
Data Deduplication using B+ Tree Indexing

Tin Thein Thwel, Ni Lar Thein
University of Computer Studies, Yangon

tin.thein.thwel@gmail.com, nilarthein@gmail.com

Abstract

As the amount of storage utilization become
larger and larger, people have been tried to find out
the efficient ways to safe storage space. The single
instance storage or data deduplication becomes
vague in storage management as it can eliminate
duplicated data or segments in those files. In this
paper, we proposed Data Deduplication System for
sub-file level. This system can perform deduplication
with the integrated use of file chunking algorithm;
secure hash function and B+ tree indexing. In this
system, we will first separate the file into
variable_length segments or chunks using Two
Thresholds Two Divisors chunking algorithm.
ChunkIDs are then obtained by applying hash
function to the chunks. The resulted ChunkIDs are
used to build as indexing keys in B+ tree like index
structure. This system can reduce the indexing time
complexity from O (n) to O (log n). The performance
of proposed system will be compared with the other
systems in terms of performance metrics such as
WinZIP, WinRAR, etc.

1. Introduction

At present, there is a vast amount of duplicated
data or redundant data in storage systems. Duplicated
data exist among variants of the same file as well as
it can also occur among different files. Those vast
amounts of data duplications result in extra storage
spaces to be used and much more power
consumptions, greatly lowering the storage
utilization. Data de-duplication can eliminate
multiple copies of the same file and duplicated
segments or chunks of data within those files. Data
de-duplication is also called intelligent compression
as it can aware the contents of the file. Unlike the
simple compression method in which:

(1) lacks awareness of underlying data;
(2) can’t recognize two identical files exist in

different directories;
(3) can’t recognize changed data or capture

unique blocks at a sub-file level
 In these days, therefore, data de-duplication
becomes an interesting field in storage environments
especially in persistent data storage for data centers.

Many data deduplication mechanisms have been
proposed for efficient data deduplication in order to
safe storage space. Current issue for data
deduplication is to avoid full-chunk indexing to
identify the incoming data is new, which is time
consuming process. In this paper, we propose an
efficient indexing mechanism for this problem using
the advantage of B+ tree properties.
 The rest of the paper is organized as follow:
Section 2 introduces related approaches used to
deduplicate the inter-file level redundancies; the
architecture of Efficient Indexing Mechanism for
Data Deduplication is presented in Section 3; Section
4 depicts the proposed indexing mechanism; Section
5 shows the preliminary experimental setup and
results; and Section 6 draws the conclusion.

2. Related Work

To the extent of our best knowledge, B+ tree
indexing are only used in relational database system
in order to get efficient indexing and not on the inter-
file level file storage and indexing with integrated
use of hash code (Chunk_ID) as index in data
deduplication.

M.Lillibridge et al. described problem statement as
chunk-lookup disk bottleneck/full chunks indexing
encountered in in-line deduplication and they try to
solve using sampling and sparse index and chunk
locality [11]. However, they based on assumption
that if two segment share one chunk, it is likely to be
shared other chunks only limited number of segments
are deduplicated and can’t do fully deduplication as
sometimes can store duplicate chunks.

Sridhar Ramaswamy pointed out the indexing
problems in constraint and temporal data [13]. They
proposed to uses B+ tree but their work had done on
database, solution is optimal for query, but doesn’t
have good worst-case bounds for updating.

Walter Santos solved the problem of identification of
replicas in database with parallel deduplication
algorithm using filter-stream model [14] and only
considered for databases and not for sub-file level of
the file which have their respective secure hash code.

Daniel P.Lopresti described the issues related to the
detection of duplicates in document image databases
and proposed four algorithm using edit distance [5].
But they can solve only for image database specific.

Jared, D. et al. find out that accurate rule-based
deduplication requires significant manual tuning of
both rules and thresholds. They proposed learning –
based information fusion using SVM but done on
database record, specific to set of deduplication rules
[9]. If other set of rules use, match accuracy values
will decrease.

Z. Benjamin et al. proposed Summary Vector
(Bloom Filtering) and Locality Preserved Caching to
avoiding the disk bottleneck in the Data Domain
Deduplication File System [18]. Their assumption is
that if the last time encountered chunk A, it was
surrounded by chunks B, C, D, then next time
encounter A, it is likely to encounter B, C or D
nearby. So, their system can avoid full chunk
indexing. Because of this assumption, this system is
not fully deduplication and sometimes can store
duplicated data.

3. Overview of the proposed system

As the mainly designed for this system is to avoid

full chunks indexing, the system tried to use the B+
tree indexing structure for efficient indexing. For
checking the identical chunks in the B+ tree
structure, one-way hash function is used which can
reduce the risk of finding identical information in the
file.

The system will first separate the file into
variable-length chunks using Two Threshold Two
Divisor chunking algorithm (TTTD algorithm).
ChunkIDs are then obtained by applying hash
function to those variable-length chunks. The
resulted chunkIDs are used to build as indexing keys
in B+ tree like index structure.

