
1

Efficient Indexing Scheme over DHT

Yi Yi Mar
University of Computer

Studies, Yangon
yiyimar.yym@googlemai

l.com

Khine Moe Nwe
University of Computer

Studies, Yangon.

Aung Htein Maw
University of Computer

Studies, Yangon.

Abstract

Range query processing is an essential role in

many P2P applications including database
indexing, distributed computing and location
aware computing and commercial services based
on current user’s location. Most of P2P
applications are running over DHT overlay
network. But most of DHT can only provide for
exact match queries. If there is no an efficient
indexing scheme over DHTs, complex queries
such as range queries may be major challenge.
So in recent years, there are many indexing
schemes over DHTs are proposed for range
query processing. In this paper, an efficient
indexing scheme is proposed for
multidimensional range query processing. For
building the proposed scheme, data are firstly
distributed over peer nodes. For fairly
distributing of data, k-dimensional tree (kd-tree)
is used. While partitioning data on kd-tree,
splitting points with each dimension are
generated. Leave nodes of kd-tree store data
records with tree information including splitting
points. The proposed indexing scheme is built
using these stored tree information. By using the
proposed system, bandwidth and time consuming
in range query processing over DHTs can
reduce.

Key words: Indexing over DHT, range query
processing, range query in P2P systems.

1. Introduction

Nowadays peer-to-peer systems are more

popular in many distributed applications such as
file and resource sharing. DHT is designed for
structured P2P overlay network. DHT has no
centralized control to reconfigure due to the
churn rate of nodes. More popular DHTs based
peer-to-peer systems are Chord [4], Pastry [5],
Tapestry [6] and CAN [7]. There are many
researches proposed over-DHT indexing
approaches and DHT-dependent indexing
approach. The latter can provide better query
performance but it needs to be changed
according to the overlay DHT infrastructure.
Over-DHT indexing scheme can run over any
DHTs overlay structure with no needs to modify.

DHT is robust against node failures. It is also
scalable due to the properties of easily
accommodate new nodes. DHT is high efficient
in exact match queries in most applications but
can be inefficient in manner of keyword queries
and range queries. This is because it can’t rely on
the structural properties of key space and of the
use of uniform hashing. DHT uses cryptographic
hash functions like SHA1.Due to this uniform
hashing method; range query processing highly
desired in many p2p applications becomes an
issue for look up over DHT.

This paper proposed the efficient indexing
scheme built over DHT to handle the issue of
lookups in DHT for range queries.

2

2. Related Work

 There are many proposed approaches to
construct indexing scheme for range query
processing. Prefix Hash Tree [PHT] [1] is a
distributed data structures that enables more
sophisticated query over DHT. For efficiently
processing 1-dimensional query over DHT, it
implemented trie-based distributed data structure
called Prefix Hash Tree (PHT).In range query
processing, PHT proposed two algorithms. The
first algorithm resulted in high latency as all
leaves are sequentially traversed until the query
is completely resolved. In second algorithm, it is
parallelized and recursively forward the query
until the leaf nodes overlapping the query. It also
used binary search. But it may lead over loading
the root when range is small.

Filling internal node with data can violate
traversing down to leaf node. So Distributed
Segment Tree [DST] [2] is designed to allow
internodes to store keys as well as leaf nodes. To
process a range query, at first it is decomposed
into a union of minimum node intervals of
segment tree. Finally the query is resolved by the
union of keys returned from the corresponding
DST nodes. Here, it may leads maintenance
overhead as key are replicated over internal
nodes and leave nodes.

Distributed Hilbert R-trees (DHR-trees) [8]
provides range query processing structure for
P2P systems. It can make fault tolerance and
scalable to dynamic network. It can achieve
efficient range query processing. But in its range
query processing, first it reduce the m-
dimensions to one-dimensions.

In [3], m-LIGHT can achieve efficient range
query result. It used three mechanisms to
construct the indexing structure over DHTs. m-
LIGHT is high efficient in range query
processing but it still have drawback of
bandwidth and latency. This drawback is based

on the lookup operation. If we make more
lookups on DHT, the more the bandwidth and
latency is consuming.

