
Constructing and Implementing a New DOM-based Content Extraction

Algorithm

Nang Kham Line Moong

Computer University, Mandalay

klmoong.aung@gmail.com

Abstract

The Internet explosion has made enormous

Information sources published as HTML pages on

the internet. However, there are many redundant
pages as being known web pages noise on the Web.

For instance, almost all dot com present a large

amount of noise such as service channels, navigation

panels, copyright and privacy announcement,

advertisements, etc. Such noises can seriously harm

Web Mining, Information retrieval and Information

extraction. In this paper, a new algorithm is

proposed and how it can be used to deal with Web

page noises is also presented. The proposed

algorithm matches DOM trees to classify which

nodes are noises and which are contents and, after
classification, cluster into their group respectively.

Finally, only the content group is extracted from the

page. The resulting contents are useful for both users

and systems. The proposed technique leads to boost

up the performance of Web Content Extraction.

1. Introduction

With the phenomenon growth of web, users have

troubles in finding their needs and interests among a

huge amount of Web data. Web mining appears to

handle the problems. In Web mining, data

preprocessing is the first step to eliminate the

irrelevant data in web pages. Irrelevant data as being

known web page noises are advertisement bars,

navigational guides, decoration pictures, copyright

and privacy notices, etc. Noises can be categorized

into two types according to their level: Global noises
and Local noises [2]. Global noises include mirror

site, legal or illegal duplicated Web pages, old

versioned Web pages. Local noises include [8]:

-Fixed Description Noise: site logos, decoration

images and texts, copyright notices, privacy

statement, etc.

-Service Noise: irrelevant services such as the

weather, stock/market index, etc.

-Navigational Guidance: Directory guidance

-Advertisements.

This paper focuses on dealing with local noises.

Most commercial web sites present their web pages

with fixed layout or same presentation style. The

most important fact is that noises are presented in

same style and only their contents are different.

Figure 1 shows two sample Web pages of the same

web site. In this figure, only their content parts are

different and others are the same.

page1 page2

Figure 1. Example different pages in same
web site.

This paper presents our work that focuses on a

new DOM-based content extraction algorithm. That

is, the system is mainly concerned with the web

content mining that extracts useful information from

web pages. Although such web page decorations are
good for web site owner and user’s look and feel, it

is non-valuable and also disturb in web mining

process.

The main objective of the paper is to propose a

new DOM-based content extraction algorithm and to

present how it can be used to clean web pages noise.

As the first step, HTML parser parsed the incoming

web page and constructed DOM (Document Object

Model) tree with preorder. Preorder traversal is

arranged with root, left subtree and right subtree. It

means, process all nodes of a tree by processing the

root, then recursively processing all subtrees. In our
paper, all nodes are classification and clustering by

matching their DOM trees with each other. Finally,

only content group is extracted from each page.

Eliminate noisy information as the preprocessor of

information extraction application supports to get

more precisely useful contents.

This paper is organized as follows. After this

short introduction, Section 2 describes related work,

Section 3 presents the basic ideas of the proposed

algorithm, and Section 4 describes implementation of
content extraction system. Finally, paper conclusion

is described in Section 5.

2. Related work

Many web page cleaning approaches have been

proposed to deal with web page noises. In [1], the
approach works with a tree structure, Site Style to

capture the common presentation styles and the

actual contents of the pages. Information based

measure support to determine which parts of SST

represent noises or contents.

In [2], the proposed web page cleaning techniques

is similar with [1]. First, create Compressed Structure

Tree and use information-based measure to evaluate

the importance of each node. The available

importance nodes are assigning a weight to each

word feature.
A DOM-based content extraction method has

been proposed in [3] is implemented by filtering the

DOM tree. When DOM tree is parsed through

HTML parser, advertisement remover, link list

remover and empty table remover are work for their

responsibility.

Cleaning web pages for hypertext information

extraction is described in [4]. Firstly, they construct

DOM tree and mining noise data region from that

tree by using predefined rules. Then noisy node

discovery algorithm eliminates the mining data

region. Because web sites have their own structure
and presentation styles, cleaning noises by

predefined rules are not convenient for all web sites.

