Efficient Indexing Scheme over DHT

Yi Yi Mar Khine Moe Nwe Aung Htein Maw
University of Computer University of Computer University of Computer
Studies, Yangon Studies, Yangon. Studies, Yangon
yiyimaryym@googlemai
l.com
Abstract 1. Introduction

Range query processing is an essential role in Nowadays peer-to-peer systems are more
many P2P applications including databasepopular in many distributed applications such as
indexing, distributed computing and locationfile and resource sharing. DHT is designed for
aware computing and commercial services basestructured P2P overlay network. DHT has no
on current user’s location. Most of P2Pcentralized control to reconfigure due to the
applications are running over DHT overlay churn rate of nodes. More popular DHTs based
network. But most of DHT can only provide forpeer-to-peer systems are Chddj, Pastry[5],
exact match queries. If there is no an efficienTapestry [6] and CAN [7]. There are many
indexing scheme over DHTs, complex querieesearches proposed over-DHT indexing
such as range queries may be major challengapproaches and DHT-dependent indexing
So in recent years, there are many indexingpproach. The latter can provide better query
schemes over DHTs are proposed for rangperformance but it needs to be changed
query processing. In this paper, an efficientaccording to the overlay DHT infrastructure.
indexing scheme is proposed forOver-DHT indexing scheme can run over any
multidimensional range query processing. FOIDHTs overlay structure with no needs to modify.
building the proposed scheme, data are firstty DHT is robust against node failures. It is also
distributed over peer nodes. For fairlyscalable due to the properties of easily
distributing of data, k-dimensional tree (kd-tree)accommodate new nodes. DHT is high efficient
is used. While partitioning data on kd-tree,in exact match queries in most applications but
splitting points with each dimension arecan be inefficient in manner of keyword queries
generated. Leave nodes of kd-tree store datand range queries. This is because it can't rely on
records with tree information including splitting the structural properties of key space and of the
points. The proposed indexing scheme is builtse of uniform hashing. DHT uses cryptographic
using these stored tree information. By using thkash functions like SHAL1.Due to this uniform
proposed system, bandwidth and time consumir@shing method; range query processing highly
in range query processing over DHTs cardesired in many p2p applications becomes an
reduce. issue for look up over DHT.

This paper proposed the efficient indexing
Key words: Indexing over DHT, range query scheme built over DHT to handle the issue of
processing, range query in P2P systems. lookups in DHT for range queries.

1

2. Related Work on the lookup operation. If we make more

lookups on DHT, the more the bandwidth and
There are many proposed approaches {atency is consuming.

construct indexing scheme for range query In this paper, the main goal is to reduce the

processing. Prefix Hash Tree [PHT]] is a nhumber of DHT lookups. By reducing the

distributed data structures that enables mor@okups, the bandwidth and latency can be

sophisticated query over DHT. For efficientlyreduced.

processing 1l-dimensional query over DHT, it

implemented trie-based distributed data structurg, Range Query Processing

called Prefix Hash Tree (PHT).In range query

processing, PHT proposed two algorithms. The S
first algorithm resulted in high latency as all. Range query processing is finding all the data

. . in a region in a given key range. In ran query
leaves are sequentially traversed until the quer . o .
rocessing applications, data sets are mostly in

is completely resolved. In second algorithm, it i . -
. . the form of points. For efficient range query
parallelized and recursively forward the query . . L
rocessing, the collection of points in space and

until the leaf nodes overlapping the query. It als$

) . ._locating the data points to peer nodes with
used binary search. But it may lead over Ioadlng . g P P .
. ptimal load balance are major challenges.
the root when range is small.

