
Dynamic Load Balancing in Parallel Processing on Heterogeneous System

Su Thet Aung, Khin Kyu Kyu

Computer University, Pathein

ms.suthet@gmail.com, khinkyu28@gmail.com, mayphyooo@gmail.com

Abstract

This paper presents the parallel computing and

dynamic load balancing on heterogeneous system

architecture, simultaneously analyzing the

theoretical parallel Speedup as well as the Speedup

experimentally obtained. Load balancing techniques

play a very important role in developing high

performance system. However, the parallel

computing algorithm use that one slave computer

calculates one problem. If the problem is small and

the processor speed is high, the performance of the

system is increased. If the problem is very large but

the processor speed is slow, the performance of the

system is decreased. Hence, dynamic load balancing

system is developed to evaluate performance of load

balancing algorithm and to calculate on the slave

nodes. The proposed dynamic load balancing

scheme can minimize the average slow down of all

parallel jobs running on a system and reduces the

average response time of jobs.

1. Introduction

A distributed system consists of multiple

autonomous computers that communicate through a

computer network. The computers interact with each

other in order to achieve a common goal. Distributed

computing also refers to the use of distributed

systems to solve computational problems. In

distributed computing, a problem is divided into

many tasks, each of which is solved by one

computer.

Decrease in hardware costs and advances in

computer networking technologies have lead to

increased interest in the use of large-scale parallel

and distributed computing systems. One of the

biggest issues in such systems is the development of

effective techniques/algorithms for the distribution

of the processes/load of a parallel program on

multiple hosts to achieve goal(s) such as minimizing

execution time, minimizing communication delays,

maximizing resource utilization and maximizing

throughput. Using queuing analysis and assuming

job arrivals in a multi-host system the probability of

one of the hosts being idle while other host has

multiple jobs queued up can be very high. Such

imbalances in system load suggest that performance

can be improved by either transferring jobs from the

currently heavily loaded hosts to the lightly loaded

ones or distributing load evenly/fairly among the

hosts. The algorithm is known as load balancing

algorithm. [6] Dynamic load balancing algorithms

(DLB) are adaptive to changing situations and take

decisions at run time.

In this paper, three heterogeneous nodes connect

by a switch-based network. The master node can

predict the average execution time of tasks for each

slave node based on the information from the

corresponding slave node. Then, the master node

redistributes remaining tasks to each node

considering the predicted execution time. Dynamic

load balancing uses execution time prediction to

optimize the task redistribution.

2. Model Structure

 2.1 Network Model

Figure 1 shows master-slave network model.

The parallel programs simulated follow the master

and slave network model, where a master task

generates a number of slave tasks. [2] Each slave

task carries out some processing and sends result

back to the master. After receiving the results from

all the slaves, the master task will be terminated.

Figure1. Master- Slave Network Model

Master/Slave node

Slave nodes

Hub

mailto:ms.suthet@gmail.com,%20khinkyu28@gmail.com
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Computer_network

The system considered in this paper consists of three

heterogeneous nodes and have switch-based

network. The master node is randomly selected

among nodes and has additional jobs which

distribute tasks and gather results from slave nodes,

processing own task as one node.

2.2 Parallel Computing

Parallel computing algorithm is a form of

computation in which many calculations are carried

out simultaneously, operating on the principle that

large problems can often be [5] divided into smaller

ones, which are then solved concurrently (“in

parallel”). There are several different forms of

parallel computing: bit-level, instruction level, data

and task parallelism. In this system, task parallelism

is a form of parallelization of computer code across

multiple processors in parallel computing

environments. Task parallelism focuses on

distributing execution processes across different

parallel computing nodes. In this system, task

parallelism is achieved when each processor

executes a different process on the same or different

data because of using three processors. The process

may execute the same or different problem. In the

general case, different [3] execution threads

communicate with one another as they work.

Communication takes place usually to pass data

from one thread to the next as part of a workflow.

2.3 Load Balancing

Load balancing on multi computers is a

challenge due to the autonomy of the processors and

the inter processors communication overhead

incurred in the collection of state information,

communication delays, redistribution of load, etc.

Parallel and distributed computing environment is

inherently best choice [1] for solving/running

distributed and parallel program applications. In

such type of applications, a large process/task is

divided and then distributed among multiple hosts

for parallel computation. Has pointed out that in a

system of multiple hosts the probability of one of the

hosts being idle while other host has multiple jobs

queued up can be very high. Here load balancing is

likely to improve performance. Such imbalances in

system load suggest that performance can be

improved by either transferring jobs from the

currently heavily loaded hosts to the lightly loaded

ones or distributing load evenly/fairly among the

hosts .The algorithms known as load balancing

algorithms, helps to achieve the above said goal(s).