S.-H. Lin and J.-M. Ho proposed dynamically

selected the entropy-threshold that partitions blocks

into either informative or redundant [5]. First, they

partitions a page into several content blocks and

calculates entropy value of the feature for defined the

entropy value of the block.
D. D. C. Reis, P. B. Golgher and A. S. D Silva

presented a domain-oriented approach to Web data

extraction [6]. They based on the concept of tree-edit

distance to evaluate the structural similarities

between pages and extracted the relevant text

massages discarding non-useful material such as
banners, menus, and links.

3. Proposed algorithm

The proposed cleaning technique is based on

matching web pages, which are represented by DOM
trees. Firstly, HTML parser is used to parse the web

page codes into corresponding tags. Then, the

resulting tags are constructed into DOM tree. We

give an overview of DOM tree in the following

section. After that, DOM-based content extraction

algorithm is widely discussed.

3.1 DOM tree

The Document Object Model (DOM) is a

platform-independent and language-independent

standard object model for representing HTML or

XML and related formats [9]. With the Document

Object Model, programmers can build documents,

navigate their structure, and add, modify, or delete

elements and content. Essentially, the DOM provides

access to the structure of an HTML page by mapping

the elements in that page to a tree of nodes. Each
element becomes an element node, and each bit of

text becomes a text node. Figure 2 shows a segment

of HTML codes and its corresponding DOM tree. In

this figure, body, table, b, and font are the element

node and Bold and Font are the text nodes.

<body>
<table>…..</table>
 Bold
 Font

Figure 2. A sample DOM tree

There may be various DOM structures depending

on the parser being used to build the DOM. In this
paper, DOM tree is constructed with the help of

HTML parser. The parser walks through all codes in

the page and parsed into corresponding tags. The

resulting tags are used in DOM tree construction.

3.2 Building DOM Tree

The system builds DOM tree with preorder

traversal; processing with the root, left subtree and
then right subtree. It means, it starts with the root

node and walks through its entire child. Here is a

series of steps, for example:

1. place the incoming node as current node

2. does this node have children? If so:

3. for each of the child nodes, go to step 1

This process is known as recursion, and is defined

as the use of a function that calls itself. Each child is

the same type of thing as the parent and can therefore

be handled in the same way.

In the matching algorithm, it accepts two pages as

parameter and outputs the content from the first page.

Figure 3 shows the pages order in order to

parameterize into the algorithm. In the figure,

matching algorithm starts with accepted parameters:

DOM1 and DOM2, and the resulted output are the

body

table b font

Bold Font

contents from DOM1. The system automatically

saves the resulting content in text file format. Here

are pairs of pages, for example, { (DOM1,DOM2),

(DOM2,DOM3), (DOM3,DOM4), ……… ,

(DOMn,DOM1) }. The process continues to

parameterize pages in pair until all pages are
processed.

DOM1 DOM2 DOM3 …….. DOMn ……. Inputs

text1 text2 text3 ……… textn ..….. Outputs

Figure 3. Pages order

3.3 DOM Tree Matching Algorithm

Before exhibiting the algorithm, sample pages are

shown in figure 4 and its corresponding DOM trees

are shown in figure 5 and 6. We aim to show their

differences by comparing the two pages.

page1 page2

Figure 4. Example web pages

In figure 5 and 6, their differences are shown with

shaded box, some tags are additional and some are

different. In figure 7, the overall DOM-based content

extraction algorithm is presented. The algorithm

mainly matches the DOM trees in order to classify
and cluster each node.

Level 1

L-2

L-3

L-4

L- 5

L-6

Figure 5. DOM tree for page1

Level 1

L-2

L-3

L-4

L-5

L-6

Figure 6. DOM tree for page2

3.4 Criteria for DOM Tree Matching

In matching process, all nodes classifying and

clustering are nodes from DOM1. If the two pointed

nodes have

Criteria 1: same level and same node then identify

that node in DOM1 as noise.

Criteria 2: same level and different node then
retrieved all nodes of DOM2 at that level and

compared with the current node of DOM1. If they

are equal, identify that node as noise. Otherwise,

identify the current node of DOM1 as content.

Criteria 3: different level and different node then the

system compares their level.

