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Abstract 
 

Surface reconstruction is needed for almost all 
modeling and visualization applications, but 
unfortunately 3D data from a passive vision system 
are often insufficient for a traditional surface 
reconstruction technique from 2D images. In this 
paper, we develop a method for surface 
reconstruction from 3D data set. This gives a more 
robust approach than existing methods using only 
pure 2D information. Our method associates 3D 
Delaunay triangulation data structure with the 
geometric convection algorithm. Moreover, we also 
use the 3D Voronoi Diagram for reconstructing the 
surface. Given a good program for this fundamental 
subroutine, the algorithm is quite easy to simple. 
Our method may also be used to simplify shapes by 
removing small features which would require an 
excessive number of elements to preserve them in 
the output mesh. In our experiment, a tsubo(pot) 3D 
data set is used. 
 
1. Introduction 
 

Surface reconstruction is a natural extension of 
the point-based geometric methods. The recent 
advances in 3D scanning technologies have led to an 
increasing need for techniques capable of processing 
massive discrete geometric data. In the last year, a 
great deal of work has been carried out on surface 
reconstruction from datasets with millions of sample 
points, including unorganized point sets [ 3, 6, 10] 
and set of range images [9]. These methods are often 
used to produce a triangulated mesh surface, which 
is standard representation for fast visualization and 
geometry processing algorithms. However, the data 
used to generate these meshes are generally overly 
dense, due to uniform grid sampling patterns, and a 
mesh simplification step is required for use in 
common applications. 

Point set simplification techniques offer an 
alternative to the standard pipeline by introducing a 
simplification step before the reconstruction process. 
The former aim at reducing the redundancy of the 

input data in order to accelerate subsequent 
reconstruction or visualization. 

Several algorithms that perform reconstruction 
and simplification in a single framework have been 
recently studied. Boissonnat and Cazals [2] have 
proposed a Delaunay-based coarase-to-fine 
reconstruction algorithm controlled by a signed 
distance function to implicit surface. Ohtake et al. 
[10] have developed an algorithm that resamples a 
point set using a quadric error metric, coupled with 
a specific fast local triangulation procedure. In both 
cases, the resulting sampling remains static, and the 
reconstructed surface cannot be easily updated, 
especially if the level of detail needs to be modified 
afterwards, or if additional data become available 
later (e.g. when streaming data on a network, or 
during a digital acquisition project). Starting from a 
dense unorganized input point set, the authors 
reconstruct a simplified triangulated surface by 
means of a Delaunay-based surface reconstruction 
algorithm called geometric convection [5] coupled 
with a local point set subsampling procedure. The 
Delaunay triangulation is constructed only for the 
retained sample points in order to maintain some 
history of the reconstruction process. The 
reconstructed surface can then be easily updated by 
inserting or removing sample points without 
restarting the reconstruction process from scratch. 
However, the method lacks an efficient data-
structure to handle large data. 

The algorithm is based on the three-dimensional 
Voronoi diagram and Delaunay triangulation; it 
produces a set of triangles. All vertices of triangles 
are sample points; in fact, all triangles appear in the 
Delaunay triangulation of the sample points.  We 
demonstrate the effectiveness of our method. Our 
algorithm inherits the robustness properties of the 
original geometric convection algorithm [5]. 
 
2. Geometric convection 
 

In this section, we briefly review the geometric 
convection algorithm as described by Chaine in [5]. 
This algorithm serves as the basic for our surface 
reconstruction method.   



The geometric convection algorithm is a surface 
reconstruction algorithm that proceeds by filtering 
the Delaunay triangulation of an input point set 
sampled from a smooth surface [4]. This method has 
some similarities with the Wrap [7] and Flow 
Complex [8] techniques. The filtration is guided by 
a convection scheme related to level set methods 
[11] that consists in shrinking an enclosing surface 
under the influence of the gradient field of a distance 
function to the closest sample point. This process 
results in a closed, oriented triangulated surface 
embedded in the Delaunay triangulation of the point 
set, and characterized by an oriented Gabriel 
property [5]. This means that for every facet, the 
diametral half-ball located inside the surface, or 
Gabriel half-ball, contains no sample point.  

