
 1

Implementation of Music Store Application

Using Web Service Security

Nyunt Win and Khwar Nyo Oo

University of Computer Studies, Yangon, Myanmar

nyuntwin18@gmail.com, khwarnyo2008@gmail.com

Abstract

 The task of creating and deploying Web

Services is different from currently traditional

web application. The tendency on all platforms is

to automate as much as possible in creating web

services under interoperable standards. By using

web service description language (WSDL) and

Simple Object Access Protocol (SOAP), company
can create and describe their web service. Java

technology and XML can be combined to deliver

web services using JEE as a foundation. Systems

based on the Service-Oriented Architecture

(SOA) paradigm need to be able to bind to

arbitrary (Web) services at run-time. For

supporting JEE web service architecture, this

thesis will discuss JAX-WS (JAVA for XML-based

Web Services) for implementing music store

application. This thesis will be implemented by

JEE 5, WSDL and Tomcat application server.

1. Introduction

Web service is an infrastructure for

developing and deploying distributed

applications. Web services are typically intended

for applications consumption, in contrast with

contemporary Web applications which are meant

for human users. Software systems built on top
of Service-Oriented Architectures (SOAs) intend

to use a triangle of three operations, publish, find

and bind, to decouple all roles participating in the

system. Two elements of this triangle publish and

find particularly, put requirements on the service

registry. The third operation, bind, is independent

from the service registry: binding has to be

handled solely by the service consumer. Existing

Web service client frameworks such as Apache

Axis 2 and Apache WSIF imply a very strong

emphasis on RPC centric and synchronous Web

services. This paper will present a message-
based dynamic service invocation framework that

enables application developers to create service

clients which are not coupled to any specific

provider.

Web services provide a standard means of

interoperating between different software

applications, running on a variety of platforms.

The Web Service Architecture (WSA), as defined

by the W3C, is intended to provide a common

definition of a Web Service. WSA involves many

layered and interrelated technologies. Some of
technology families support Web Services

including the XML technologies SOAP, WSDL

and UDDI. Web Service basic structure is shown

in Figure.

Web Services define as self-contained,

self-describing, modular applications that can be

published, located, and invoked across the Web.

Web Services have promised to change the Web

from a database of static documents to an e-

business marketplace. Web Service technology is

being adopted in the Business-to-Business
commerce applications and even in some

Business-to-Consumer commerce applications.

The widespread adoption of web services is due

to its simplicity and the data interoperability

provided by its supporting technology namely

XML, SOAP and WSDL [1].

The rest of the paper is organized as

follows; we first describe Related Works and

Web Service Technologies followed by Proposed

System and Design and Implementation. In the

following section, we conclude the paper.

2. Related Works

The first Java-based Web service

framework that incorporated the idea of dynamic

service invocation was the Apache project Web

Service Invocation Framework (WSIF) [2]. The

WSIF dynamic invocation interface is intuitive to

use as long as the client application knows the
signature of the WSDL operation to invoke. We

consider this to be unacceptable precondition for

loosely-coupled SOAs – client applications

should not have to care about service internals

such as the concrete operation name. Another big

caveat of WSIF is its notoriously weak support

for complex XML Schema types as service

parameters or return values. Complex types can

only be used if they are “mapped” to an existing

Java object beforehand, what is frequently

impossible in dynamic invocation scenarios.
These problems, along with the fact that the

framework is not under active development since

2003 and the relatively bad runtime performance,

render WSIF outdated today.

