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  Abstract 

In this paper, we discuss several basic properties of cone, convex, tangent cone, 

and bring to a focus on the sequential Bouligand tangent cone which is also 

called the contingent cone. For this tangent cone we prove several basic 

properties. 
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Definition      Let X be a given set. Assume that an addition on X, i.e., a mapping from 

X X  to X, and a scalar multiplication on X, i.e., a mapping from X  to X, is 

defined. The set X is called a real linear space, if the following axioms are satisfied (for 

arbitrary x, y,z X  and ,   ): 

(a) (x + y) + z = x + (y + z),  

(b) x + y = y + x,  

(c) there is an element X0 X  with Xx + 0 x  for all x X,  

(d) for every x X  there is a y X  with Xx + y = 0 ,  

(e) (x + y) = x + y,    

(f) ( ) x = x + x,     

(g) ( x) = ( ) x,    

(h) 1x = x.  

The element X0  given under (c) is called the zero element of X.  

 

Definition Let C be a nonempty subset of a real linear space X.  

(a) The set C is called a cone, if  

x C,    0 xC.  
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(b) A cone C is called pointed, if  

           Xx C, x C x 0 .      

 

 

 

 

 

 

 

 

 

Example (a) The set n n

i{x | x 0    for all i {1,...,n}} is a pointed cone. 

(b) The set C {x C[0,1] | x(t) 0   for all t [0,1]} is a pointed cone. 

 

 In order theory and optimization theory convex cones are of special interest. Such 

cones may be characterized as follows: 

 

Theorem* A cone C in a real linear space is convex if and only if for all x, y C  

x y C.                            (1) 

Proof.        (a) Let C be a convex cone. Then it follows for all x, y C  

  
1 1 1

(x y) x y C
2 2 2

    

which implies x y C.   

(b) For arbitrary x, y C and [0,1]   we have x C  and (1 )y C.   

Then we get with the condition (1) x (1 ) y C.     

Consequently, the cone C is convex. 

  

Definition    Let S be a subset of a real linear space X. 

(a) Let some x S  be given. The set S is called starshaped at x , if for every x S  

 x (1 ) x S for all [0,1].       

 
. 
C 

Figure 1: Cone. 

C 
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Figure 2: Pointed cone. 

 



(b) The set S is called convex, if for everyx, y  S  

 x + (1  )yS     for all [0, 1].  

 

 

 

 

 

 

 

 

        Figure 3: Convex set.                Figure 4: Non-convex set. 

 

Obviously, the empty set is convex and a set which is starshaped at every point is convex 

as well. 

 

Lemma Let S and T be convex subsets of a real linear space X. 

(a) The intersection of arbitrarily many convex sets is convex. 

(b) If S and T are nonempty, then the algebraic sum S+ T   is convex for all        

, .   Consequently, for every x X  the translated set S+{x}  is convex as well. 

Proof. (a) Let 1 2 nS ,S ,...,S  be convex sets. 

Take any 
n

i
i=1

x, y S  and [0,1].   

So, ix, y S for all i = 1, 2, ..., n.  

Since iS  is convex, ix + (1 ) y S for all i = 1, 2, ..., n.     

Hence, 
n n

i i
i=1 i=1

x + (1 ) y S and  S     is convex. 

Therefore, the intersection of arbitrarily many convex sets is convex. 

(b) Take any x, y S+ T and  [0,1].     

Then there exist 1 2 1 2s ,s S and t , t T   such that 1 1 2 2x = s t and y = s t .     

1 1 2 2

1 2 1 2

x + (1 ) y = ( s t ) (1 )( s t )

( s (1 )s ) ( t (1 ) t )

          

          
 

1 2 1 2Since s (1 )s S and t (1 ) t T, x + (1 )y S + T.                

x 

y 

x y 



Therefore, S+ T  is convex. 

For every x X.  

Take any x, y S+{x} and [0,1].     

Then there exist 1 2 1 2s ,s S such that x s x and y = s x.     