[4] The processors are categorized according to

workload in their queues as heavily loaded (more

tasks are waiting to be executed), lightly loaded (less

tasks are waiting to be executed in queue) and idle

processors/hosts (having no pending work for

execution). Here queue length is used as an indicator

of workload at a particular processor. But none of

them is found to be an idle.

3. Dynamic Load Balancing Algorithm

1. Nature
DLB algorithms are of dynamic and no-

planning nature as tasks are assigned at run-time to

processors and tasks redistribution can take place if

task assignment that was earlier done is not giving

good performance (that is if proper balancing of load

is not there). So their behavior is totally

nondeterministic and no initial planning is done for

assigning load to hosts as this work is done at run-

time.

2. Resource Utilization
 DLB algorithms have relatively better resource

utilization as dynamic load balancing take care of

the fact that load should be equally distributed to

processors so that no processors should sit idle.

3. Preemptive
DLB algorithms are both preemptive and non

preemptive.

4. Predictability
DLB algorithm’s behavior is unpredictable, as

everything has been done at run time.

5. Adaptability

DLB algorithms are adaptive towards every

situation whether numbers of processes are fixed or

varying one.

6. Reliability
DLB algorithms are relatively more reliable

processes can be transferred to other nodes in case of

failure of node occurs.

7. Response Time
DLB algorithms may have relatively higher

response time as sometimes redistribution of

processes takes place. Sometime is being consumed

during task migration.

8. Stability
DLB such kind of information is exchanged

among processors and if this information is out of

date i.e. information which is not updated regularly

or periodically among processors then it can lead the

whole system to an unstable state.

4. The Proposed System

In proposed system, Master/ Slave paradigm use

three heterogeneous computers with different

calculation powers. The algorithm of the system has

two main parts. First, parallel computing algorithm

(without load balancing) calculates the matrix

operations. Secondly, dynamic load balancing

algorithm (with load balancing) also calculates the

matrix operation. In both algorithms request IP

Address from nodes. And these algorithms accept

input data (Matrix operations) with text file. Each

text file has many matrix operations with text ID

numbers. Parallel computing algorithm and dynamic

load balancing algorithm have two main parts

(master and slave programs), and use three nodes.

One node runs master program and slave program.

Two nodes run slave nodes. Master program send

the jobs to each slave node and collect the calculated

results from slave node. Slave program calculates

the problems on each slave nodes. If each slave

nodes calculate the tasks complete, send the results

from each slave to master node. Figure 2 is the

overview of the proposed system is described in

Figure 2.

Figure2. System Overview

4.1 Parallel Computing Algorithm (Without

Load Balancing)

Parallel computing algorithm calculates many

problems on a 3 heterogeneous processors system

(CPUs “a”, “b” and “c”) in a parallel environment

and to do tasks “A” ,”B” and “C”, and then tell CPU

“a” to do task “A”, CPU “b” to do task “B” and CPU

“c” to do task “C” simultaneously, thereby reducing

the runtime of the execution. Tasks “a”, “b” and “c”

have each text file that have many matrix operations

problems. The tasks can be assigned using

conditional statements as following algorithm.

program:

...

if CPU="a” then

do task "A"

else if CPU="b" then

do task "B"

else CPU=”c” then

do task “C”

end if

...

end program

The following Figure 3 shows the processing of

Parallel computing Algorithm

Figure3. System Flow Diagram of Parallel

Processing

4.2 Dynamic Load Balancing Algorithm

Dynamic load balancing algorithm calculates

many problems on 3 heterogeneous processors.

Dynamic load balancing algorithm where a

percentage of the total workload will be allocated to

the processor at the moment of starting the

application, according to each processor will

demand more work on the part of the Master, as its

task is being completed. In dynamic load balancing

Slave1

Slave2

Slave3
User

Input

Master

Load

Balancing

Algorithm

S1 Queue

S2 Queue

Collect

result

S3 Queue

Result of s2

Result of s3

Result of s1

algorithm, master program monitors the tasks and

queue length, divide the problems, and collects the

results. If the master program divides the problems,

it gives to each slave with tasks ID numbers in each

text file. Slave program calculates the matrix

operations. When one slave nodes is free, the master

program re-divides the tasks.

find out if I am MASTER or SLAVE

if I am MASTER

 do until no more jobs

 send to SLAVE next job

 receive results from SLAVE

 end do

 tell SLAVE no more jobs

else if I am SLAVE

 do until no more jobs

 receive from MASTER next job

 calculate jobs until the jobs has been completed

 send results to MASTER

 end do

endif

The dynamic load balancing using predictable

execution time without consideration of

communication cost. In order to achieve the

dynamic load balancing, master node has to

calculate a task to move using the load information

of slave node. N is the number of task that

distributed with the nodes of the number of P

equally, master node per time tj collects the

information of task number (ni) in ready queue of

each slave node i , 1, …, P. Master node calculates

average time that each slave node executes a task

through the collected information during period tj.