3.1. System Architecture Overview

The architecture of the proposed system is
illustrated in Figure. The system includes the major
components: File Chunker, Chunk_ID Generator,
Duplicate Finder, Metadata and Storage. Input file
format may include .PDF, .html, .txt, .doc, etc. Input
files are separated into variable length chunks by File
Chunker. The Chunk_ID Generator uses the resulted
chunks from the File Chunker to generate Chunk_ID
by applying SHA1, which is secure hash function,
also well known for its hash collision resistance. By
using the Chunk_ID, Duplicate Finder checks
whether that Chunk_ID is already exist or not in the
Metadata, where the proposed B+ tree indexing
mechanism is built. The contents of the chunk data
are stored in the storage space.

Figure 1. Proposed system architecture

3.1.1. Chunking (File Chunker). Chunking divides
a file deterministically into segments or chunks. This
technique was initially used in the Low-bandwidth
Network File System [7] to conserve bandwidth.
Although smaller segments yield better
deduplication, they results in a large number of
chunks and led to increase in metadata associated
with them. On the other hand, large size chunks can
reduce the chance of identifying duplicate data. Two
Thresholds Two Divisors (TTTD) chunking
algorithm can avoid very small chunking and very
large chunking. Hence, we use TTTD chunking
algorithm in the proposed system.

3.1.2. Hashing (SHA1).To generate the Chunk_ID,
the Chunk_ID generator uses SHA1 which produces
160 bits signature for each chunk.

3.1.3. Deduplication (Duplicate Finder). Its finds
the duplicate Chunk_ID in the existing B+ tree
indexing structure with the incoming Chunk_ID.

 The algorithm for the duplicate finder is as
follow:
DuplicateFinder(chunkID,chunkIDMetadata,Chunk)
Begin

found � searchInBPlusTree(chunkID)
if found in BPlusTree
then
 appendBPlusTree(chunkIDMetadata)
else
 updateBPlusTree(chunkID,chunkIDMetadata)
 store(chunk)
endif

End

3.1.4. Indexing. The metadata maintain the B+ tree
structure of the already stored files information
including Chunk_ID, file information. The proposed

File
Chunker

Chunk_ID
Generator

Duplicate
Finder

Metadata

Storage

Input Files

indexing mechanism using B+ tree properties is
depicted in Section 4.

4. Proposed B+ Tree indexing mechanism

The resulted Chunk_ID generated from the
Chunk_ID Generator are used to construct as B+ tree
index structure and maintains as metadata. By using
the advantage of B+ tree properties, the optimal
search time O(log n) which is more efficient than the

full chunk indexing O(n). The proposed indexing
mechanism is as shown in Figure 2.
Where,
 Chunk_IDn – Hash Code
 Chunk_ID’s Metadata –file name, file type,

chunk number, offset of
the chunk in that file,
chunk length

Chunkn –Content of chunk

Figure 2. The proposed B+ Tree indexing mechanism

4.1. Time Complexity of B+ Tree
 The comparison of B+ tree indexing to full
chunk indexing mechanism is shown in Table 1.

Table 1.Comparison of B+ tree indexing to
other indexing mechanism

 Creation Insertion Searching

Full chunk
Indexing

O(1) O(n) O(n)

B+ tree
Indexing O(1) O(log n) O(log n)

5. Experimental Setup

 In our implementation, The ChunkIDs are
generated using SHA1 hash algorithm. The data are
internally stored as files on the underlying ext3
filesystem. We take an experimental approach to
compare it with the compression performance of two
other typical traditional methods. The testbed is
deployed to consist of one server. The server had
dual-core processors at 2.1 GHz, 2 GB RAM, and

Hard disk with 320 GB. While by now it is difficult
to get the real enterprise level dataset, we collect
some workloads which are general enough to
represent the characteristics of the real massive data
and to prove the concept. The workloads include:
1658.88 MB (1.62 GB) of web documents, text files
and PDF files.
 A data deduplication ratio over a particular time
period is the number of bytes input to a data
deduplication process divided by the number of bytes
output. Figure 3 depicts the space reduction ratio
relevant in most situations which reflects all of the
complementary capacity optimization technologies
actually used.

Figure 3. Space Reduction Ratio

Memory

 0xfff 0xf04 0x81f4 ...

ChunkID6 ChunkID7

ChunkID3 ChunkID5

ChunkID1 ChunkID2 ChunkID3 ChunkID4 ChunkID5

ChunkID1’s

Metadata ChunkID2’s

Metadata ChunkID3’s

Metadata ChunkID4’s

Metadata
ChunkID5’s

Metadata
ChunkID6’s

Metadata
ChunkID7’s

Metadata

Chunk1 Chunk5 Chunk3 Chunk6 Chunk2 Chunk4 Chunk7

Capacity
Optimization

Bytes Out Bytes In

 Ratio =
Bytes In

Bytes Out

 The compression results of the proposed system
compared with other methods (we use WinZIP and
WinRAR here) are described in Table 2.