The Apache Axis 2 [3] framework

incorporates a lot more SOA concepts than

 2

WSIF: it supports client-side asynchrony and

works much more on a document level than the

strictly RPC-based WSIF. Even though Axis 2 is

still grounded on the usage of client-side stubs it

also supports dynamic invocations through the

OperationClient or ServiceClient APIs. The
disadvantage of these interfaces is that they

expect the client application to create the entire

payload of the invocation (e.g., the SOAP body)

itself. In that case Axis 2 does little more than

transfer the invocation to the server. This is not

the level of abstraction that we expect from a

Web service framework used to construct a SOA

client. However, we recognize that the Axis 2

SOAP and REST stacks are well developed and

highly performance. We therefore created a Axis

2 service backend as part of our DAIOS
prototype in order to combine the advantages of

DAIOS and Axis 2: the Axis 2 backend uses the

dynamic invocation abstraction of DAIOS, but

utilizes the Axis 2 service stack to carry out the

actual invocation. Similar problems as present in

Axis 2 arise with other recent service frameworks

such as Codehaus XFire [4] or XFire’s successor,

Apache CXF [5].

Ultimately, all of these clientside

frameworks are relying on static components to

access Web services, with little to no support for

truly dynamic invocation scenarios. JAX-WS
(Java API for XML-based Web Services) is the

latest Java-based Web service specification. JAX-

WS is described in JSR (Java Specification

Request) 224 [6], and is the official follow-up to

the older JAX-RPC [7].

JAX-WS is implemented for instance in the

Apache CXF project, and, therefore, exhibits

similar problems – although the change in the

naming suggests that JAX-WS is less RPC-

oriented than its ancestor the specification still

focuses on WSDL-to-operation mappings,
ignoring the messaging ideas of SOA and Web

services. REST is also not discussed explicitly in

the JSR, even though the document claims to

generally handle XML-based Web services in

Java.

3. Web Service Technologies

A Web service is an interoperable unit of

application logic that transcends programming

languages, operating systems, network

communication protocols, and data representation
dependencies and issues. It is an infrastructure for

developing and deploying distributed

applications. Web services are typically intended

for applications consumption, in contrast with

contemporary Web applications which are meant

for human users. Web Services are based on the

following industry standards: eXtensible Markup

Language (XML); Simple Object Access Protocol

(SOAP); Web Services Description Language

(WSDL); and Universal Description, Discovery,

and Integration (UDDI).

Fig.1. Web Service Basic Structure

3.1 Web Service Background Theory

 Web services provide a standard means of

interoperating between different software

applications, running on a variety of platforms.

The Web Service Architecture (WSA), as defined

by the W3C, is intended to provide a common

definition of a Web Service. WSA involves many

layered and interrelated technologies as shown in

Figure 1.

3.1.1 WSDL

WSDL is used to describe a Web service, to

specify its location, and to describe the operations

the service provides. WSDL-based document

provides enough information about how to

interact with the target Web service. It contains

five elements: three abstract elements (types,

messages, and port Type), and two concrete

elements (binding, and service address). The

abstract elements define the interface: types are

embedded XML Schema where data types are

defined; messages describe details of methods
and their parameters; and portType defines

operations in terms of input/output messages. The

concrete elements, on the other hand, define

physical properties: binding provides protocol

information for the operations; service address

specifies URI for locating a service. WSDL is

used in generating a proxy class - a client-side

object that mimics the method calls available on

the Web service. Application developers work

with the proxy instead of directly writing SOAP

messages. Proxy handles message construction,
and sending/receiving of SOAP messages.

3.1.2 SOAP

SOAP is an XML-based communication

protocol and encoding format for inter-

 3

application communication. SOAP is widely

viewed as the backbone to Web services. SOAP

message specification has three parts: envelope

for data encapsulation; data encoding rules; and

RPC conventions. The envelope is the root node

of a SOAP message and has two parts: header
and body. The envelope header specifies

application-level requirements: digital signature

for password-protected services, account number

for pay-per-use SOAP services, and transaction

management. The envelope body describes

message contents and processing instructions -

application-specific data such as method name,

parameters, and return values.

