

A Secure and Cost-effective Framework for Semi-trusted Database

Lwin Mar Thin, Nan Sai Moon Kham
University of Computer Studies, Yangon

lwinmarthin85@gmail.com,moonkhamucsy@gmail.com

Abstract

Database security has become a vital

issue in modern Web applications. Critical
business data in databases is an evident target
for attack. Database encryption has become a
critical technique in the security mechanisms of
database. This paper proposed a secure
framework for semi-trusted database in which
data is encrypted in a mixed form using many
keys owned by different parties. That can provide
security and cost-effective by reducing the server
tasks required to perform encrypt and decrypt
operations. The framework aims to ensure the
requirements of secure semi-trusted database
include; Data Confidentiality and User Data
Privacy and Data Integrity. The proposed
framework is strengthening the protection of
sensitive data even if the database server is
attacked at multiple points from the inside or
outside.

Keywords: semi-trusted database, database
encryption, security, key, cryptography

1. Introduction

Nowadays, with the tremendous
development of the Internet, new challenges
have been posed in information security. In most
organizations, databases hold a critical
concentration of sensitive information, and as a
result, databases are vulnerable. So database
system should be protected from any attacks.
Today, enhancing the security of database is
becoming one of the most urgent tasks in
database research and industry.

Recently, the number of reported data
involving sensitive private information at
governmental, organizational and company
levels has grown at an alarming rate. In some
extreme cases, sensitive information belonging to
millions of individuals has been revealed. For
example, in May 2008, researchers at security
vendors uncovered a server containing the
sensitive email and Web-based data of thousands
of people, including healthcare information,
credit card numbers and business personnel
documents and other sensitive data
(www.searchsecurity .techtarget.com/news).

Generally, database security methods
could be divided into four layers [2]: physical
security, operation system security,
DBMS security and database encryption. These
layers protect database in different aspects. But
only first three layers are inadequate to protect
the confidential data in database satisfactorily,
because data is still stored in readable form. So
without database encryption, it makes no sense to
guarantee that the sensitive information in
plaintext will be protected against a malicious
user. Therefore two main issues both need to be
considered: secure data storage and secure data
transmission.

There are three approaches to database
servers where encryption takes place: first, the
trusted database server where the creator, or
owner, of the data operates a database server,
which processes queries and signs the results;
second, the untrusted server where the owner’s
database is stored at the service provider
(Database as a Service). The third and final
model called the semi-trusted server where the
database is shared between many parties. Here,
part of the data is stored as trusted while other
parts are considered untrusted.

Figure. 1. A semi-trusted database system

In traditional client server based

encryption, the data is encrypted using either a
server key in a trusted database or a client key in
an untrusted database. Simply, if the data is
encrypted using server key(s) and the
administrator has the authority to use this key(s),
then the whole system becomes vulnerable. On
the other hand, if each client encrypts his data
using his key, then many problems might appear,
such as how can organizations use the data?
Using server-based encryption or client-based
encryption is not sufficient to encrypt semi-
trusted database where data is shared by many
parties. The proposed system is ensuring that
confidentiality, privacy and integrity are
achieved for semi-trusted database where data is
exchanged over an untrusted network such as the
Internet.

The rest of the paper is organized as
follows: section 2 describes the related work.
Section 3 discusses the adversary model and
determines the security threats in terms of
security attributes. Section 4 presents database
encryption scheme. Section 5 describes the
proposed framework and gives more detail on its
components. Section 6 concludes the paper.

2. Related Work

In the realm of cryptography, Diffie and
Hellman [10] proposed the concept of public key
cryptography in their landmark paper in 1976.
This new concept brings revolutionary changes
to cryptographic schemes, and establishes the
foundations of a new paradigm and secure
database systems. In 1978, Rivest, Shamir and
Adleman [5, 6] published RSA key-pair scheme,
the first public key system which is widely used
in data encryption now.

In terms of encryption scheme research
for relational database management system,
many creative and efficient schemes have been

proposed. Davida, Wells and Kam [3] in their
1981 paper presented a database encryption
scheme with subkeys based on the Chinese
Reminder theorem. This scheme is a record-
oriented cryptosystem which enables encryption
at the levels of rows and decryption at the level
of cells. Using symmetric encryption, Ge and
Zdonik [9] proposed a database encryption
schema called FCE for column stores in data
warehouses with a trusted server.