Table 2.Comparison of compression ratio
using different compress methods

 Original
Space

Win
ZIP

Win
RAR

Our
System

1.62 GB
1.29
GB

1.10
GB

1.27 GB

Space Saving -
338.76

MB
(20 %)

532.48
MB

(31.5%)

348.16
MB

(20.5 %)
Compression
ratio(%)

- 1:0.79 1:0.68 1:0.78

6. Conclusion

We designed a framework for Efficient Data
Deduplication. It can reduce the storage space as its
potential purpose. Because of using effective and
efficient Hash Algorithm for creating Chunk_ID to
check duplicate data, it can be more effective and
reliable for security and hash collision. We proposed
an efficient indexing mechanism to speed up the
searching facility to identify redundant chunks. By
using proposed Chunk_ID based B+ tree searching
mechanism, significantly reduce the searching time
and comparison space.

7. References

[1] Alberto H.F. Laender, Altigran Soares da Silva,”
Learning to deduplicate”, Proc. 8th ACM/IEEE-CS joint
conference on Digital libraries (JCDL), Association for
Computing Machinery (ACM) , New York, USA, 2006,
pp. 41-50.

[2] Athicha, M., Benjie, C., and David, M., “LBFS: A low-
bandwidth network files system”. 18th ACM Symposium
on Operating Systems Principles (SOSP '01), Canada,
2001, pp. 174–187.

[3] Bayer .R and MC. Creight, “Organization and
Maintenance of Large Ordered Indices”, Acta Informatica,
Volume 1, Springer Berlin/Heidelberg, New York, 1972,
pp. 173-189.

[4] Chauanyi, L. et.al, “ADMAD: Application-Driven
Metadata Aware De-duplication Archival Storage System”,
Fifth IEEE International Workshop on Storage Network
Architecture and Parallel I/Os (SNAPI), IEEE Computer
Society, Los Alamitos, CA, USA, 2008, pp.29-35.

[5] Daniel P. Lopresti, “Models and Algorithms for
Duplicate Document Detection”, Preceedings of the Fifth
International Conference on Document Analysis and
Recognition (ICDAR’99), IEEE Computer Society,
Washington, DC, USA, 1999, pp. 297-300.

[6] Dave Reinsel, “Our Expanding Digital World: Can we
contain it? Can we manage it?”, Intelligent Storage

Workshop (ISW), University of Minnesota, MN, May
2008, pp. 13-14.

[7] Eshghi, K., “A Framework for Analyzing and
Improving Content-based Chunking Algorithms”,
Technical Report HPL-2005-30(R.1), Hewlett-Packard
Laboratories, Palo Alto, CA, 2005.

[8] Eshghi, E. et.al., “High Performance Scalable Data
Deduplication”, Storage Systems Research Center:
University of California, 2008.

[9] Jared, D. et.al, “Learning-based Fusion for Data
Deduplication”, Seventh International Conference on
Machine Learning and Applications (ICMLA’08), IEEE
Computer Society, California, USA, 2008, pp. 66-71.

[10] M. O. Rabin, “Fingerprinting by random
polynomials”, Technical Report TR-15-81, Center for
Research in Computing Technology, Harvard University,
1981.

[11] Michael T. Goodrich, Data Structures and Algorithm
in C++, Wiley Publishing, 2009, pp. 598.

[12] M.Lillibridge et al., “Sparse Indexing, Large Scale,
Inline Deduplication Using Sampling and Locality”. 7th
USENIX Conference on File and Storage Technologies,
USENIX Association, San Francisco, California, 2009, pp.
111-123.

[13] National Security Agency, “Secure Hash Standard”,
Federal Information Processing Standards Publication 180-
1, US government standards agency NIST, 1995.

[14] S., Ramaswamy, “Efficient Indexing for Constraint
and Temporal Databases”, Preceedings of 6th International
Conference on Database Theory, Springer
Berlin/Heidelberg Bell, Delphi, Greece, 1997, pp. 419-431.

[15] S. Walter, T.Thiago, M.Carla and Jr. Wagner Meira,
“A Scalable Parallel Deduplication Algorithm”, 19th
International Symposium on Computer Architecture and
High Performance Computing, IEEE Computer Society,
Brazil, 2007, pp. 79-86.

[16] W.You et al., “PRUN: Eliminating Information
Redundancy for Large Scale Data Backup System”,
International Conference on Computational Sciences and
Its Applications (ICCSA 2008), IEEE Computer Society,
Italy, 2008, pp. 139-144.

[17] Z. Benjamin et al., “Avoiding the Disk Bottleneck in
the Data Domain Deduplication File System”, 6th
USENIX Conference on File and Storage Technologies
(FAST ’08), USENIX Association, San Jose, USA, 2008,
pp. 269-282.