Let P  3 denote the input point set and Ŝ  the 
surface in convection. The convection scheme can be 
completely achieved through the Delaunay 
triangulation of P by removing the facets that do not 
meet the oriented Gabriel property through an 
iterative sculpting process that starts from the 
convex hull. The Ŝ surface is a closed triangulated 
surface is maintained at every step, all the facets 
oriented inwards. Two facets with opposite 
orientations can meet – they are said to be coupled. 
Coupled facets can collapse locally, which may 
change the topology of Ŝ . A local study (or a more 
global solution) is required to dig into packets that 
may locally block the convection scheme, e.g., based 
on local granularity. The order in which the facets of 
the evolving surface are processed does not influence 
the result. This is a reason why this algorithm is a 
good candidate to be translated into this version. 
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Figure 1: Geometric convection towards a 2D 
point set. In (a), an enclosing curve is initialized 

on the convex hull of the point set. The current 
edge, enclosed by a non-empty Gabriel half-ball, 
forms a Delaunay triangle (dark gray) with the 
square point. This triangle becomes external, the 
curve is updated (b), and it continues to shrink. In 
(c), an edge is found to block a pocket; it will be 
forced. The final result is shown in (d) with some 
empty Gabriel half-balls. 

 
3. Geometry 
 

We start by reviewing some standard geometric 
constructions. Given a discrete set S of sample points 
in 3, the Voronoi cellof a sample point is that part 
of 3 closer to it than to any other sample. The 
Voronoi diagram is the decomposition of 3 induced 
by the Voronoi cells. Each Voronoi cell is a convex 
polytope, and its vertices are the Voronoi vertices; 
when S is nondegenerate, each Voronoi vertex is 
equidistant from exactly d + 1 points of S . These    
d + 1 points are the vertices of the Delaunay 
simplex, dual to the Voronoi vertex. A Delaunay 
simplex, and hence each of its faces, has a 
circumsphere empty of other points of S . The set of 
Delaunay simplices form the Delaunay triangulation 
of S . Computing the Delaunay triangulation 
essentially computes the Voronoi diagram as well.  

 
3.1 Voronoi Diagarm 
 

This simple Voronoi filtering algorithm runs into 
a snag in three dimensions. The nice property that 
all the Voronoi vertices of a sufficiently dense 
sample lie near the medial axis is no longer true. No 
matter how densely we sample, Voronoi vertices can 
appear arbitrarily close to the surface. 

On the other hand, many of the three-
dimensional Voronoi vertices do lie near the medial 
axis. Consider the Voronoi cell sV  of a sample S . 
The sample S  is surrounded on F by other samples, 
and sV is bounded by bisecting planes separating 
from its neighbors, each plane nearly perpendicular 
to F at S . So the Voronoi cell sV  is long, thin and 
roughly perpendicular F at S . sV  extends 
perpendicularly out to the medial axis. Near the 
medial axis, other samples on F become closer 
than S , and sV is cut off. This guarantees that some 
vertices of sV  lie near the medial axis. We give a 
precise and quantitative version of this rough 
argument in [12]. This leads to the following 
algorithm. Instead of using all of the Voronoi 
vertices in the Voronoi filtering step, for each 
sample S  we use only the two vertices of sV farthest 
from S , one on either side of the surface F.  We call 



these the poles of S , and denote them p and p .  It 

is easy to find one pole, say p : the farthest vertex 
of sV  from S . The observation that sV  is long and 

thin implies that the other pole p must lie roughly 
in the opposite direction. Thus in the basic 
algorithm below, we simply choose p  to be 

farthest vertex from S  such that sp  and sp  have 
negative dot-product. Here is the basic algorithm: 

 
1. Compute the Voronoi diagram of the sample 

points S . 
2. For each sample point S do: 

(a) If S  does not lie on the convex hull, let p  
be the farthest Voronoi vertex of sV from S . 

