

A High-Performance Data Transfer By Using An Application Level

Transport Protocol

 Khin Ngu Wah Lai Yee,Khaing Khaing Wai

nguwah89@gmail.com,khaingkhaing.73@gmail.com

Computer University, Maubin

Abstract

Delivery of data files as large as media type files

between business organizations using file transfer is

becoming an increasingly attractive alternative to the

physical movement of CDs, flash memory drives or

disks. However, widespread adoption of file-based

delivery, especially over public networks such as the
Internet, requires the adoption of secure, reliable and

interoperable solutions. This thesis presents the work

of sending media type files using the UDP based

Data Transfer (UDT). Case studies of the

implementation and use of UDT are included,

together with an investigation of transfer

performance.

Keywords : Fast Data Transfer, UDP Data transfer,

UDT, Application level data transport, UDP based

Data Transfer

1. Introduction

As network bandwidth and delays increase, TCP

becomes inefficient. These problems are due to slow

loss-recovery, a RTT (Round Trip Time) bias

inherent in its AIMD (Additive Increase

Multiplicative Decrease) congestion-control

algorithm, and the bursting data flow caused by its

window control. Data-intensive applications over

high bandwidth delay product (BDP) networks, such

as computational grids, need new transport protocols

to support them. To meet this requirement, we have

developed an application-level protocol built above

UDP, called UDP- based Data Transfer protocol, or
UDT. UDT has a congestion control mechanism that

maintains efficiency, fairness and stability, and its

application-level nature enables it to be deployed at

the lowest cost, without any changes in the network

infrastructure or operating systems.

This thesis studies different types of data transfer

protocols and observe the efficiency of using UDT

protocol. It is intended to provide a general purpose

data transfer service that can utilize the bandwidth

efficiently and fairly. This protocol transfers data

from one single byte to hundreds of gigabits. It uses

UDP with loss detection /retransmission and
congestion control.

2. Related works

UDP-based File Transfer Protocol UFTP is

implemented on the top of the connectionless

oriented protocol UDP. Its objective is to optimize

the efficiency and performance of the packet transfer

on the Internet to greatly reduce the network latency.

To better understand the UFTP, let’s briefly explain

what kinds of network connections are used for an
FTP session and compare them to those used in our

new protocol. FTP uses two TCP connections, one

for exchanging command/control packets, and the

other for the data itself. Basically, FTP protocol is

not concerned about retrieving the missing/corrupted

packets. The job of “providing a reliable network

connection” is delegated to the transfer layer protocol

TCP. [1]

Media Dispatch Protocol (MDP) : It specifies how

the manifest documents should be exchanged, and

has defined the semantic rules for a delivery. This has
led to the development of the Media Dispatch

Protocol (MDP) for orchestrating and controlling file

transfer of media between organizations. Because

MDP is an open protocol, anyone can implement

systems using it. Just as with SMTP, the protocol that

makes email possible, MDP is designed to let

systems work together without prescribing how those

systems are implemented. MDP provides a common

way for different systems to plug together. [2]

3. Background theory

3.1. UDT - (UDP - based data transfer)

UDT is an application level protocol that is based

on UDP (User Datagram Protocol). UDP has similar

functionalities to TCP (Transmission Control

Protocol) which is connection-oriented reliable

duplex unicast data streaming. Compared to TCP,

UDP is connectionless protocol that emphasis on fast
data transfer. UDP is used in streaming media

applications such as IPTV, Voice over IP (VoIP),

Trivial File Transfer Protocol (TFTP), online games

and Instant Messaging.

Although based on a widely used protocol UDP,

UDT is considered as a new protocol design and I

mplementation accompanied with a new congestion

control algorithm. It also has a capability of
configurable congestion control framework.

3.1.1. Packet formats. There are two basic classes of

packets in UDT: data packet and control packet.

They are distinguished by the first bit of the packet

header. The header of a data packet is a flag bit of

“0” followed by a 31-bit sequence number. The value

of sequence packet’s numbers are ranged from 0 to

(2^30_1). UDT does not allow packet size larger

than MTU (Maximum Transfer Unit) ,so the largest

application data size can be carried in one packet

is(MTU - 32) bytes. UDT always tries to pack data
in the maximum size and the unit of numbers of

packets per second is used to measure transfer speed

in data communication. If the first bit of a UDT

header is 1, then the packet is marked as a control

packet,

B it 0:

Flag=1

Bit 1-3:

Type

Bit 4-15:

Reserved

Bit 16-31:

ACK ID or loss length

Figure 1. Control packet format

3.1.2. Control information field. Content depends

on type field:

• Type 000 (handshake) : maximum flow

window size, MTU

• Type 001(keep-alive):None

• Type 010(ACK):acknowledged sequence

number, RTT, packet arrival speed,

estimated bandwidth

• Type 011(NAK): loss information

• Type 100(delay increase warning): None
• Type 110(ACK^2):None

3.1.3. Protocol architecture

Figure 2. Diagram of protocol architecture

4. Architecture of UDT based application

system

The UDT layer has five function components:

1. the API module

2. the sender

3. the receiver

4. the listener and
5. the UDP channel

Four data components:

1. sender’s protocol buffer

2. receiver’s protocol buffer

3. sender’s loss list and

4. receiver’s loss list.

Figure 3. UDT components

UDT is bi-directional, all UDT entities have the

same structure. The API module is responsible for

interacting with applications. The data to be sent is

passed to the sender's buffer and sent out by the

sender into the UDP channel.