Recent years have been extensive
database cryptography research conducted in the
area of Database as a Service (DAS). The idea
behind this research is to encrypt data so that it
becomes accessible only to the client, because
the data belongs to the client and is stored on an
untrusted server. Bouganim and Pucheral [7]
proposed chipped secured data access solution C-
SDA, which enforces data confidentiality and
controls personal privileges with a client based
security component acting as a mediator between
the client and an encrypted database. This
component is embedded in a smartcard to
prevent tampering.

The previous solutions aim to encrypt
the organization data and information by using
strong encryption algorithm that decreases the
probability of data and information compromise
during the transition of data and information
between the client and server, even if the server
is malicious [8]. Dong, Russello and Dulay [1]
published Shared and sharable encrypted data for
untrusted servers, its multi-users searchable data
encryption, and each user will be able to encrypt
and decrypt the inserted data by other users
without need to know the users keys.

The database encryption operation in
database cryptography research is done by using
either by server or client key(s) using different
algorithms. Kadhem, Amagasa, and Kitagawa [4]
proposed a framework to realize database
security in the semi-trusted server scenario where
the data in databases is shared by many parties.
MCDB has lower query performance compared
with plaintext database, server-based, and client-
based encrypting because of multi owner and
mixed encryption. So, this paper proposed a
secure and cost-effective framework for semi-
trusted database which may provide a proper

query performance by reducing the server tasks
and encryption/decryption layer.

3. Security Issues

Data owners have to face the following
potential internal and external attackers,
especially when data management is entrusted to
a trusted third party:

• Internal Adversaries: From the
viewpoint of data management, internal
adversaries are authorized parties who
abuse their extended privileges to
access confidential data.

• External Adversaries: An external
adversary is a person who may access
the database directly or indirectly with
the objective of achieving personal gain
or causing harm to data.

We categorize the threats emanating from
these adversaries with the following security
attributes:

1. Confidentiality: Generally, data
confidentiality is the protection of
private information from surveillance or
leaks when it is stored, or is transmitted
across vulnerable networks such as the
Internet.

2. Privacy: Data privacy is the prevention
of confidential or personal information
from being viewed by parties and the
control over its collection, use and
distribution.

3. Integrity: Integrity refers to the
property of data records to be
manipulated only by authorized users.
Specific aspects of data integrity
include data correctness (no
unauthorized modification of data
records) as well as data completeness
(no unauthorized deletion or insertion of
(fake) data records).

4. Database Encryption

In most databases used on the Web, data
is stored in tables in the form they are loaded,
mostly in plaintext, which does not satisfy high
level security and privacy requirements. The
proposed system, whose basic architecture is
shown in Figure 1, adds encryption/decryption
layers accumulatively while data moves from/to
the database. The purpose of such design is to
implement encrypted storage satisfying data
confidentiality, privacy and integrity. Following
the convention, E denotes the encryption
function and D denotes that decryption function.
Data is encrypted using symmetric and
asymmetric algorithms.

Definition1: For each database schema S(
R1,….,Rn), where R1 to Rn are relations created
on the database server, Ri name is encrypted
using the Trusted third party secret key SET.

Definition2: For each relation schema
R(F1,…,Fl, Fl+1,….,Fm, Fm+1,….,Fn) in a relational
database, where Fi(1≤i<l) field is classified as
trusted third party data, Fj (l≤j>m)field is
classified as client data, and Fk (m≤k<n) field is
classified as server data, we store an encrypted
relation: RE=(��

�,….,��
�, ����

� ,….,��
�,

����
� ,….,�	

�) where, �

�(1≤i<l) in the encrypted

relation RE stores the encrypted value of Fi in
relation R using trusted third party secret key
SET, viz. �

� =���
 (Fi), ��
� (l≤j<m) in the

encrypted relation RE stores the encrypted value
of Fj in relation R using trusted client secret key
SEC , viz. ��

� =���� (Fj), ��
� (m≤k<n) in the

encrypted relation RE stores the encrypted value
of Fk in relation R using server secret key SES,
viz. ��

� =���� (Fk). Field names are encrypted as
follows: Fi and Fj names are encrypted using
trusted third party secret key SET. With many
clients, it is impossible to encrypt field names of
client data using a client secret key. Figure 2
shows an unencrypted hospital database and
Figure 3 shows an encrypted database.

