Constructing and Implementing a New DOM-based Content Extraction
Algorithm

Nang Kham Line Moong
Computer University, Mandalay
kImoong.aung@gmail.com

Abstract

The Internet explosion has made enormous
Information sources published as HTML pages on
the internet. However, there are many redundant
pages as being known web pages noise on the Web.
For instance, almost all dot com present a large
amount of noise such as service channels, navigation
panels, copyright and privacy announcement,
advertisements, etc. Such noises can seriously harm
Web Mining, Information retrieval and Information
extraction. In this paper, a new algorithm is
proposed and how it can be used to deal with Web
page noises is also presented. The proposed
algorithm matches DOM trees to classify which
nodes are noises and which are contents and, after
classification, cluster into their group respectively.
Finally, only the content group is extracted from the
page. The resulting contents are useful for both users
and systems. The proposed technique leads to boost
up the performance of Web Content Extraction.

1. Introduction

With the phenomenon growth of web, users have
troubles in finding their needs and interests among a
huge amount of Web data. Web mining appears to
handle the problems. In Web mining, data
preprocessing is the first step to eliminate the
irrelevant data in web pages. Irrelevant data as being
known web page noises are advertisement bars,
navigational guides, decoration pictures, copyright
and privacy notices, etc. Noises can be categorized
into two types according to their level: Global noises
and Local noises [2]. Global noises include mirror
site, legal or illegal duplicated Web pages, old
versioned Web pages. Local noises include [8]:
-Fixed Description Noise: site logos, decoration
images and texts, copyright notices, privacy
statement, etc.

-Service Noise: irrelevant services such as the
weather, stock/market index, etc.

-Navigational Guidance: Directory guidance
-Advertisements.

This paper focuses on dealing with local noises.
Most commercial web sites present their web pages
with fixed layout or same presentation style. The
most important fact is that noises are presented in
same style and only their contents are different.
Figure 1 shows two sample Web pages of the same
web site. In this figure, only their content parts are
different and others are the same.

El— _E]

pagel page2
Figure 1. Example different pages in same
web site.

This paper presents our work that focuses on a
new DOM-based content extraction algorithm. That
is, the system is mainly concerned with the web
content mining that extracts useful information from
web pages. Although such web page decorations are
good for web site owner and user’s look and feel, it
is non-valuable and also disturb in web mining
process.

The main objective of the paper is to propose a
new DOM-based content extraction algorithm and to
present how it can be used to clean web pages noise.
As the first step, HTML parser parsed the incoming
web page and constructed DOM (Document Object
Model) tree with preorder. Preorder traversal is
arranged with root, left subtree and right subtree. It
means, process all nodes of a tree by processing the
root, then recursively processing all subtrees. In our
paper, all nodes are classification and clustering by
matching their DOM trees with each other. Finally,
only content group is extracted from each page.
Eliminate noisy information as the preprocessor of

information extraction application supports to get
more precisely useful contents.

This paper is organized as follows. After this
short introduction, Section 2 describes related work,
Section 3 presents the basic ideas of the proposed
algorithm, and Section 4 describes implementation of
content extraction system. Finally, paper conclusion
is described in Section 5.

2. Related work

Many web page cleaning approaches have been
proposed to deal with web page noises. In [1], the
approach works with a tree structure, Site Style to
capture the common presentation styles and the
actual contents of the pages. Information based
measure support to determine which parts of SST
represent noises or contents.

In [2], the proposed web page cleaning techniques
is similar with [1]. First, create Compressed Structure
Tree and use information-based measure to evaluate
the importance of each node. The available
importance nodes are assigning a weight to each
word feature.

A DOM-based content extraction method has
been proposed in [3] is implemented by filtering the
DOM tree. When DOM tree is parsed through
HTML parser, advertisement remover, link list
remover and empty table remover are work for their
responsibility.

Cleaning web pages for hypertext information
extraction is described in [4]. Firstly, they construct
DOM tree and mining noise data region from that
tree by using predefined rules. Then noisy node
discovery algorithm eliminates the mining data
region. Because web sites have their own structure
and presentation styles, cleaning noises by
predefined rules are not convenient for all web sites.

S.-H. Lin and J.-M. Ho proposed dynamically
selected the entropy-threshold that partitions blocks
into either informative or redundant [5]. First, they
partitions a page into several content blocks and
calculates entropy value of the feature for defined the
entropy value of the block.

