

Designing Object Oriented Models through UML diagrams for Hotel

Front Office System

Su Nandar Htay ; Khaing

University of Computer Studies, Yangon
sunandarhtay09@gamil.com,khaingaugust@gmail.com

Abstract

Design patterns are recurring solutions to

software design problems you find again and again in

real-world application development. Patterns are

about design and interaction of objects, as well as

providing a communication platform concerning

elegant, reusable solutions to commonly encountered

programming challenges. The proposed system deals

with the object-oriented design model through Unified
Modeling Language (UML) for a Front Office process

of the Hotel. The FO process includes Room

reservation, Check-in, accumulation of expense during

the guest stay, Check out and Management reports.

This system implements with the five design pattern

classes. UML diagrams of Adapter, Singleton, Proxy,

Visitor, Observer design patterns are used to build

object-oriented models for developing the Hotel FO

system. The designed objects are implemented to

classes using C#.NET programming language.

1.Introduction

Design patterns document recurring solutions to

recurring problems in object-oriented software

design. They capture design expertise in reusable

form. A design pattern has a name, a description of

the problem it addresses, and a general solution that

designers must tailor or their particular variant of the

problem. The pattern also educates the reader about

the consequences good and bad- of its application

and about implementation variants. Design pattern do

not describe new or novels designs; they are mined

from successful object-oriented design. The patterns

that we encounter need to be captured and
documented in a sufficiently descriptive manner so

that they can be referred for future use.

 UML provides the perfect tools to do just this.

The unified modeling Language (UML) is a very

dominant modeling graphical language for

specifying, constructing and documenting the

artifacts of software system.

UML is a collection of best engineering practices that

have successful in the modeling for a design of a

huge and complex systems. Modeling is very
important for readability and reuse of the

systems.UML offers a set of notations and rules for

using the same. The main task of the UML is to

create simple, well documented and easy to

understand software model for the people. In

addition, UML has a sufficiently extensive and

expressive vocabulary to capture the details of

patterns. The UML modeling consists of nine main

diagrams to model a software system. These

diagrams are Use case Diagram, Class Diagram,

Object Diagram, State Diagram, Activity Diagram,
Sequences Diagram, Collaboration Diagram,

Component Diagram and Deployment Diagram. The

Class Diagram in UML can be used to capture the

patterns in a system. The UML class Diagrams

provide an easy way to capture and document Design

patterns.

 2.Related Work

 Design patterns are commonly defined as

time-tested solutions to recurring design problems.

The term refers to both the description of a solution

that you can read, and an instance of that solution as

used to solve a particular problem. Design patterns

have their roots in the work of Christoper

Alexander, a civil engineer who wrote about his

experience in solving design issues as they related to

buildings and towns. It occurred to Alexander that

certain design constructs, when used time and time
again, lead to the desired effect. He documented and

published the wisdom and experience he gained so

that others could benefits. About 15 years ago,

software professionals began to incorporate

Alexander‘s principles into the creation of early

design pattern documentation as a guide to novice

developers. This early work led others to also write

about design patterns and culminated in the

publication of Design Patterns:Element

 of Reusable Object-Oriented Software in 1995

by Eric Gamma, Richard Helm, Ralph Johnson,

and John Vlissides. This book is considered to

be the “coming out” of design patterns since.

Design Patterns described 23 patterns that were

based on the experience of the authors at that
time. These patterns were selected because they

represented solutions to common problems in

software development. Many more patterns have

been documented and cataloged since the

publishing of Design Patterns. However, these

23 are probably the best known and certainly the

most popular.Design patterns are represented as

relationships between classes and objects with

defined responsibilities that act in concert to

carry out the solution. To illustrate a design

pattern, consider the Bridge pattern, one of the

original 23 patterns described in Design
Patterns. One component that is not shown in

the class diagram is a database accessing that

will provide database accessing services for all

the classes in the class diagram that need to

interact with a data store. All database

interactions to retrieve or update information

required for their business functionality can be

routed through this database access element,

which acts as a bridge between the database and

the application components. Adapter provides a

solution to the scenario in which a client and
server need to interact with one another, but

cannot because their interfaces are incompatible.

To implement an Adapter, you create a custom

class that honors the interface provided by the

server defines the server operations in terms the

clients expects. This is a much better solution

than altering the client to match the interface of

the server.

3.Theory Background

3.1The Unified Modeling Language
A picture is worth a thousand words,

this absolutely fits discussing about UML.Object

oriented concepts were introduced much earlier

than UML. So at that time there were no

standard methodologies to organize and

consolidate the object oriented development.

At that point of time UML came into picture.