Let n be the vector sp . 

(b) If S  lies on the convex hull, let n be the 
average of the outer normal of the adjacent 
triangles. 

(c) Let p be the Voronoi vertex of sV with 

negative projection on n  that is farthest 
from S . 

3. Let P be the set of all poles p and p . Compute 
the Delaunay triangulation of PS  . 

4. Keep only those triangles for which all three 
vertices are sample points in S . 

 
3.2 Delaunay Triangulation 
 

In the following paragraphs, we describe the 
Delaunay triangulation data-structure and the 
reconstruction algorithm in detail. 

A tetrahedron is said to be in conflict with a point 
p if p is contained in its circumsphere. At a given 
time, a tetrahedron is said to be final if it cannot be 
in conflict with any further inserted point. A subset 
of tetrahedral of the triangulation is said to be 
finalized if all are final. Suppose that we have 
successively loaded and triangulated slices 0S , 1S , 
….., kS , with k < n. Reconstructing a coherent 
surface using geometric convection requires that 
every tetrahedron to be traversed by the shrinking 
surface is certified as final. Let t denote a 
tetrahedron with a vertex p in i

k
i S0 . If the 

circumsphere of t does not overlap 1kS , then t is 
final. Otherwise, there is no known upper bound on 
the number of slices that still have to be loaded 
before t is certified. To make the reconstruction 
process possible while controlling the number of 
loaded slices, our strategy consists in computing and 
inserting extra points in the triangulation through 

Delaunay refinement process, so that the set of 
tetrahedral intersecting a target slice can be 
finalized, and the extra points are far from the 
sampled surface in this slice. Before loading a new 
slice, extra points falling above the loaded slices are 
removed to prevent them from interfering with the 
reconstruction result. Finalized tetrahedral are 
preserved under these extra point removal steps. The 
algorithm refines the tetrahedral that do not satisfy 
the circumsphere-slice overlapping condition, called 
bad tetrahedral, by adding their circumferences as 
vertices. Furthermore, the algorithm guarantees that 
no extra point is inserted outside the bounding box 
B. The detailed refinement rule can be stated as 
follows: 

 
Rule If there is a bad tetrahedron t: 
   Compute the circumcenter ct of t; 
    if ct is outside B then 
       let f denote a facet of t visible by ct; 
       Compute the circumcenter cf of f; 
       if cf is outside B then 
   let e denote the edge of f visible by cf; 
   compute the midpoint ce of e; 
   insert ce; 
 else 
   insert cf; 
 end if 
     else 
 insert ct; 
     end if 

 
4. Experimental Results 
 

A tsubo (pot) 3D data set is used in our 
experiment. It is a less texture object and difficult to 
obtain the exact feature points from image. In the 
following Figure 2 shows original tsubo (pot) 
image. In the next Figure 3 display the plotting of 
tsubo (pot) 3D data set and the final Figure 5 depicts 
the 3D of tsubo (pot).  

 
 

 
 

Figure 2 : Original tsubo (pot) image 
 



 
 

Figure 4 : Reducing the 3D Data Set 
 

                 
Figure 5 : Complete reconstructed of a tsubo 

 
5. Conclusions 
 

This paper introduces a method for 3D surface 
reconstruction from 3D data set. We have designed 
a Delaunay triangulation data-structure that fits the 
purpose of reconstructing surfaces from a stream of 
points without the need to compute the triangulation 
of the whole data set and to maintain it in memory. 
Our framework may also differ in interesting 
perspective for other Delaunay-based surface 
reconstruction algorithms. Our current method 
interpolates the input points, which can be an 
advantage of for some applications. But 
performance could be significantly improved in 
case the data need simplification. And our method 
is not incremental, and our implantation is too slow 
for real-time decompression, so this application 
motivates work in both directions. 
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