(a) If DOM1’s level is greater than DOM2,

identify as content.

(b) If DOM1’s level is less than DOM2, then

increase DOM2’s pointer position.

In figure 7, the overall content extraction
algorithm is presented. The algorithm is majoring

worked with DOM tree node and node’s level, which

are essential in nodes classification.

Input: DOM1 A and DOM2 B
Output : Clustered nodes
Algorithm: DOM-based Content Extraction (A,B)
1. Begin
2. Foreach TreeNode in A
3. If A.Tag = B.Tag and A.Level = B.Level and
A.Text = B.Text then
4. Add A’s node into noise group
5. Else
6. If A.Level = B.Level
7. Retrieve and store all nodes of B with current
A level
8. Match A with available Array
9. If node found
10 add A’s node into noise group
11. Else

body

table p

tr

td td

b

font

a

img

img

body

table a

tr

td td

ul font

a

img

img

p

li li

This is a
paragraph

This is a
paragraph

Font
with

type

bold

Simple
Font

12. add A’s node into content group
13. End if
14. Else if A.Level < B.Level
15. Move B to next node
16. Else
17. add A’s node into content group
18. End if
19. End if
20. End for
21. End

Figure 7. DOM-based Content Extraction
Algorithm

DOM trees are constructed and stored in array

with the preorder traversal. Although the process

moves with array index, all elements in array are tree

nodes and also have DOM feature. Therefore, array

indexes are used as pointers in comparison process.

The algorithm first targets to walkthrough all
nodes in DOM1. It starts matching from body node

that serves as the root node and continues until all

nodes are classified. In two DOM trees at figure 5

and 6, both have the same nodes, same level and

same text start from ‘body’ to all ‘table’ nodes, end

at ‘img’ node. They all are classified as noise and

clustered into noise group.

The algorithm increases the pointer position to

continue the matching process. In this time, different

nodes such as ‘p’ and ‘a’ are pointed, but both nodes

are at the same level. In this case, algorithm retrieves
all nodes of DOM2 at the same level with current

node of DOM1. In figure 6, ‘table’, ‘a’, ‘p’, ‘font’

and ‘ul’ of DOM2 are retrieved. All retrieving nodes

are compared to the current DOM1 node, ‘p’. If

match, DOM1’s ‘p’ will be marked as noise. If not, it

will be marked as content. We do nothing with

DOM2 because it only used for matching, not for

classified.

Once, DOM1 contains ‘b’ node but not in DOM2,

the algorithm solves the problem by comparing their

level. If DOM1 current node’s level is greater than

DOM2 current node’s level, mark that node as
content. If DOM1’s level is less than DOM2’s level,

move DOM2’s into next because we only focus on

DOM1. From figures, ‘b’ is in DOM2 but not in

DOM2, DOM2’s current node is ‘ul’. b’s level is 3

and ul’s level is 2. From the above definition, mark

the node ‘b’ as noise. In this way, the algorithm

walks through all DOM1 nodes and finally extracts

clustered content.

In system implementation, text nodes are omitted.

Instead, the text node’s parent node is used as the

leaf node in matching DOM trees.

page1’s output page2’s output

Figure 8. Result of two pages from figure 3.

Figure 8 shows the output of the first page and

second page respectively. The page1’s output must

be “Font with bold type”. Due to the order of the

DOM tree node, the tag is processed first and,

after that, tag is processed. Therefore, the result

content structure is different from the input page.

4. Implementation

Figure 9. System Design

Figure 9 describes the implemented system

design. In our system, user has to input directory path

which contains a collection of web pages, choose the

pages that he/she intend to process, and fill the

location in order to save the resultant content files.

The system saved the content files in text file format.
According to the input directory path, the system

displays all pages in that supplied directory. When all

requirements are completed, system starts the

extracting process by using the proposed algorithm.

Graphical user interface (GUI) is implemented in

order to make our extractor easy to use. The system

is implemented by using C# programming language.

Figure 10 presents the main form of the system.

Figure 10. Main form of the system

In the GUI, “List page” button is used to

represent all web pages in the input directory path.