I . . Without efficient indexing scheme, quer
Filling internal node with data can violate 9 query

. L rocessing is time consuming. In recent year,
traversing down to leaf node. So Dlstr|buted3 9 9 Y

. ; h h d i
Segment Tree [DST]2] is designed to allow many Fesearchers = have proposed various

. dexing schemes over existing DHTs using data
internodes to store keys as well as leaf nodes. +n 9 9 9

o sfructures such as trees, grids and graphs to solve
process a range query, at first it is decompose

) . . . the above indexing problem.
into a union of minimum node intervals of

:) In this paper, the proposed scheme also uses
segment tree. Finally the query is resolved by the pap prop . .
; . a data structure called k-dimensional tree (kd-
union of keys returned from the correspondin

. . ree) for constructing indexing scheme over
DST nodes. Here, it may leads maintenance) . g . g o
. . nderlying DHTs. Kd-tree is a space partitioning
overhead as key are replicated over interna . . .
ata structure for organizing points in a k-

nodes and leave nodes. dimensional space. They are useful in several
Distributed Hilbert R-trees (DHR-tree$y] . pace. y . :
applications, such as searches involving a

provides range query processing structure for%ultidimensional search key including range
P2P systems. It can make fault tolerance anduer [11] [9]
scalable to dynamic network. It can achievéq y '
efficient range query processing. But in its range .
query processing, first it reduce the m-4' Optimal L oad Balance

dimensions to one-dimensions.

In [3], M-LIGHT can achieve efficient range Load balancing is an essential functionality to
construct the indexing structure over DHTs. mhodes. In this proposed system, a threshold value
LIGHT is high efficient in range query represented asyd is used for load distribution
processing but it still have drawback ofamong nodes. [is the maximum number of
bandwidth and latency. This drawback is baselpads or records that a peer node can store. Use

2

(1), value of T;can get, and where, iB the total

number of records in the system and N is the

total number of nodes in overlay network.
Toe=T:/N
1)
5. System Overview

Consider a set of data records. Each data
record has a key. Each key has multidimensional
data which are represented by points. Each pogint

is in interval [0, 1]. Before constructing

multidimensional data indexing scheme, data

keys are firstly partitioned on kd-tree. After
building kd-tree, each leaf node of kd-tree |is
needed to map to each peer.

Next section described how to build kd-tree
for partitioning data points.

5.1 Partitioning Data on Peers

Algorithm: BuildKdTree (P, flag)
1. if P contain only one point
then return a leaf storing this point

2. if (flag= 'y’ and number of points in P <j
then Split P into two subsets P1 and P2 .
P1 be the set of points <= median point 0
coordinate. Let P2 be the set of points
median point of y coordinate.
node stores the median point (splitting poir
Then assign flag= ‘x’.

3. else if(number of points<I) Split P into two
subsets P1 and P2 . Let P1 be the set of p
<= median point of x coordinate. Let P2 be
set of points > median point of x coordinal
Each internal node stores the median p
(splitting point). Then assign flag="y’.

4. vie=BuildKdTree(P1,flag)

Viign=BuildKdTree(P2, flag)
6. return the address of the root v withs\vand

o

Vright

Let

fy
>

Each interpal

—

N

).

Dints
he
[e.
Dint

For indexing multidimensional data, the data
are recursively partitioned into cell along with
different dimensions in an alternative fashion. As
shown in figure 2, the 2D space is recursively
halved along x and y axes, alternatively until
each cell contain no more than ih (1) data
records.

In this proposed system, the splitting point
are stored on internal nodes. The propose

al

store the tree information.

Figure 1 shows that an algorithm how to
build kd-tree. In this algorithm, the parametgr T
in (1) indicatesthe Maximum number of data points

that each cell holds. Let v be the root node and

Vierr be the left sub tree of v andgy be the right
sub tree of v. In algorithm, BuildKdTree (P, flag),

where P is the set of data points and number of

data points in P must be >=1.

Figure 1. Kd-treealgorithm

Parameter “flag” is used to indicate the

Igorithm needs to partition the data points on
kd-tree according to which dimension. The data
430ints are stored only in leave node and the
Internal nodes store the pair of splitting points o

. . . . _the two dimensions.
indexing scheme is based on these splitting

points. Here one important point is that the data
keys are only stored in leaves. The leaves also

S |<05,025 ||<052=025 | | 075,405 || >=0.75,40.5
F000 H001 #010 #011

O @ =
[<025.075 |

#1000

0

0257073

21001 #1010

#1011

(a) kd-tree

#1010 | #1011 | 415 5.2 Mappingto DHT

#1000 | #1001
To get the required data in a given query
#ool #010 | #o11 range, the result of the proposed indexing
#000 scheme is applied over underlying Distributed

Hash Table (DHT) which holds (key, value)
pairs. DHTs are distributed over peer nodes. So
each peer needs to check if it has the requested
(key, value) pair or not when receiving the range
query. If it doesn't have the requested data, then

As shown in Figure 2 (b), the set of data't forwards to the neighboring nodes until the

oints are recursively partitioned into each ceﬂ1Odes which find the required key and if found
P yp send it back. To determine which node holds the

along different dimensions of x axis and y axis
. . . ._(key, value) pairs, mapping method is required.
alternatively. This partitioning process is . .