D. D. C. Reis, P. B. Golgher and A. S. D Silva
presented a domain-oriented approach to Web data
extraction [6]. They based on the concept of tree-edit
distance to evaluate the structural similarities
between pages and extracted the relevant text
massages discarding non-useful material such as
banners, menus, and links.

3. Proposed algorithm

The proposed cleaning technique is based on
matching web pages, which are represented by DOM
trees. Firstly, HTML parser is used to parse the web
page codes into corresponding tags. Then, the
resulting tags are constructed into DOM tree. We

give an overview of DOM tree in the following
section. After that, DOM-based content extraction
algorithm is widely discussed.

3.1 DOM tree

The Document Object Model (DOM) is a
platform-independent and language-independent
standard object model for representing HTML or
XML and related formats [9]. With the Document
Object Model, programmers can build documents,
navigate their structure, and add, modify, or delete
elements and content. Essentially, the DOM provides
access to the structure of an HTML page by mapping
the elements in that page to a tree of nodes. Each
element becomes an element node, and each bit of
text becomes a text node. Figure 2 shows a segment
of HTML codes and its corresponding DOM tree. In
this figure, body, table, b, and font are the element
node and Bold and Font are the text nodes.

<body>
<table>.....</table>
 Bold
 Font

Figure 2. A sample DOM tree

There may be various DOM structures depending
on the parser being used to build the DOM. In this
paper, DOM tree is constructed with the help of
HTML parser. The parser walks through all codes in
the page and parsed into corresponding tags. The
resulting tags are used in DOM tree construction.

3.2 Building DOM Tree

The system builds DOM tree with preorder
traversal; processing with the root, left subtree and
then right subtree. It means, it starts with the root
node and walks through its entire child. Here is a
series of steps, for example:

1. place the incoming node as current node
2. does this node have children? If so:
3. for each of the child nodes, go to step 1

This process is known as recursion, and is defined
as the use of a function that calls itself. Each child is
the same type of thing as the parent and can therefore
be handled in the same way.

In the matching algorithm, it accepts two pages as
parameter and outputs the content from the first page.
Figure 3 shows the pages order in order to
parameterize into the algorithm. In the figure,
matching algorithm starts with accepted parameters:
DOM1 and DOM2, and the resulted output are the

contents from DOM1. The system automatically
saves the resulting content in text file format. Here
are pairs of pages, for example, { (DOM1,DOM2),
(DOM2,DOM3), (DOM3,DOM4), ,
(DOMN,DOM1) }. The process continues to
parameterize pages in pair until all pages are
processed.

L\ EN
DOM1 DOM2 DOMS........ DOMn Inputs

textl text2 text3 textn ... Outputs
Figure 3. Pages order

3.3 DOM Tree Matching Algorithm

Before exhibiting the algorithm, sample pages are
shown in figure 4 and its corresponding DOM trees
are shown in figure 5 and 6. We aim to show their
differences by comparing the two pages.

Additional Link
This is a paragraph

This is a paragraph
Font with bold type.

Simple Font

+ One
+« Two

pagel page2
Figure 4. Example web pages

In figure 5 and 6, their differences are shown with
shaded box, some tags are additional and some are
different. In figure 7, the overall DOM-based content
extraction algorithm is presented. The algorithm
mainly matches the DOM trees in order to classify
and cluster each node.

L-2 table n font

Level 1

P
L-3 tr Thisis a Font UJ_]
paragraph with
type A 4
L-4| td td bold
A 4 A 4
L-5| 4 img

o[ma)

Figure 5. DOM tree for pagel

Level 1

L-2
L-3
L-4| tg td
\ 4 \ 4
L-5| a img

Figure 6. DOM tree for page2

3.4 Criteria for DOM Tree Matching

In matching process, all nodes classifying and
clustering are nodes from DOML. If the two pointed
nodes have
Criteria 1: same level and same node then identify
that node in DOML1 as noise.

Criteria 2: same level and different node then
retrieved all nodes of DOM2 at that level and
compared with the current node of DOML. If they
are equal, identify that node as noise. Otherwise,
identify the current node of DOML1 as content.
Criteria 3: different level and different node then the
system compares their level.
(a)If DOM1’s level is greater than DOM?2,
identify as content.
(b)If DOM1’s level is less than DOM2, then
increase DOM2’s pointer position.

In figure 7, the overall content extraction
algorithm is presented. The algorithm is majoring
worked with DOM tree node and node’s level, which
are essential in nodes classification.