1 2

1 2

x + (1 ) y = (s x) (1 )(s x)

s (1 )s x

        

     
 

Since 1 2s (1 )s S,  x + (1 ) y S +{x}.          

Therefore, S+{x}  is convex. 

 

In the sequel, we also define cones generated by sets. 

 

Definition Let S be a nonempty subset of a real linear space. The set 

cone(S) { s | 0    and s S}  

is called the cone generated by S. 

 

 

 

 

 

 

 

 

 

 

 

Example (a) Let XB(0 ,1) denote the closed unit ball in a real normed space  X, . .  

Then the cone generated by XB(0 ,1)  equals the linear space X. 

 

 

 

 
. 

cone(S) 

Figure 5: Cone generated by S. 

S 



(b) Let S denote the graph of the function f :  with 

  

1
x sin if x 0

f (x) .x

0 if x 0

 
 

  
  

 

Then the cone generated by S is given as 2cone(S) {(x, y) | y x}.    

 

 Now we turn our attention to tangent cones. 

 

Definition Let S be a nonempty subset of a real normed space  X, . .  

(a) Let x cl(S) be a given element. A vector h X is called a tangent vector to S at x,  

if there are a sequence n n N(x )   of elements in S and a sequence n n N( )   of positive real 

numbers with 

  n
n

x lim x


  

and 

  n n
n

h lim (x x).


    

(b) The set T(S, x) of all tangent vectors to S at x is called sequential Bouligand 

tangent cone to S at x or contingent cone to S at x.  
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      Figure 6: Two examples of contingent cones. 

 

Notice that x needs only to belong to the closure of the set S in the definition of 

T(S, x).But later we will assume that x S.  

 By the definition of tangent vectors it follows immediately that the contingent 

cone is in fact a cone. 

 Before investigating the contingent cone we briefly present the definition of the 

Clarke tangent cone which is not used any further in this paper. 

 

Remark    Let x  be an element of the closure of a nonempty subset S of a real 

normed space  X, . .  

(a) The set 

 ClT (S, x) {h X |  for every sequence n n N(x )   of elements of S with n
n

x lim x


   

       and for every sequence n n N( )   of positive real numbers converging  

       to 0 there is a sequence n n N(h )   with n
n

h lim h


  and n n nx h S    

       for all n }  

is called (sequential) Clarke tangent cone to S at x.  

(b) It is evident that the Clarke tangent cone ClT (S, x)  is always a cone. 

(c) If x S, then the Clarke tangent cone ClT (S, x)  is contained in the contingent cone 

T(S, x).  

 
S . .   



For the proof of this assertion let some Clh T (S, x)  be given arbitrarily. Then we choose 

the special sequence n N(x)   and an arbitrary sequence n n N( )   of positive real numbers 

converging to 0. Consequently, there is a sequence n n N(h )   with n
n

h lim h


  and 

n nx h S   for all n . Now we set  

  n n ny x h    for all n  

and 

  n

n

1
t 


 for all n .  

Then it follows 

  ny S  for all n ,  

  n n n
n n
lim y lim(x h ) x
  

     

and 

  n n n n n
n n n

n

1
lim t (y x) lim (x h x) lim h h.
    

      


 

Consequently, h is a tangent vector. 

(d) The Clarke tangent cone ClT (S, x)  is always a closed convex cone. We mention this 

result without proof. Notice that this assertion is true without any assumption on the set 

S. 

 

 Next, we come back to the contingent cone and we investigate the relationship 

between the contingent cone T(S, x) and the cone generated by  S x .  

 

Theorem Let S be a nonempty subset of a real normed space. If S is starshaped with 

respect to some x S, then it follows   cone S x T(S,x).   

Proof.        Let the set S be starshaped with respect to some x S, and let an arbitrary 

element x S be given. Then we define a sequence n n N(x )  with  

  n

1 1 1
x x (x x) x (1 )x S

n n n
        for all n .  



For this sequence we have   

  n
n
lim x x


  

and 

  n
n
lim n(x x) x x.


    

Consequently, x x is a tangent vector, and we obtain 

   S x T(S,x).   