) . Mapping method of peer node to DHT is called
terminated when a cell contains no more thgn T istent hash functi
data records. This space partition approz;tc%onlgSthen as u(;]C 'O?' labels of hich
renders the local space indexed by each node to n the propos.e System, 1abe’s of peers whic
be known globally. hold keys of a given range query have generated

This space partition tree is shown in (a) as gnd only need to map the peer node label to

kd-tree with labels. The root node is labeled WithDHTf Here, the proposed indexing scheme is
o . . running over Chord DHT. The Chord DHT
#. The nodes in kd-ree are labeled Wlthal orithm has used “SHA-1" hash function as a
sequence of binary digits “0” and “1". As the 9

above figure shows that the left nodes of the roé:tOnSIStent hash functiofi2]. Nodes in Chord

are labeled with labels of its ancestors plus «grr€ place on Ring. Both node IDs and keys (hash

and the right edges with plus “1".Each of thefrom key-value pairs) are placed on the same

. " : ., ring. Secure Hash Algorithm (SHA-1) generates
nternal nodes stores splitting points established
! piting pol ! nodes’ identifiers. SHA-1 hash produces a 160

when partitioning the data on peers for achievgit digest from any data with a maximum 6f 2
efficient indexing scheme. The data points argits y

only stored in leaves.
On each leaf, leaf bucket, a distributed data)
structure is used for storing label of leaf node,5'3' Proposed I ndexing Scheme
kd-tree summarization, and data records. In each
peer node, kd-tree summarization contains all the In this system, the data set is postal
internal nodes with splitting point's information addresses ofL0]. So only need to consider the
and leaf node of its own. Here the indexingdiven range query of (R) issued by one peer
scheme needs to map label of leaf node with dafipde. The requested range (R) is received by the
records to underlying DHT. other peer node. This peer node is called initiator
Next section discussed how to map the leavéhis initiator firstly computes the labels of peers

nodes of kd-tree to peers of DHT ovenaycovered the range (R). In this phase, the initiator
network. uses proposed indexing scheme shown in figure

3. The initiator node firstly traverses from the

(b) Space partitioning

Figure 2. Space partition with kd-tree

4

root and compares the R with internal node’s

stored splitting point range. If R is covered with An example: Suppose that the queried range
this internal or branch node, the labels of peds bounded in range as [0.3, 0.8] on x axis and
nodes can find by using the label of branch nod¢0.4, 0.7] on y axis. Here kd-tree from figure 2 is
In other words, if R is covered by one branchused. The given range query is in rectangle shape
node, all of the leaves of this branch node are ttend need to consider four points of [0.3, 0.4],
peer nodes which cover the requested randge.3, 0.7], [0.8, 0.4], [0.8, 0.7]. Firstly the
query (R). If not, the initiator continues theinitiator starts from root node. Then the initiator
process of traversing and comparing through rogo down to the branch nodes at step 2 and starts
to node. Here noticed that we need to traverdbe comparing the branch nodes with range R.
down step2 from root in left and right sub tree td'hen labels of peers are resulted as #001, #010,
start comparing. This is because pair of splittingt011, #11, and #1001. Then only need to perform
point of x and y are only stored at that branclbHT lookup using this labels.

nodes of step2. But it doesn’'t need to traverse all

noFigs of the kd-tree. This ig becguse of thB_ System Architecture

efficient strategy of proposed indexing scheme.