Input: DOM1 A and DOM2 B

Output : Clustered nodes

Algorithm: DOM-based Content Extraction (A,B)
1. Begin

2. Foreach TreeNode in A

3. IfATag=B.Tag and A.Level = B.Level and
A.Text = B.Text then

4. Add A’s node into noise group

5. Else

6. If A.Level = B.Level

7. Retrieve and store all nodes of B with current
A level

8. Match A with available Array

9. If node found

10 add A’s node into noise group

11. Else

12. add A’s node into content group
13. End if
14. Else if A.Level < B.Level
15. Move B to next node
16. Else
17. add A’s node into content group
18. Endif
19. Endif
20. End for
21. End
Figure 7. DOM-based Content Extraction
Algorithm

DOM trees are constructed and stored in array
with the preorder traversal. Although the process
moves with array index, all elements in array are tree
nodes and also have DOM feature. Therefore, array
indexes are used as pointers in comparison process.

The algorithm first targets to walkthrough all
nodes in DOML. It starts matching from body node
that serves as the root node and continues until all
nodes are classified. In two DOM trees at figure 5
and 6, both have the same nodes, same level and
same text start from ‘body’ to all ‘table’ nodes, end
at ‘img’ node. They all are classified as noise and
clustered into noise group.

The algorithm increases the pointer position to
continue the matching process. In this time, different
nodes such as ‘p’ and ‘a’ are pointed, but both nodes
are at the same level. In this case, algorithm retrieves
all nodes of DOM2 at the same level with current
node of DOML1. In figure 6, ‘table’, ‘a’, ‘p’, ‘font’
and ‘ul’ of DOM2 are retrieved. All retrieving nodes
are compared to the current DOM1 node, ‘p’. If
match, DOM1’s ‘p’ will be marked as noise. If not, it
will be marked as content. We do nothing with
DOM2 because it only used for matching, not for
classified.

Once, DOMI1 contains ‘b’ node but not in DOM2,
the algorithm solves the problem by comparing their
level. If DOM1 current node’s level is greater than
DOM2 current node’s level, mark that node as
content. If DOM1’s level is less than DOM2’s level,
move DOMZ2’s into next because we only focus on
DOML1. From figures, ‘b’ is in DOM2 but not in
DOM2, DOM2’s current node is ‘ul’. b’s level is 3
and ul’s level is 2. From the above definition, mark
the node ‘b’ as noise. In this way, the algorithm
walks through all DOM1 nodes and finally extracts
clustered content.

In system implementation, text nodes are omitted.
Instead, the text node’s parent node is used as the
leaf node in matching DOM trees.

Font with type Addstional Link
bold Simple Font
One
Two

pagel’s output page2’s output
Figure 8. Result of two pages from figure 3.

Figure 8 shows the output of the first page and
second page respectively. The pagel’s output must
be “Font with bold type”. Due to the order of the
DOM tree node, the tag is processed first and,
after that, tag is processed. Therefore, the result
content structure is different from the input page.

4. Implementation

Begin |
Input directory patﬂ
v

Display
If A.nod: JRUE Pl
Wweb pageq - a.ﬂﬂdz ”| Noise |

Select web pagesi

RN A
|Stored Selected
| pages

Choose location fof

saving

Find ATagin
retrievfeing nodes

|FALSE

Retrieve all
nodes in B at

iFALSE

AlLevel> “JRUE | content b—J
B.Level — FALSE

‘ FALSE
—

Move B's
pointer into @

next node

Walkthrough

TRUE All nodes in A

Figure 9. System Design

Figure 9 describes the implemented system
design. In our system, user has to input directory path
which contains a collection of web pages, choose the
pages that he/she intend to process, and fill the
location in order to save the resultant content files.
The system saved the content files in text file format.

According to the input directory path, the system
displays all pages in that supplied directory. When all
requirements are completed, system starts the
extracting process by using the proposed algorithm.
Graphical user interface (GUI) is implemented in
order to make our extractor easy to use. The system
is implemented by using C# programming language.
Figure 10 presents the main form of the system.

o |[@]=®]

5 Information Extraction System

Path : ListPage |
Save To
[Bowse | [StetClean | [Cancel |

| Select Al Remove Al

|[istBox1

Figure 10. Main form of the system

In the GUI, “List page” button is used to
represent all web pages in the input directory path.
“Browse” is used for choosing the path in order to
save the content file. “Start Clean” is used to start the
extraction process. “Select All” and “Remove All”
buttons are defined for supporting user when
selecting web pages to process.