3.1.3 UDDI

Universal Description, Discovery, and

Integration (UDDI) registry is a collection of

information on all the registered Web services. It

enables dynamically discovering Web services

providers. UDDI is a free public registry -

vendors publish their Web services and

consumers search for appropriate Web services. It

has three components: white pages - contain

address, contact details, and known identifiers for

Web services providers; yellow pages - have

industrial categorization of Web services based

on standard taxonomies; and green pages -
contain technical information about services.

UDDI is relatively light-weight, and contains

enough information to direct users to resources

hosted outside of it. It uses XML to represent its

contents.

3.2 JAX-WS Web Service

JAX-WS provides facilities of XML-based
message exchanging mechanism over the Web

Services. There are two tools are provided by

JAX-WS to make Java application developer

easier to program Web Services applications and

those are such as:

 WSGen for Service Provider

 WSImport for Service Requestor

As shown in the Figure 2 of architecture

overview, Service Endpoint (Service Provider)

and Proxy Code (Service Requestor) will be

generated by those tools to hide complexity of the
Web Services programming. The actual Web

Services component can be invoked and it is

called as Service Endpoint. The Service End

Point consists of following Java components:

Service Endpoint Interface (SEI) and Service

Implementation Class.

The reason of JAX-WS is to refocus the

library’s usage to a more web service centric

model. It provides java applications to

communicate with each other using SOAP

protocol. The programming model of JAX-WS is

unique in that the client program will attempt to

bind to a service through the loading of WSDL

file or through reflection upon a class that has

been annotated with web service descriptor. Upon

acquiring a service, the program will request the
specific port and call the method desired.

JAX-WS also includes the Java

Architecture for XML Binding (JAXB) and

SOAP with Attachments API for Java (SAAJ).

JAXB enables data-binding capabilities by

providing a convenient way to map an XML

schema to a representation in Java code. The

JAXB shields the conversion of the XML schema

messages in SOAP messages to Java code

without having to fully understand XML and

SOAP parsing. The JAXB specification defines
the binding between the Java and XML schemas.

SAAJ provides a standard way of dealing with

XML attachments contained in a SOAP message.

Fig.2. JAX-WS Architecture

4. Web Service Security

Open standards have gained momentum

among enterprises as a mechanism for Web

services to communicate with partners,

customers, and suppliers. XML, Simple Object
Access Protocol (SOAP), and HTTPS are among

the technologies for developing interoperable

Web services with open, flexible, and adaptive

interfaces. That inherent openness, however,

poses security risks. Without proper protections,

Web services can expose vulnerabilities that

could lead to dire consequences. Ensuring that

those services and their communications are

integral, confidential, and secure is critical for all

parties.

To provide proof that the sender of the
request is the authenticate user, he/she must also

include a digital signature. For all requests except

those using SOAP with WS-Security, the

signature is calculated using Access Key. For

example Amazon Web Service uses the Access

Key ID in the request to look up Secret Access

Key and then calculates a digital signature with

the key. If the signature AWS calculates matches

 4

the signature you sent, the request is considered

authentic. Otherwise, the request fails

authentication and is not processed.

In this paper for generating signature, we

can calculate HMAC hash by using a base64-

encoded HMAC_SHA256 signature and
construct a request to web service by using SOAP

request. A keyed-hash message authentication

code (HMAC-SHA) signature can be calculated.

After getting the signature and then we send the

request to WS with this signature. In web service

server, the system generates a signature from the

request data and calculates the signature we sent

in the request. If the signature generated by WS

matches the one we sent in the request, the

request is considered authentic. If the comparison

fails, the request is discarded, and WS returns an
error response.

5. Proposed System

Fig.3. Architecture for Proposed System using

JAX-WS Architecture
Figure 3 shows a simple architecture for

proposed system using JAX-WS architecture.