“Browse” is used for choosing the path in order to

save the content file. “Start Clean” is used to start the

extraction process. “Select All” and “Remove All”

buttons are defined for supporting user when
selecting web pages to process.

Figure 11 shows the form after the extraction

process is worked. The extracted pages are listed and

saved into the user predefined location.

Figure 11. After extraction process

Depending on the type and complexity of the web

page, the system can produce a wide variety of

output. The algorithm performs well on pages such

as news articles and mid-size to long informational

passages such as education site, forums site and

others, which contain a lot of message than figures.

Figure 12 and 13 show the example real world

web pages. The system performs well on such page

and the resulting content is satisfied.

Figure 12. Noisy HTML web page of

www.webdevelopersjournal.com

Figure 12 shows the real web page before being

processed, that contains advertisement bars and side

panels. Figure 13 presents after the extraction content

of the page. The resulting contents are displayed in

text editor. When saved in text file format, most of

the resulting text is directly related to the content of
the site, making it possible to use summarization and

keyword extraction algorithms efficiently and

accurately.

Figure 13. Content Extraction from

www.webdevelopersjournal.com page

4.1 Further example

 Figure 14 and 15 show an example of a
typical page from http://www.colorsontheweb.com/

and the content of that page, respectively. This page

contains a lot of links structure, but our system

performs well as show in figure 15.

Figure 14. Noisy HTML web page of
www.colorsontheweb.com

http://www.webdevelopersjournal.com/
http://www.webdevelopersjournal.com/
http://www.colorsontheweb.com/
http://www.colorsontheweb.com/

Figure 15. Content Extraction from

www.colorsontheweb.com page

According to the resultant content of the
implementation of the algorithm, our proposed

cleaning algorithm makes effective and efficient

results.

5. Conclusion

In this paper, DOM Tree Matching algorithm is
proposed to clean web page noise. The system aims

to support both users and systems whose works are

only concerned with web page content. It also

intended to improve web mining field such as web

classification, web clustering and web

personalization. Moreover, it is useful for students in

collection their interest contents from web pages.

According to the experimental implementation, the

proposed cleaning algorithm is simple, fast and can

automatically extract content. In addition, the

limitation of the algorithm is that it does not work
well for the pages with a huge number of figures and

links. The limitations of the system are that it can

only work with offline web pages, and cannot collect

the content images. The effectiveness of our

proposed algorithm and its implementation will be

more obvious by combining with some tools or

applications.

6. References

[1] L. Yi, B. Liu and X. Li, “Eliminating Noisy

Information in Web Pages for Data Mining”, in the
proceedings of ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD-2003),
Washington, DC, USA, August, 2003.

[2] L. Yi and B. Liu, “Web Page Cleaning for Web Mining
through Feature Weighting”, in the proceedings of
Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), Acapulco, Mexico, August, 2003.

[3] S. Gupta, G. Kaiser, D. Neistadt and P. Grimm, “DOM-
based Content Extraction of HTML Documents”, in the
proceeding of the 12th World Wide Web conference
(WWW 2003), Budapet, Hungary, May 2003.

[4] T. Win, K. N. Tun, “An Approach of Cleaning Web
Pages for Hypertext Information Extraction” in

International Conference on Computer Applications (ICCA
2008), Yangon, Myanmar, February 2008.

[5] S.-H. Lin and J.-M. Ho, “Discovering Information
Content Blocks from Web Documents”, in the proceedings
of ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (SIGKDD’02), Edmonton,
Alberta, Canada, 2002.

[6] D. D. C. Reis, P. B. Golgher and A. S. D Silva,
“Automatic Web News Extraction Using Tree Edit
Distance”, in the proceedings of the ACM WWW
conference (WWW 2004), New York, USA, 2004.

[7] B. Liu, R. Grossman, Y. Zhai, “Mining Data Records in
Web Pages”. UIC Technical Report, 2003.

[8] B. Liu, “Web Page Cleaning for Web Mining” in
IJCAI-2003, KDD-2003. http://www.cs.uic.edu/~liub

[9] World Wide Web Consortium. Document Object
Model specifications, January 2009.
http://www.w3.org/DOM/

http://www.colorsontheweb.com/
http://www.cs.uic.edu/~liub
http://www.w3.org/DOM/