At the other side of the connection (not shown in

this figure but it has the same architecture), the

receiver reads data from the UDP channel into the

receiver's buffer, reorders the data, and checks packet

losses. Applications can read the received data from
the receiver's buffer. The receiver also processes

received control information. It will update the

sender's loss list (when NAK is received) and the

receiver's loss list (when loss is detected).Certain

control events will trigger the receiver to update the

congestion control module, which is in charge of the

sender’s packet sending.

The UDT socket options are passed to the

sender/receiver (synchronization mode), the buffer

management modules (buffer size), the UDP channel

(UDP socket option), the listener (backlog), and CC
(the congestion control algorithm, which is only used

in Composable UDT). Options can also be read from

these modules and provided to applications by the

API module. The API model of UDP provides data

transfer services to software developers to develop

network applications.

4.1. Sender's algorithm

1. If there is no application data to send, sleep

until it is waken by the application.

2. Packet sending:

a) If the sender’s lost is not empty, remove

the first lost sequence number from the

list and send the proper packet out.

b) Otherwise, if the number of unacknow-

ledged packets does not exceeded the flow
window size, pack a new packet and sent

out.

c) Update the number of sent packets since

last SYN time.

d) If the current packet and the next packet

are sampled probing packet pair. Go to 1).

e) Wait to the next packet sending time;

Wait for additional SYN time if the rate

control has decided that data sending

should be frozen. Go to 1).

4.2. Receiver's Algorithm

1) Query the timers

a) If ACK timer is expired and there are new

packets to acknowledge, send back an

ACK report;

b) If NAK timer is expired and the receiver’s

loss list is not empty, send back an NAK

report;

c) If SYN timer is expired:
• If the number of received packets

since last SYN time is greater than 0,

update the NAK interval.

• If the number of sent packets since

last SYN time is greater than 0,

update sending rate.

• If EXP timer is expired, put all the

sequence numbers of sent packets

since the last acknowledged number

into the sender’s loss list.

• Reset the expired timers.

2) Start time bounded UDP receiving. If nothing

received before the UDP timer expires, go to

1).

3) If the received packet is a control packet,

process it, and reset EXP timer; if it is ACK

or NAK; go to 1);

4) Compare the sequence number of current data

packet (A) and the largest sequence number

ever received (B):

a) If A > B + 1, generate a loss report , put

the sequence number between A and B

into the receiver’s loss list;
b) If A < B, remove A from the receiver’s

loss list;

c) Update B;

5) If the size of current packet is not equal to

the fixed UDT packet size, record the

current sequence number and the size

difference (for buffer management use). Go

to 1).

Figure 4. Media transfer diagram

The data transfer programs of the requester and

the Media library use the API of the UDT protocol.

The sender and the receiver programs are connected

through the protocol. When sending a requested file

from the media library, the program selects the

required file and sends it to the requestor PC. When

the transmission is initiated, the file transfer handling

is performed by the UDT protocol.

Figure 5. System flow diagram

Figure 5 shows the process flow of the proposed
system. Select the file from the Media file list. The

request will be sent to the "Media library" to validate

the media file existence. The selected media file will

be sent to the requester on UDT protocol based data

transfer. The algorithm of UDT protocol is

mentioned above by sender's and receiver's.

algorithms. The process will terminate after the data

transfer is completed.

Figure 6. Select media file

Figure 7. View of requested files list from requester

Figure 8. Requested file lists from media center

All requested files list is seen in this media center.

Selects requested files and then click the “Allow”

button to transfer requested files When media file has

been successfully received, the status of media center

becomes “Transferred”.

Figure 9. Transfer media files list

4.3. Experimental results

According to the transfer test using the UDT

protocol, the following result

File type File size Transfer

Duration in

Minutes :

seconds

Pdf (3.1 mb) 1:35

Mp3 (5.2 mb) 1:45

Mp4 (9.8 mb) 3:40

Table 1 : Comparison of Transfer rate on media file

5. Conclusion

High-speed data transfer creates many challenges

for the design and implementation of different

transport protocols. Any additional action on per
packet processing can lead to a significant increase in

CPU usage, whereas a bursting of CPU usage can

further lead to packet loss. Moreover, on long

distance links, the number of on flight packets is also

huge and requires large data storage to temporally

record their information. Access to such data storages

is also critical. The UDP based protocol combines

both rate based and window based congestion to

reach efficiency and fairness objectives. The

protocol of UDT can utilize the abundant optical

bandwidth independent of the link capacity and
network delay. Using constant synchronization time

enables the protocol to reach fairness independent of

RTT.

6. References

[1] Jingsong Zhang and Robert D. McLeod, “A UDP-

Based File Transfer Protocol (UFTP) with Flow Control

using a Rough Set Approach” , Dept. of Electrical and
Computer Engineering, University of Manitoba, Winnipeg,
MB, R3T 2N2,Canada.

[2] Peter Brightwell , “Standardising media delivery in a
file-based world” , BBC Research White Paper WHP 158.

[3] YUNHONG GU, B.E., “UDT: A HIGH

PERFORMANCE DATA TRANSPORT PROTOCOL”,
Hangzhou Institute of Electronic Engineering, China, 1998,
M.E., Beijing University of Aeronautics and Astronautics,
China, 2001.

[4] Yunhong Gu and Robert L. Grossman, “UDT: An
Application Level Transport Protocol for Grid Computing”,
Laboratory for Advanced Computing / National Center for

Data Mining, University of Illinois at Chicago, 700 SEO,
M/C 249, 851 S Morgan St, Chicago, IL 60607, USA.