Service Providers advertise their services in

service registry. This registry serves as a

repository for the service advertisements, against

which the service requester’s queries are

matched. Service provider will create Web

services that show item lists, accept order

information, shipping information, and ordered

items and accept payment. Service requestors

input their data and the system will convert them
into WSDL. Service requestors use the artifacts

generated to invoke the Web service. The Web

service clients do not need to deal with any

SOAP format, like creating or parsing SOAP

messages. Rather, this is handled by the JAX-WS

run time, which uses the generated artifact code

(the JAXB-generated class). The Web service

client in turn deals with the Java object (the

JAXB-generated class), which eases the

development of Web service clients and invoking

operations on the Web service.

Fig.4. Proposed Web Services for Music Store

Web Application

This paper will use JAX-WS architecture

to implement Catalog Service which provides

number of store items, and to expose this Catalog

Service as a Web Service. JAX-WS client can use

this Catalog Web Service remotely in a Music

Store web site. As shown in Figure 4, the system

will also use Catalog Service and Cart Service.

Catalog Service will have product links and listen

to samples links. Service requester can start

catalog service by clicking “Browse through our
catalog” link. If the user has already registered,

the user browsing through the Music Store web

site can add any album on the site to shopping

cart. The user can use Cart Service to buy the

items in the shopping cart. After that, the user can

submit order and the system will show another

page that informs the user that the order is

successful.

6. Design and Implementation

Fig.5. Flow Chart of the Proposed System

Add to Cart for each product

Music Store Home

Page

Browse through our catalog

Catalog index page

Cart index page

Quick order an album

Product links
Product links

Catalog/Product page

Cart

Service

Web Service

Invocation

Add to Cart

Show Cart

Catalog

Service

Web Service
Invocation

Web Service

Invocation

 5

Figure 5 shows the flow chart of the

proposed system. In this system, user must

register to use catalog service and cart service of

music store application. After registering, the

system will generate signature with access key. In

login process, users will login with their name
and password. The system will give their access

key and signature value. The user will enter their

access key and the system will compare their

signature and generated signature from web

service provider. If these signatures match, the

user can use catalog service and cart service. If

not, the user will be denied. The screen shot of

this system are shown in Figure 7, 8 and 9.

Fig.6. Generating signature of Music Store

Application

Fig.7. Catalog Web Service of Music Store

Application

Fig.8. Shopping Cart Web Service of Music

Store Application

7. Conclusion and Future Work

This paper will describe developing web

application using JAX-WS implementation. The

successful development of web services will

greatly depend on the ability to automate as much

of the web services possible under interoperable

standards. Service discovery is one important

concept of web service’s e-commerce

interactions. JAX-WS is JEE enabling technology

and it allows us to forgo the work of navigating

the different web service layers and concentrate
on accessing the functionality we require.

References

[1] E. Christensen, F. Curbera, G. Meredith and

S. Weerawarana, “Web Services Description

Language (WSDL) 1.1”, W3C Note.
[2] Apache Foundation. Web Services

Invocation Framework.

http://ws.apache.org/wsif/.

[3] Apache Foundation. Apache Axis 2.

http://ws.apache.org/axis2/.

[4] Codehaus XFire. http://xfire.codehaus.org/.

[5] Apache Foundation. Apache CXF: An Open

Source Service Framework. http://incubator.

apache.org/cxf/.

[6] D. Kohlert and A. Gupta. Java API for XML-

Based Web Services, Version 2.

http://jcp.org/aboutJava/communityprocess/
mrel/jsr224/index2.html, 2007.

[7] JSR-101 Expert Group. Java API for

XMLBased RPC, Version 1.1.

http://java.sun.com/xml/downloads/jaxrpc.ht

ml# jaxrpcspec10, 2003.

[8] S. Nagano, T. Hasegawa, A. Ohsuga, and S.

Honiden. Dynamic Invocation Model of Web

Services Using Subsumption Relations. In

ICWS ’04: Proceedings of the IEEE

International Conference on Web Services

(ICWS’04), 2004.

http://ws.apache.org/axis2/
http://xfire.codehaus.org/
http://java.sun.com/xml/downloads/jaxrpc.ht
http://java.sun.com/xml/downloads/jaxrpc.ht