5. The Proposed Framework

p_id p_name

 1234 Mg aung

3456 Ma Aye

5678 U Khin

p_

date

32765 110
1/1/
2008

23673

2/2/
2009

94678
3/3/
2010

p_

date

1234

20

1/1/
2008

3456 18
2/2/
2009

5678 40
3/3/
2010

usda fahye
32765 pfdlua
23673 khlom
94678 ioecp

hikglm

Figure. 2. Unencrypted database

hospital irthgdf

 Query Rewriter

Figure. 4. The framework of the proposed System

Client

Database Server

Database Server

Trusted Third Party

Decryption

Encryption

Request

Reply

QM

RA

Query Rewriter

1

Query
Result

Metadata

4

 Plain Query

2

Query
Result

 Metadata

3

Query Executor

Encrypted
database

Figure. 3. Encrypted database

Server data

Trusted Third party

Client data
Server data(unencrypted)

patient

suotaf jklusda yuhiskl

ewcasi

hojkmt

wrcaek

ouijhe

bvcrtwi

axzvuew

cghine

beiylm

othyl
v

vioulk

671

243

address age p_id
drug_
name

Yangon

Mandalay

Yangon

Adol

Baclofen

Vicodin

 Dr.Kyaw
 Khin
Dr.Htin
Linn
Dr.Khin
Mar

doctor

The proposed system based on semi-
trusted database, which means there is certain
type of data that related of database server and it
assume confidential data and the other is not.
This system consists of three components:
Client, Trusted Third Party (TTP) and
Server. Each client and TTP party has
responsible two parts. This is the Query
Management and Result Analyzer. The main
objective of QM is to encrypt, decrypt and
rewrite the query request. The objective of RA is
to decrypt the query result to make it read able
for the client. The client side makes query
request to retrieve, update, insert and delete data.
The role of the trusted third party is to organize
query requests and replies the results to the
clients. The server contains the encrypted
database and is responsible for replying to query
requests on the encrypted database. Each of
these parties owns his keys for encryption and
decryption, the master keys able to be stored by
Trusted Third Party and patient smart card.

This system could be used in many
applications over the Web such as e-government,
e-commerce and e-banking, where databases
hold critical and sensitive information transferred
over untrusted networks like the Internet. In this
system discussed a hospital database as an
illustrative example based on the proposed
framework. An attacker trying to compromise
patient records will be able to collect large
amounts of data easily if these records are
available electronically as plaintext. And if this
information is encrypted using only sever keys, it
is an easy target for inside attack. Therefore,
protection of a patient’s privacy is a basic
requirement for ethical and legal use of
information technology in health information
systems; protecting confidential information
related to hospital is also crucial.

The proposed framework is shown in
Figure 4. This is a secure and cost-effective
framework for semi-trusted database and
provides protection for sensitive data even if the
database server is attacked at multiple points by
an inside or outside attacker.

5.1. Client

Database clients are actually the data

users, who read, write and modify the database
records according to their privileges. The clients
may database-authorized employees in
organization or a client such as patient. To ensure
user privacy, the data such as name is encrypted
by client key.

//1.Client rewrites the query
Input: plaintext query (Qp)
Output: client query (Qc)
Begin

For each field (Fi) owned by client in (Qp)
Do

 If value (Vi) assigned to (Fi) then
 Replace (Vi) with ESEc (Vi)

 End if
 End for
End

Figure.5.Query Rewriter Algorithm for Client

Example for query rewriter in client

SELECT patient.p_name,hospital.age, hospital.
address, hospital.drug_name, hospital.doctor,
hospital.date
FROM patient, hospital
WHERE patient.p_id = hospital.p_id and
patient.p_id=1234

//4. Client analyzes the query results
Input: dataset from TTP (DSt)
Output: client dataset (DSc) (plaintext)
Begin
 For each encrypted field (Fi) in (DSt) Do

decrypt field name Fi = DPRc (Fi)
 End for
 For each field (Fi) owned by client in (DSt)
 Do
 decrypt field data Fi = DSEc (Fi)
 End for

 For each encrypted field (Fi) not owned by
 client in (DSt) Do

decrypt field data Fi = DPRc (Fi)
 End for //fields owned by server or TTP
End

Figure.6.Result Analyzer Algorithm for Client

5.2. Trusted Third Party (TTP)

 Is the middle server owned by the

organization (database owner), contains
Metadata of the database and keys table. The
data used to joins and coordinates between server
and clients such as Id number is encrypted by
TTP. This is enabling to prepare the complete
query request form to retrieve results in database
server.