When the initiator traversing through local kd-

tree, if any branch node’s split interval is not sond data o

covered R, the branch nodes and all of its child et

are pruned. So the initiator doesn’t need to go 020 over las
down all of the child nodes. As a result, the . T ‘m‘:
proposed indexing scheme can reduce time Q e
consuming by pruning irrelevant nodes whil NS J W | v
query processing. And also the proposed & @ kv
algorithm can provide only exact peer labels so it e B pecr |
can reduce the number of DHT lookups and thus e s Node/ 1 s | s
can reduce bandwidth and latency consuming. In il I

Scheme

algorithm in figure 3, Iv(pt) is denoted as stored
point at the left subtree of root v, rv(pt) is the
right subtree of v.

Figure 4. System architecture

Algorithm: range_query Indexing(v, Range r

Input: range query R, root of kd-tree In figure 4, system architecture is described.
Output: labels of leaves (peers) Firstly one of the peer node issues query request
1.if vis aleaf then return label of v as R to the other peer node. This peer node starts
2.else if (rc Iv(pt)) then return the label$ the process as initiator. It uses it local kd-trees
of lv and all its child nodes and locally computing the labels of relevant peer
3. else if (= rv(pt)) then return the labels nodes using the proposed indexing scheme.
of rv and all of its child nodes When it gets the labels of peers, then it starts

DHT lookup operation. If it finds all the (key,

Figure 3. Range-query indexing algorithm value) pairs, return all the data keys. Here DHT
keys are the identifiers of peer nodes. If the
5

initiator node cannot find, it forwards the labels
to its neighboring nodes and start the DHT
lookup operation at these nodes. This process is
continues until the keys are found.

7. Conclusion

In this paper, the efficient indexing scheme
over DHT is proposed. By computing the
identifier of peer nodes which can cover the
given range queries before DHT lookup
operation is performed, we can reduce number of
DHT lookups. So the proposed system can also
reduce the bandwidth and latency used in range
query processing. To evaluate with other systems
will be as the future work.

References

[1] S. Ramabhadran, S. Ratnasamy, J. M.
Hellerstein, S. Shenker, “Prefix Hash Tree:
An Indexing Data Structure over Distributed
Hash Tables”"PODC,2004.

[2] C. Zheng, G. Shen, S. Li, S. Shenker
“Distributed Segment Tree: Support of range
query and cover query over DHT”, in tB8
International Workshop on Peer-to-Peer
Systems (IPTPSkeb 2006.

[3] Y. Tang,J. Xu, S. Zhou, W. Chien Lee, “m-
LIGHT Indexing: multidimensional data
over DHTs”, 29" IEEE International
Conference on Distributed Computing
Systems2009.

[4] I. Stoica, R. Morris, D. Karger, M. F.
Kasshoek, H. Balakrishnan, “Chord: A
scalable Peer-to-Peer Lookup Service for
Internet Applications”, in Proceedings of
ACM SIGCOMM'01 San Diego, September
2001.

[5] A. Rowstron, P. Druschel, “Pastry: A
Scalable, decentralized object location and
routing for large-scale peer-to-peer
systems”, in Proceeding of the 1B
IFIP/ACM International Conference on

6

(8]

(9]

Distributed Systems Platforms (Middleware
2001) Heidelberg, Germany, November
2001.

B. Y. Zhao, L. Huang, J. Stribling, S. C.
Rhea, A. D. Joseph, “Tapestry: A Resilient
Global-scale over for Service Deployment”,
IEEE Journal On Selected Areas in
Communications, Vol.22, Ng.1lJanuary
2004.

S. Rantnasamy, P. Francis, M. Handley, R.
Karp, S. Shenker, “ A Scalable Content-
Addressable Network”, SIGCOMM’0], San
Diego, California, USA, August 27-31,
2001.

X. Wei, K. Sezaki, “DHR Trees- A
Distributed Multidimensional Indexing
Structure for P2P Systems”Scalable
Computing: Practice and Experience,
Volume 8 November 3 2007, pp-291.

A. W. Moore, “An inductor tutorial on kd-
trees”, Technical Report No. 209,0thputer
Laboratory, University of Cambridge, 1991.

[10] http://www.rtreeportal.org/datasets/spatial/

USINE.zip

[11] H. M. Kakde, Range Searching using Kd

Tree, 2005

[12] S. Sarmady, “A peer-to-peer Dictionary

Using Chord DHT”, Report, School of
Computer Science, University Sains
Malaysia, 2007.