In this paper, the main goal is to reduce the
number of DHT lookups. By reducing the
lookups, the bandwidth and latency can be
reduced.

3. Range Query Processing

Range query processing is finding all the data

in a region in a given key range. In ran query
processing applications, data sets are mostly in
the form of points. For efficient range query
processing, the collection of points in space and
locating the data points to peer nodes with
optimal load balance are major challenges.
Without efficient indexing scheme, query
processing is time consuming. In recent year,
many researchers have proposed various
indexing schemes over existing DHTs using data
structures such as trees, grids and graphs to solve
the above indexing problem.

 In this paper, the proposed scheme also uses
a data structure called k-dimensional tree (kd-
tree) for constructing indexing scheme over
underlying DHTs. Kd-tree is a space partitioning
data structure for organizing points in a k-
dimensional space. They are useful in several
applications, such as searches involving a
multidimensional search key including range
query [11] [9].

4. Optimal Load Balance

Load balancing is an essential functionality to

provide fair load distribution between peer
nodes. In this proposed system, a threshold value
represented as Tpt is used for load distribution
among nodes. Tpt is the maximum number of
loads or records that a peer node can store. Use

3

(1), value of Tpt can get, and where Tr is the total
number of records in the system and N is the
total number of nodes in overlay network.

Tpt = Tr /N
(1)

5. System Overview

Consider a set of data records. Each data

record has a key. Each key has multidimensional
data which are represented by points. Each point
is in interval [0, 1]. Before constructing
multidimensional data indexing scheme, data
keys are firstly partitioned on kd-tree. After
building kd-tree, each leaf node of kd-tree is
needed to map to each peer.

Next section described how to build kd-tree
for partitioning data points.

5.1 Partitioning Data on Peers

For indexing multidimensional data, the data

are recursively partitioned into cell along with
different dimensions in an alternative fashion. As
shown in figure 2, the 2D space is recursively
halved along x and y axes, alternatively until
each cell contain no more than Tp in (1) data
records.

In this proposed system, the splitting points
are stored on internal nodes. The proposed
indexing scheme is based on these splitting
points. Here one important point is that the data
keys are only stored in leaves. The leaves also
store the tree information.

Figure 1 shows that an algorithm how to
build kd-tree. In this algorithm, the parameter Tpt

in (1) indicates the maximum number of data points
that each cell holds. Let v be the root node and
vleft be the left sub tree of v and vright be the right
sub tree of v. In algorithm, BuildKdTree (P, flag),
where P is the set of data points and number of
data points in P must be >=1.

Algorithm: BuildKdTree (P, flag)
1. if P contain only one point

then return a leaf storing this point
2. if (flag= ‘y’ and number of points in P <Tpt)

then Split P into two subsets P1 and P2 . Let
P1 be the set of points <= median point of y
coordinate. Let P2 be the set of points >
median point of y coordinate. Each internal
node stores the median point (splitting point).
Then assign flag= ‘x’.

3. else if(number of points<Tpt) Split P into two
subsets P1 and P2 . Let P1 be the set of points
<= median point of x coordinate. Let P2 be the
set of points > median point of x coordinate.
Each internal node stores the median point
(splitting point). Then assign flag= ‘y’.

4. vleft=BuildKdTree(P1,flag)
5. vright=BuildKdTree(P2, flag)
6. return the address of the root v with vleft and

vright

 Figure 1. Kd-tree algorithm

 Parameter “flag” is used to indicate the

algorithm needs to partition the data points on
kd-tree according to which dimension. The data
points are stored only in leave node and the
internal nodes store the pair of splitting points of
the two dimensions.

(a) kd-tree

4

(b) Space partitioning

Figure 2. Space partition with kd-tree

As shown in Figure 2 (b), the set of data
points are recursively partitioned into each cell
along different dimensions of x axis and y axis
alternatively. This partitioning process is
terminated when a cell contains no more than Tpt
data records. This space partition approach
renders the local space indexed by each node to
be known globally.