//2. TTP rewrites the client query
Input: client query (Qc)
Output: TTP query (Qt)
Begin

For each field (Fi) owned by client in (Qc)
or TTP Do

 replace (Fi) with ESEt (Fi)
 End for
 For each field (Fi) owned by server in (Qc)
 Do

replace (Fi) with ESEs (Fi)
If value (Vi) assigned to (Fi) then
 replace (Vi) with ESEs (Vi)

End if
 End for
 For each field (Fi) owned by TTP in (Qc)
 Do

If value (Vi) assigned to (Fi) then
 replace (Vi) with ESEt (Vi)
End if

 End for
 For each relation (Ri) in (Qc) Do
 replace (Fi) with ESEt (Fi)
 End for
End

Figure. 7. Query Rewriter Algorithm for TTP

Example for query rewriter in TTP

SELECT hikglm.fahye, irthgdf.jkl,
irghtdf.suotaf, irthgdf.yuhjskl, irthgdf.yioulk,
irthgdf.p_date
FROM hikgl, irghtdf
WHERE hikglm.usda = irthgdf.usda and
hikglm.usda=76532

//3.TTP analyzes the query results
Input: dataset from server (DSs)
Output: TTP dataset (DSt)
Begin

For each encrypted field (Fi) owned by
server in (DSs) Do

 decrypt field name Fi = DSEs (Fi)
 decrypt field data Fi = DSEs (Fi)
 encrypt field name and data = EPUc (Fi)
 End for
 For each encrypted field (Fi) owned by TTP
 in (DSs) Do
 decrypt field name and data Fi = D

SEt (Fi)
encrypt field name and data Fi = DPUc
(Fi)

 End for
 For each encrypted field (Fi) owned by client
 in (DSs) Do
 decrypt field name Fi =DSEt (Fi)
 encrypt field name Fi = EPUc (Fi)
 End for
End

Figure.8. Result Analyzer Algorithm for TTP

5.3. Database Server

 The server belong the organization or
company data, which is responsible for
collecting and maintaining it. And the server host
what is owned by several parties, such as clients
and intermediate party, i.e., they contain data
related to clients and intermediate party.

6. Experiment

 For this section, we will conduct
empirical study on how query processing
performance differs among our proposed
approach, client-based approach and server-

based encryption approach. The experiments will
conduct by implementing semi-trusted database
over Microsoft SQL Server 2010. The algorithms
will implement in ASP.NET as a web services.

7. Conclusion

Database Security is a major issue in

any web-based application. No matter what
degree of security is put in place, sensitive data
in database are still vulnerable to attack. To avoid
the risk posed by this threat, database encryption
has been recommended. Encryption is a well
established technology for protecting sensitive
data. In this paper, we present a secure and cost-
effective framework for semi-trusted database
where database are encrypted in a mixed form by
using many keys owned by different parties.
This framework supports the three main security
components in the database (Data Confidentiality
and Data Privacy and Data Integrity).

References

[1] C. Dong, G. Russello, N. Dulay, “Shared and
Searchable Encrypted Data for Untrusted Servers”, 22
edition, Springer, 2008.
[2] E. B. Fernandez, R . C. Summers and C. Wood,
Database Security and Integrity, Addison Wesley,
Massachusetts, 1980.
[2] G.I. Davida, D.L. Wells, and J.B. Kam, "A
Database Encryption System with Subkeys", ACM
Trans. Database Syst., 1981, pp. 312-328.
[4] H. Kadhem, T.Amagasa, and H.Kitagawa, “A
novel framework for database security based on mixed
cryptography”, International Conference on Internet
and Web Applications and Services, 2009, 163–170.
[5] L. A. R. Rivest and A. Shamir, "A method for
obtaining digit signatures and public-key
cryptosystems", Communications of the ACM, Date,
pp. 120-126.
[6] L. A. R. Rivest and A. Shamir, “On digit signatures
and public key cryptosystems”, Technical Report
MIT/LCS/TR-212, MIT Laboratory for Computer
Science, Location, 1979.
[7] L. Bouganim and P. Pucheral. “Chip-secured data
access: confidential data on untrusted servers”. In
VLDB’02: Proceedings of the 28th international
conference on Very Large DataBases, pages131–

142.VLDB Endowment, 2002.
[8] M. Gertz, “Hand Book of database Security
application and trends", Springer Science Business
Media, LLC. 2008.
[9] T. Ge and S. Zdonik. “Fast, secure encryption for
indexing in a column-oriented DBMS”, In Data
Engineering, 200, ICDE 2007, IEEE 23rd International
Conference on, pages 676–685, 2007.
[10] W. Diffie and M.E. Hellman, “New Directions in
Cryptography”, IEEE Trans. Inform. Theory, 1976, IT-
22:644-654.

