation. In that case, I found that 

0.32 is the best optimal value for CPU utilization 𝜸. 



 
 

From the evaluation results, disk utilization 𝛂 = 0.35, disk bandwidth 𝜷 = 0.33 

and CPU utilization 𝜸 = 0.32 is the optimum parameter for the calculation of load 

factor in data placement. From Figure 5.46 to 5.53 shows the comparison of (𝛂 = 

0.35, 𝜷 = 0.33, 𝜸 = 0.32) and (𝛂 = 0.85, 𝜷 = 0.1, 𝜸 = 0.05) for 8 clusters in the 

system. Figure 5.66 shows the load factor condition of fifty nodes in the cluster 1. 

According to first parameter, there is only one overload condition in this cluster, 

however, there is five overload condition in this cluster according to second 

parameter. Actually, there are enough storages for new replica for placement in nodes 

in this cluster. Therefore, the second parameter is not optimal as the first parameter. 

 

 

Figure 5.66 Load Factor of Cluster 1 

Figure 5.67 shows the load factor condition of fifty nodes in the cluster 2. 

According to first parameter and second parameter, there is one overload condition in 

this cluster. 

 

          
 

Figure 5.67 Load Factor of Cluster 2 
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Figure 5.68 shows the load factor condition of fifty nodes in the cluster 3. 

According to first parameter, there is almost four overload condition in this cluster, 

however, there is almost seven overload condition in this cluster according to second 

parameter. Actually, there are some enough storage for new replica for placement in 

nodes in this cluster. Therefore, the second parameter is not optimal as the first 

parameter. 

 

              
 

Figure 5.68 Load Factor of Cluster 3 

 

Figure 5.69 shows the load factor condition of fifty nodes in the cluster 4. 

According to first parameter, there is only four overload condition in this cluster, 

however, there is almost five overload condition in this cluster according to second 

parameter. Actually, there are many enough storage for new replica for placement in 

nodes in this cluster. Therefore, the second parameter is not optimal as the first 

parameter. 
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Figure 5.70 shows the load factor condition of fifty nodes in the cluster 5. 

According to first parameter, there is only three overload condition in this cluster, and 

there is almost four overload condition in this cluster according to second parameter. 

Actually, there are some enough storage for new replica for placement in nodes in this 

cluster. Therefore, the second parameter is not much different as the first parameter. 

 

 
 

           Figure 5.70 Load Factor of Cluster 5 

 

Figure 5.71 shows the load factor condition of fifty nodes in the cluster 6. 

According to first parameter, there is only four overload condition in this cluster, 

however, there is seven overload condition in this cluster according to second 

parameter. Actually, there are some enough storage for new replica for placement in 

nodes in this cluster. Therefore, the second parameter is not optimal as the first 

parameter. 
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Figure 5.72 shows the load factor condition of fifty nodes in the cluster 7. 

According to first parameter, there is three overload condition in this cluster, and 

there is almost six overload condition in this cluster according to second parameter. 

Actually, there are some enough storage for new replica for placement in nodes in this 

cluster. Therefore, the second parameter is not much different as the first parameter. 

 

 

            Figure 5.72 Load Factor of Cluster 7 

 

Figure 5.73 shows the load factor condition of fifty nodes in the cluster 8. 

According to first parameter, there is four overload condition in this cluster, however, 

there is almost seven overload condition in this cluster according to second parameter. 

Actually, there are some enough storage for new replica for placement in nodes in this 

cluster. Therefore, the second parameter is not optimal as the first parameter. 
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From the evaluation results, the less the coefficient values of disk utilization, 

disk bandwidth and CPU utilization, the more getting the optimal parameter for load 

factor in data placement. The most optimum parameter can give the accurate detection 

of the overload condition in the cluster.  

 

5.7 Summary 

In this chapter, replication algorithms are proposed for Cloud data centers and 

compared with existing replication algorithm, LALW. To compare and evaluate the 

algorithms, cloud data center infrastructures are designed and simulated by using java 

programming language. To test actual situations, Yahoo web log data set is used to 

apply as data access pattern, which is the critical input for the proposed algorithm. 

The performance results of evaluation are produced in terms of created replicas, 

storage cost, and disk utilization. According to the evaluation results, the proposed 

system (ECS) can adapt the access pattern efficiently and reduce storage cost and load 

balancing much better than LALW.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 6 

CONCLUSION AND FUTURE WORKS 

 

Cloud storage provides a storage services that is hosted remotely on servers 

and users can access this through Internet. Data is replicated and stored in multiple 

data nodes to provide for data availability. This thesis proposes a dynamic replication 

management scheme for effective cloud storage. In this thesis, unpopular replica can 

be maintained due to the calculation of popularity of certain time. This factor would 

be effectiveness on utilization of disk bandwidth, CPU and disk utilization of a node 

while replicating the data through proposed replica placement algorithm. In reality, 

the proposed replica algorithm will be performed to be the better load balancing and 

effective storage utilization compared with existing replication LALW algorithm. The 

data access frequencies obtained from Yahoo audit log file data source. In this 

chapter, the main contents of thesis are summarized and future work is suggested. 