This space partition tree is shown in (a) as a
kd-tree with labels. The root node is labeled with
“#”. The nodes in kd-tree are labeled with
sequence of binary digits “0” and “1”. As the
above figure shows that the left nodes of the root
are labeled with labels of its ancestors plus “0”,
and the right edges with plus “1”.Each of the
internal nodes stores splitting points established
when partitioning the data on peers for achieve
efficient indexing scheme. The data points are
only stored in leaves.

 On each leaf, leaf bucket, a distributed data
structure is used for storing label of leaf node,
kd-tree summarization, and data records. In each
peer node, kd-tree summarization contains all the
internal nodes with splitting point’s information
and leaf node of its own. Here the indexing
scheme needs to map label of leaf node with data
records to underlying DHT.

Next section discussed how to map the leave
nodes of kd-tree to peers of DHT overlay
network.

5.2 Mapping to DHT

To get the required data in a given query

range, the result of the proposed indexing
scheme is applied over underlying Distributed
Hash Table (DHT) which holds (key, value)
pairs. DHTs are distributed over peer nodes. So
each peer needs to check if it has the requested
(key, value) pair or not when receiving the range
query. If it doesn’t have the requested data, then
it forwards to the neighboring nodes until the
nodes which find the required key and if found
send it back. To determine which node holds the
(key, value) pairs, mapping method is required.
Mapping method of peer node to DHT is called
consistent hash function.

In the proposed system, labels of peers which
hold keys of a given range query have generated
and only need to map the peer node label to
DHT. Here, the proposed indexing scheme is
running over Chord DHT. The Chord DHT
algorithm has used “SHA-1” hash function as a
consistent hash function [12]. Nodes in Chord
are place on Ring. Both node IDs and keys (hash
from key-value pairs) are placed on the same
ring. Secure Hash Algorithm (SHA-1) generates
nodes’ identifiers. SHA-1 hash produces a 160
bit digest from any data with a maximum of 264
bits.

5.3. Proposed Indexing Scheme

 In this system, the data set is postal

addresses of [10]. So only need to consider the
given range query of (R) issued by one peer
node. The requested range (R) is received by the
other peer node. This peer node is called initiator.
This initiator firstly computes the labels of peers
covered the range (R). In this phase, the initiator
uses proposed indexing scheme shown in figure
3. The initiator node firstly traverses from the

5

root and compares the R with internal node’s
stored splitting point range. If R is covered with
this internal or branch node, the labels of peer
nodes can find by using the label of branch node.
In other words, if R is covered by one branch
node, all of the leaves of this branch node are the
peer nodes which cover the requested range
query (R). If not, the initiator continues the
process of traversing and comparing through root
to node. Here noticed that we need to traverse
down step2 from root in left and right sub tree to
start comparing. This is because pair of splitting
point of x and y are only stored at that branch
nodes of step2. But it doesn’t need to traverse all
nodes of the kd-tree. This is because of the
efficient strategy of proposed indexing scheme.
When the initiator traversing through local kd-
tree, if any branch node’s split interval is not
covered R, the branch nodes and all of its child
are pruned. So the initiator doesn’t need to go
down all of the child nodes. As a result, the
proposed indexing scheme can reduce time
consuming by pruning irrelevant nodes while
query processing. And also the proposed
algorithm can provide only exact peer labels so it
can reduce the number of DHT lookups and thus
can reduce bandwidth and latency consuming. In
algorithm in figure 3, lv(pt) is denoted as stored
point at the left subtree of root v, rv(pt) is the
right subtree of v.