Ttask = , i = 1 … P …………….. (1)

Ntotal is the total number of tasks on slave node, then

nj

Ntotal = Σ …………… (2)

Ideally, in order to get the best performance of

cluster system, all slave nodes should finish the task

simultaneously. Thus, as shown in the following

equation, all slave nodes should be redistributed by

the task in the ratio of the performance of each slave

node.

n'1 x Ttask = n'2 x Ttask = ... = n'p x Ttask

 ……………… (3)

Solving the above two equations (i.e. equations 2 &

3), we can obtain the following formula for n’i:


n'i = x Ntotal , i = 1 … P

 ……………… (4)

 DLB algorithms that consider the current load

conditions (i.e. at execution time) in making job

transfer decisions. DLB algorithm can be

redistributed workload among hosts at the runtime

as the circumstances changes i.e. transferring the

tasks from heavily loaded processors to the lightly

loaded ones. Dynamic load balancing algorithm

continually monitor the load on all the processors,

and when the load imbalance reaches some

predefined level, this redistribution of work takes

place. The system adopts the number of tasks in the

ready queue of each node for measuring the load.

The processors are categorized according to

workload in their queues as heavily loaded (more

tasks are waiting to be executed), lightly loaded (less

tasks are waiting to be executed in queue) and idle

processors/hosts (having no pending work for

execution). Here queue length is used as an indicator

of workload at a particular processor. But none of

them is found to be an idle.

A DLB algorithm considers following issues:

(1) Load estimation policy, which determines

how to estimate the workload of a particular node of

the system.

(2) Process transfer policy, which determines

whether to execute a process locally or remotely.

(3) State information exchange policy, which

determines how to exchange the system load

information among the nodes.

i

tj

N - n

i=1

1 2 p

Ttask
i

P

j=1
Σ

1

Ttask
j

1

(4) Priority assignment policy, which determines

the priority of execution of local and remote

processes at a particular node.

(5) Migration limiting policy, which determines

the total number of times a process, can migrate

from one node to another.

The system flow diagram of dynamic load

balancing algorithm as shown in below:

Figure4. System Flow Diagram of Dynamic Load

Balancing

4.3 System result

 Parallel computing algorithm and dynamic load

balancing algorithm calculate the matrix operations.

Parallel computing algorithm calculates one problem

at one processor. If the problem is small and the

processor speed is fast, the performance of the

system is increased. If the problem is very large but

the processor speed is slow, the performance of the

system is decreased. Hence, this system can

overcome those above problems and can be adaptive

to calculate with slave nodes using dynamic load

balancing algorithm. Dynamic load balancing

algorithm is adaptive to calculate with salves nodes.

The experimentally results are shown in following

figures:

Figure5. Compare of parallel computing (without

load balancing) and load balancing

5. Conclusion

In this paper, the proposed dynamic load balancing

uses execution time prediction to optimize the task

redistribution. The various performance factors such

as number of nodes, number of tasks are considered

to improve the performance of the system. The

benefit of dynamic load balancing algorithm is

mapping objects on to a parallel machine. In

dynamic distribution, the Speedup obtained is quite

close to the optimum according to the parallel

architecture used in this system. Hence, the proposed

dynamic load balancing can minimize the average

slow down of all parallel jobs running on a system

and reduces the average response time of jobs.

8. Reference

[1] Y.C. Chow and W. Kohler, "Models for

Dynamic Load Balancing in a Heterogeneous

Mu1tiple Processor System," IEEE Transactions on

Computers, Vol. C-28, pp. 334-361.

[2] Derek L. Eager, Edward D. Lazowska , John

Zahorjan, “Adaptive load sharing in homogeneous

distributed systems”, IEEE Transactions on

Software Engineering, v.12 n.5, p.662-675.

[3] D L Eager, E D Lazowska , J Zahorjan, “A

comparison of receiverinitiated and sender-initiated

adaptive load sharing”, Performance Evaluation, v.6

n.1, p.53-68.

Start

Accept Input

What slave

node is free?

No

Divide input data (Load

Balancing Algorithm)

Yes

Send the divided input to

each slave node
Final result

Calculate the operation on

each slave node

Send the result to Master node

Collect the results from

each slave node

End

[4] Miron Livny, Myron Melman, “Load balancing

in homogeneous broadcast distributed systems”,

Proceedings of the Computer Network Performance

Symposium, p.47-55, April 13-14, 1982, College

Park, Maryland, United States.

[5] H.S. Stone, “Critical Load Factors in Two-

Processor Distributed Systems,” IEEE Trans.

Software Eng., vol. 4, no. 3.

[6] H.S. Stone. “Multiprocessor scheduling with the

aid of network flow algorithms”. IEEE Trans of

Software Engineering, SE-3(1):95--93.