Since T(S, x) is a cone, we conclude 

    cone S x cone(T(S,x)) T(S,x).    

 

Theorem Let S be a nonempty subset of a real normed space. For every x S it 

follows    T(S, x) cl cone S x .   

Proof.        We fix an arbitrary x S and we choose any h T(S, x).  

Then there are a sequence n n N(x )  of elements in S and a sequence n n N( )  of positive 

real numbers with n
n

x lim x


  and n n
n

h lim (x x).


   The last equation implies    

     h cl cone S x   

which has to be shown. 

 

 By the two preceding theorems we obtain the following inclusion chain for a set S 

which is starshaped with respect to some x S:  

        cone S x T(S,x) cl cone S x .              (2) 

 

 The next theorem says that the contingent cone is always closed. 

 

Theorem** Let S be a nonempty subset of a real normed space  X, . . For every 

x S the contingent cone T(S, x) is closed. 



Proof.        Let x S be arbitrarily chosen, and let n n N(h )   be an arbitrary sequence of 

tangent vectors to S at x with n
n
lim h h X.


   

For every tangent vector nh there are a sequence n i Ni
(x )  of elements in S and a sequence 

n i Ni
( )  of positive real numbers with nii

x lim x


 and n n ni ii
h lim (x x).


    

Consequently, for every n there is a number i(n) with 

  ni

1
x x

n
   for all i with i i(n)  

and 

  n n ni i

1
(x x) h

n
     for all i with i i(n).  

If we define the sequences n n N(y )  and n n N(t )  by 

  n ni(n)
y x S   for all n  

and 

  n ni(n)
t 0    for all n ,  

then we obtain n
n
lim y x


 and 

  n n n n n ni(n) i(n)
t (y x) h (x x) h h h         

      n

1
h h

n
    for all n .  

Hence we have 

  n n
n

h lim t (y x)


   

and h is a tangent vector to S at x.  

 

 Since the inclusion chain (2) is also valid for the corresponding closed sets, it 

follows immediately with the aid of Theorem**: 

 

Corollary* Let S be a nonempty subset of a real normed space. If the set S is 

starshaped with respect to some x S, then it is    T(S, x) cl cone S x .   



 If the set S is starshaped with respect to some x S, then Corollary* says 

essentially that for the determination of the contingent cone to S at x  we have to consider 

only rays emanating from x  and passing through S. 

 Finally, we show that the contingent cone to a nonempty convex set is also 

convex. 

 

Theorem If S is a nonempty convex subset of a real normed space  X, . , then the 

contingent cone T(S, x) is convex for all x S.  

Proof.        We choose an arbitrary x S  and we fix two arbitrary tangent vectors 

1 2h ,h T(S, x) with 1 2 Xh ,h 0 .  

Then there are sequences n n N n n N(x ) , (y )   of elements in S and sequences n n N( ) ,  

n n N( )   of positive real numbers with      

  n 1 n n
n n

x lim x , h lim (x x)
  

     

and  

  n 2 n n
n n

x lim y , h lim (y x).
  

     

Next, we define additional sequences n n N( )  and n n N(z )  with 

  n n n     for all n  

and 

  n n n n n

n

1
z ( x y )   


 for all n .  

Because of the convexity of S we have 

  n n
n n n

n n n n

z x y S
 

  
     

 for all n ,  

and we conclude 

  n n n n n
n n

n

1
lim z lim ( x y )
  

   


 

   n n n n n n n n
n

n

1
lim ( x x y x x x)


         


 



   n n
n n

n
n n

lim( (x x) (y x) x)


 
    

 
 

   x  

and 

  n n n n n n n
n n
lim (z x) lim( x y x)
  

         

    n n n n
n
lim( (x x) (y x))


        

    1 2h h .   

Hence it follows 1 2h h T(S, x).  Since T(S, x) is a cone, Theorem* leads to the 

assertion. 

 

 Notice that the Clarke tangent cone to an arbitrary nonempty set S is already a 

convex cone, while we have shown the convexity of the contingent cone only under the 

assumption of the convexity of S.  
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