Figure 11 shows the form after the extraction
process is worked. The extracted pages are listed and
saved into the user predefined location.

Figure 12 shows the real web page before being
processed, that contains advertisement bars and side
panels. Figure 13 presents after the extraction content
of the page. The resulting contents are displayed in
text editor. When saved in text file format, most of
the resulting text is directly related to the content of
the site, making it possible to use summarization and
keyword extraction algorithms efficiently and
accurately.

Site

(&3
s Form1

| URL: C:\Users\iNet\Desktop'thread-coding\

- [7]C:\Users\iNet\Desktop'thread-coding. Al cvemant [F et
[¥]thread-1315975.php htm
[V]thread-1376649 php htm ‘ ‘
[¥Ithread-1376667 php htm s
[¥lthread-1376674.php htm |

[Flthread-1376691 pho him \
[lthread-1376710 php him TR
[ithvead:1376743 php htm || Arehes ihead13768450¢
[Vlthread-1376765 php htm Finished thread-1376667.6¢
[lthread-1376853 php htm Finished thread-1376674 6
[]thread-1376859.php htm Finished thread-1376691.b¢
=P Finished thread-13767106d
itwcad 1376361 oo tm Finished thread-1376743t¢
[lthread 1376873 php him Firished thread-1376765.6¢
[V]thread-1376881 php htm

[V]thread-13768811 php htm

Finished thread-1376853 bd
Finished thread-1376859 bt
[¥Ithread-1376918 php htm
[Vlthread-1376930 php him

Finished thread-1376861.b¢
Finished thread-1376873 bd
[]thread-1377079.php htm
[Vlthread-1377080 php htm

Finished thread-1376881bd
[¥Ithread-1377081.php htm

List Page

Finished thread-13768811 bt

Finished thread-1376918 bd

Finished thread-1376930 bd

Finished thread-1377079.bd

Finished thread-1377080.bd

Finished thread-1377081.b¢

Finished thread-1377088 bt

Finished thread-1377097 bd

~ || Finished thread-1377115.6¢ b4

[¥]thread-1377088 php htm
[Vlthread-1377097 php htm
[¥Ithread-1377115.php htm
[¥]thread-1377118.php htm

[F4hea34.1277127 nhn him

submissions

Compare PricesIP ServicesDesktop ComputersColocationTelevisions

Microsoft

Windows Server 2008 R2 comes with Hyper-V and Live Migration built in,
to lower third-party software costs and downtime. Check out the top 10
reasons to upgrade to Windows Server 2008 R2.

Creating Your Own Favicon.ico Icon For IE5by Tim Altom

If you're trying to entice people return to your site from the

Explorer's Favorites menu, it helps to prompt them with a special logo
of some kind. If you're in Explorer right now and pull down that menu,
you'll probably find some of those logos lined up next to the

selections in the Channels item. For very little effort, you can have

the same thing next to your own site's name.

March 7. 2000

‘This little icon is called a "favicon", and it works only in

Explorer 5 and above. If your visitors are running Netscape or an older

version of Explorer, the browser will just ignore your little icon. When an Explorer 5 user bookmarks your page,
special icon with the name "favicon.ico”. If it finds one, it replaces

the default Microsoft icon with your special little icon next to your

name in the favorites menu and in the location bar. The user can also

put your icon on the desktop and the taskbar, though few are likely to

bother. The icon you create has to be exactly 16 pixels by 16 pixels. There

are some alternative larger sizes, but only use these if you've

Figure 11. After extraction process

Depending on the type and complexity of the web
page, the system can produce a wide variety of
output. The algorithm performs well on pages such
as news articles and mid-size to long informational
passages such as education site, forums site and
others, which contain a lot of message than figures.

Figure 12 and 13 show the example real world
web pages. The system performs well on such page
and the resulting content is satisfied.

DOMORE

Bl 1150 10 CRiare
WLES SIES

C]
Creating Your Own Favicon.ico Tcon For IES

Fiﬂgurke 12. i\I'0|s§”HTML web pége of
www.webdevelopersjournal.com

igated favicon use very thoroughly. The safest route is
definitelvy 16x16. Trv to fool the browser with a larger or smaller size

Figure 13. Content Extraction from
www.webdevelopersjournal.com page

4.1 Further example

Figure 14 and 15 show an example of a
typical page from http://www.colorsontheweb.com/

and the content of that page, respectively. This page
contains a lot of links structure, but our system
performs well as show in figure 15.