 

6.1 Thesis Summary 

 Currently, well-known cloud storage systems such as GFS, HDFS, and 

Cassandra, etc. are using static replication scheme, which is simple and 

straightforward technique for replication management. However, the static replication 

is not efficient for all data and the degree of replication can affect system 

performance. In chapter 3, different strategies and models of data replication and data 

locality are presented. Among replication strategies, static method is more common in 

today cloud storage system because of simple and straightforward technique. 

However, it results more storage cost and less availability in very large storage 

systems as some data files may not need as many as static replication factor due to 

lack of usage. At the same time, some have to be replicated more than static 

replication factor to recover highly concurrent access. As a result, dynamic replication 

becomes an important strategy to cope the weakness of static method. Therefore, most 

parts of this chapter 3 presents different approaches of dynamic replication which are 

intended to play a vital role in today cloud storage systems. In chapter 3, several 

research areas are studied to improve the performance of data locality and evaluated 

their research outcomes in various environments such as dedicated and shared 

environment.  



 
 

A replication management strategy for effective cloud storage (ECS) is 

proposed in chapter 4. The system contains two portions; replica allocation and 

replica placement. In the first portion, replica allocation, popularity is taken into 

account by analyzing the changes in data access pattern. Second, for replica 

placement, replicas are placed and performed on dedicated assigned nodes in order to 

enhance data locality. The proposed placement algorithm is able to avoid the 

overloaded problem of nodes by considering the load of nodes; that is, disk 

utilization, CPU utilization and adjustable disk bandwidth.  

With attention to this, the distributed cloud storage system is simulated with 

popularity-based replication management strategy in chapter 5. To evaluate the 

system more realistic, Yahoo Weblog data set is used to extract data access pattern 

and data popularity.  

 Data replication is a technique commonly used to improve data availability, 

throughput and response time for user while it plays an important role for storage 

system to reduce storage cost. Especially, for cloud environment, replication is the 

key to improve the performance so that services can be provided to users as an 

agreement of SLAs. In the proposed system, efficient replication management 

strategies are proposed for cloud storage by implementing and analyzing different 

ways. The experimental results show that the proposed strategies are able to apply in 

different environments. 

 

6.2 Advantages and Disadvantages of Proposed Scheme (ECS) 

The advantages of this system are the following. First, the proposed system 

can adapt the degree of replication based on data popularity. Second, it saves storage 

cost for unpopular files than existing replication strategy such as LALW. Third, it 

achieves more load balancing than LALW algorithm. Fourth, it considers the 

heterogeneous conditions of nodes in the cluster. Fifth, it does not place the replicas 

randomly and it obeys the placement policy of Hadoop. Sixth, it considers the load 

factor of nodes before placement of replicas into nodes in the cluster to avoid the 

overloaded condition of the cluster in cloud storage. 

The proposed scheme (ECS) has some problems concerning with time 

complexity. As ECS performs the calculation of the rate of change of file popularity 

from the access frequencies of all data, then, the determination of the increment and 

decrement of the number of replicas for all data and finally, placement of these 



 
 

replicas into nodes to achieve load balancing, ECS takes more processing time than 

the existing replication algorithms. 

 

6.3 Further Extension 

In storage cluster implementation case, the proposed system is implemented as 

cloud storage system by using open-source CloudSim simulator. One aspect to extend 

the system is that the replication strategy could be analyzed in different storage 

frameworks.  Then the second aspect is to extend the storage system by connecting 

cloud computing infrastructure. 

 As the main part of thesis, replication algorithms are proposed and compared 

with other existing algorithms. As a future work, the replication algorithms could be 

upgraded by implementing in various distributed file systems such as Lustre file 

system, Google file system and Gluster file system etc. 
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LIST OF ACRONYMS 

 

2D   Two-Dimensional 

ABW   Adjustable Bandwidth 

AWS   Amazon Web Services 

BW   Bandwidth 

C   Cluster  

CPU   Central Processing Unit 

DC   Datacenter 

DFS   Distributed File System 

DN   DataNode 

EBS   Elastic Block Store 

GFS              Google File System  

HDFS   Hadoop Distributed File System  

IaaS   Infrastructure-as-a-service 

LALW   Latest Access Largest Weight 

LF   Load Factor 

LFU      Least Frequently Used 

LRU   Least Recently Used 

MT   Map Task  

PaaS   Platform-as-a-service 

RAM   Random Access Memory 

RP   Replica  

S3   Simple Storage Service 

SaaS   Software-as-a-service 

SLA   Service Level Agreement 



 
 

U   Disk Utilization 

VM   Virtual Machine 

YARN   Yet Another Resource Negotiator 

 

 

 

 