Algorithm: range_query Indexing(v, Range r)

Input: range query R, root of kd-tree
Output: labels of leaves (peers)
1. if v is a leaf then return label of v
2.else if (r lv(pt)) then return the labels
 of lv and all its child nodes
3. else if (r rv(pt)) then return the labels
 of rv and all of its child nodes

Figure 3. Range-query indexing algorithm

An example: Suppose that the queried range

is bounded in range as [0.3, 0.8] on x axis and
[0.4, 0.7] on y axis. Here kd-tree from figure 2 is
used. The given range query is in rectangle shape
and need to consider four points of [0.3, 0.4],
[0.3, 0.7], [0.8, 0.4], [0.8, 0.7]. Firstly the
initiator starts from root node. Then the initiator
go down to the branch nodes at step 2 and starts
the comparing the branch nodes with range R.
Then labels of peers are resulted as #001, #010,
#011, #11, and #1001. Then only need to perform
DHT lookup using this labels.

6. System Architecture

Figure 4. System architecture

In figure 4, system architecture is described.

Firstly one of the peer node issues query request
as R to the other peer node. This peer node starts
the process as initiator. It uses it local kd-trees
and locally computing the labels of relevant peer
nodes using the proposed indexing scheme.
When it gets the labels of peers, then it starts
DHT lookup operation. If it finds all the (key,
value) pairs, return all the data keys. Here DHT
keys are the identifiers of peer nodes. If the

6

initiator node cannot find, it forwards the labels
to its neighboring nodes and start the DHT
lookup operation at these nodes. This process is
continues until the keys are found.

7. Conclusion

In this paper, the efficient indexing scheme

over DHT is proposed. By computing the
identifier of peer nodes which can cover the
given range queries before DHT lookup
operation is performed, we can reduce number of
DHT lookups. So the proposed system can also
reduce the bandwidth and latency used in range
query processing. To evaluate with other systems
will be as the future work.

References

[1] S. Ramabhadran, S. Ratnasamy, J. M.

Hellerstein, S. Shenker, “Prefix Hash Tree:
An Indexing Data Structure over Distributed
Hash Tables”, PODC, 2004.

[2] C. Zheng, G. Shen, S. Li, S. Shenker
“Distributed Segment Tree: Support of range
query and cover query over DHT”, in the 5th
International Workshop on Peer-to-Peer
Systems (IPTPS), Feb 2006.

[3] Y. Tang, J. Xu, S. Zhou, W. Chien Lee, “m-
LIGHT Indexing: multidimensional data
over DHTs”, 29th IEEE International
Conference on Distributed Computing
Systems, 2009.

[4] I. Stoica, R. Morris, D. Karger, M. F.
Kasshoek, H. Balakrishnan, “Chord: A
scalable Peer-to-Peer Lookup Service for
Internet Applications”, in Proceedings of
ACM SIGCOMM’01, San Diego, September
2001.

[5] A. Rowstron, P. Druschel, “Pastry: A
Scalable, decentralized object location and
routing for large-scale peer-to-peer
systems”, in Proceeding of the 18th
IFIP/ACM International Conference on

Distributed Systems Platforms (Middleware
2001), Heidelberg, Germany, November
2001.

[6] B. Y. Zhao, L. Huang, J. Stribling, S. C.
Rhea, A. D. Joseph, “Tapestry: A Resilient
Global-scale over for Service Deployment”,
IEEE Journal On Selected Areas in
Communications, Vol.22, No.1, January
2004.

[7] S. Rantnasamy, P. Francis, M. Handley, R.
Karp, S. Shenker, “ A Scalable Content-
Addressable Network”, SIGCOMM’01, San
Diego, California, USA, August 27-31,
2001.

[8] X. Wei, K. Sezaki, “DHR Trees- A
Distributed Multidimensional Indexing
Structure for P2P Systems”, Scalable
Computing: Practice and Experience,
Volume 8, November 3 2007, pp-291.

[9] A. W. Moore, “An inductor tutorial on kd-
trees”, Technical Report No. 209, Computer
Laboratory, University of Cambridge, 1991.

[10] http://www.rtreeportal.org/datasets/spatial/
US/NE.zip

[11] H. M. Kakde, Range Searching using Kd
Tree, 2005

[12] S. Sarmady, “A peer-to-peer Dictionary
Using Chord DHT”, Report, School of
Computer Science, University Sains
Malaysia, 2007.