Welcome to colors on the we

This site is dedicated to the use of colors in design, and espedially in
web design. I'm hoping that this site will give ! - a better
understanding of the importance of colors-- that there might be more to
colors than you once thought.
, Some of the topics 1 discuss on this site are: “ell designed Web Sites

Web sites bult to sel & traffic Get your Business

Design Itd
gn and development company Free
website promotions!
Unique & Professional Website Templates For
Affordable Pricest
photoluminescent pigment
made in E.U. high qualty several colors from 3 um
t0 450 um
de by Google
Color Wheel Contrast Analyzer

The Color Wizard

T hopa this site will ba of soma assistance
any quastion

Ads by Gooale _Graat Wabsita Dasian Color Sa.

1998-2007 © Colors on the Web | Donald

Figure 14. Noisy HTML web page of
www.colorsontheweb.com

http://www.webdevelopersjournal.com/
http://www.webdevelopersjournal.com/
http://www.colorsontheweb.com/
http://www.colorsontheweb.com/

T hope this site will be of some assistance when you create a color
scheme for your next site. If you have any questions or comments,
please contact me at

Welcome to colors on the web. This site is dedicated to the use of colors in design. and especially in web design
Some of the topics I discuss on this site are:color theorythe color wheelcolor combinationscolor physicscolors or

The Color Wizard
The color Wizard will generate matching colors schemes suchas and . and .complementary.split complementa

Color Wheel

Need some color ideas?
This online tool will generate random and display in sample designs. Ideal when you are running out of ideas and

Contrast Analyzer

Unsure if the color combination you are considering have enough contrast?
The Color Contrast Analyser willtell you whether two colors meet the accessibility guidelines defined by the W

info@colorsontheweb.com

Figure 15. Content Extraction from
www.colorsontheweb.com page

According to the resultant content of the
implementation of the algorithm, our proposed
cleaning algorithm makes effective and efficient
results.

5. Conclusion

In this paper, DOM Tree Matching algorithm is
proposed to clean web page noise. The system aims
to support both users and systems whose works are
only concerned with web page content. It also
intended to improve web mining field such as web
classification, web clustering and web
personalization. Moreover, it is useful for students in
collection their interest contents from web pages.
According to the experimental implementation, the
proposed cleaning algorithm is simple, fast and can
automatically extract content. In addition, the
limitation of the algorithm is that it does not work
well for the pages with a huge number of figures and
links. The limitations of the system are that it can
only work with offline web pages, and cannot collect
the content images. The effectiveness of our
proposed algorithm and its implementation will be
more obvious by combining with some tools or
applications.

6. References

[11 L. Yi, B. Liu and X. Li, “Eliminating Noisy
Information in Web Pages for Data Mining”, in the
proceedings of ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD-2003),
Washington, DC, USA, August, 2003.

[2] L. Yiand B. Liu, “Web Page Cleaning for Web Mining
through Feature Weighting”, in the proceedings of
Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), Acapulco, Mexico, August, 2003.

[3] S. Gupta, G. Kaiser, D. Neistadt and P. Grimm, “DOM-
based Content Extraction of HTML Documents”, in the
proceeding of the 12" World Wide Web conference
(WWW 2003), Budapet, Hungary, May 2003.

[4] T. Win, K. N. Tun, “An Approach of Cleaning Web
Pages for Hypertext Information Extraction” in
International Conference on Computer Applications (ICCA
2008), Yangon, Myanmar, February 2008.

[5] S.-H. Lin and J.-M. Ho, “Discovering Information
Content Blocks from Web Documents”, in the proceedings
of ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (SIGKDD’02), Edmonton,
Alberta, Canada, 2002.

[6] D. D. C. Reis, P. B. Golgher and A. S. D Silva,
“Automatic Web News Extraction Using Tree Edit
Distance”, in the proceedings of the ACM WWW
conference (WWW 2004), New York, USA, 2004.

[7] B. Liu, R. Grossman, Y. Zhai, “Mining Data Records in
Web Pages”. UIC Technical Report, 2003.

[8] B. Liu, “Web Page Cleaning for Web Mining” in
IJCAI-2003, KDD-2003. http://www.cs.uic.edu/~liub

[9] World Wide Web Consortium. Document Object
Model specifications, January 2009.
http://www.w3.0rg/DOM/

http://www.colorsontheweb.com/
http://www.cs.uic.edu/~liub
http://www.w3.org/DOM/