The unified modeling is the successor to the
wave of object-oriented 0061nalysis and design

methods that appeared in the late 80’s and early

90’.It most directly unified the methods of

Booch,Rumbaugh(OMT) and Ivar Jacobson. It is

a standard language for specifying, visualizing,

constructing, and documenting the artifacts of

software systems, as well as for business

modeling and other non-software systems. The

UML represents a collection of best engineering

practices that have proven successful in the

modeling of large and complex systems. It is a

very important part of developing object -

oriented software and the software development

process. It is intended for use with all

development methods, life cycle stages,

application domain and media. UML captures

information about the static structure and
dynamic behavior of a system. It uses mostly

graphical notations to express the design of

software projects. Its diagrams are not only

made for developers but also for business users,

common people and anybody interested to

understand the system. Using the UML diagrams

helps project teams communicate, explore

potential designs, and validate the architectural

design of the software.

3.1.1 UML Diagrams

Diagrams are the heart of UML.These

diagrams are broadly categorized as structural

and behavioral diagrams.

Structural diagrams are consists of static

diagrams like class diagram, object diagram etc.

Behavioral diagrams are consists of dynamic

diagram like sequence diagram, collaboration

diagram etc.

The static and dynamic nature of a system

is visualized by using these diagrams.

 A class diagram shows a set

of classes, interfaces, and

collaborations and their

relationships. These diagrams

are the most common diagram

found in modeling object-

oriented systems. Class

diagrams address the static

design view of a system.

 An Object diagram is an

instance of a class diagram. So
the basic elements are similar

to class diagram. It consists of

object and links.

 A component diagram shows

the organizations and

dependencies among a set of

components. It addresses the

static implementation view of

a system.

A deployment diagram
shows the configuration of

run-time processing nodes and
the components that live on

them. It addresses the static

deployment view of

architecture.

 A use case diagram shows a

set of use cases and actors and

their relationships. It is used to

capture the dynamic nature of

the system. So it represents the

system functionalities and

their flow.

 An interaction diagram is

used for capturing dynamic

nature of a system. Sequence
and collaboration diagrams are

kinds of interaction diagrams.

A sequence diagram

emphasizes the time-ordering

of messages. A collaboration

diagram emphasizes the

structural organizations of the

objects that send and receive

messages.

 A state chart diagram shows

a state machine, consisting of
states, transitions, events, and

activities. It addresses the

dynamic view of a system.

 An activity diagram is a

special kind of statechart

diagram that show the flow

from activity to activity within

a system. It addresses the

dynamic view of a system.

3.2 Design Pattern

Design Pattern makes it easier to reuse

successful designs and architectures. Expressing
proven techniques as design patterns makes them

more accessible to developers of new systems.

Design patterns help you choose design

alternatives that make a system reusable and avoid

alternatives that compromise reusability. Design

patterns can even improve the documentation and

maintenance of existing systems by furnishing an

explicit specification of class and object

interactions and their underlying intent. Put simply,

design patterns help a designer get a design “right”

faster.
In general, a pattern has four essential

elements:

 The pattern name is a handle we can use to

describe a design problem, its solutions, and

consequences in a word or two. Naming a

pattern immediately increases our design

vocabulary. Having a vocabulary for patterns

lets us talk about them with our colleagues, in

our documentation, even to ourselves. It makes

it easier to think about designs and to

communicate them and their trade-offs to

others. Finding good names has been one of

the hardest parts of developing our catalog.

 The problems describe when to apply the

pattern. It explains the problem and its context.

It might describe specific design problems
such as how to represent algorithms as objects.

It might describe class or object structures that

are symptomatic of an inflexible design.

Sometimes the problem will include a list of

conditions that must be met before it makes

sense to apply the pattern.

 The solution describes the elements that make

up the design, their relationship,

responsibilities, and collaborations. The

solution doesn’t describe a pattern is like a

 template that can be applied in many different
situations. Instead, the pattern provides an

abstract description of a design problem and

how a general arrangement of elements solves

it.

 The consequences are the results and trade-offs

of applying the pattern. Though consequences

are often unvoiced when we describe design

decision, they are critical for evaluating design

alternatives and for understanding the costs and

benefits of applying the pattern. The

consequences for software concern space and

time trade-offs. Since reuse is often a factor in
object-oriented design, the consequences of a

pattern include its impact on a system’s

flexibility, extensibility, or portability. Listing

these consequences explicitly helps you

understand and evaluate them.

 3.2.1 GOF Design Pattern

 The Gang of Four(GOF) patterns are

generally considered the foundation for all other

patterns. They offer flexible solutions to
common software development problems.

Each pattern is comprised of a number of

parts, including purpose/intent, solution

structure and implementations. They are

categorized in three groups: Creational,

Structural, and Behavioral.

Creational Patterns

Abstract
Factory

Creates an instance of
several different classes

Builder Separates object
construction from its
representation

Factory
Method

Creates an instance of
several derived classes

Prototype A fully initialized instance
to be copied or cloned

Singleton A class to allow only a
single instance

4. Implementation of Hotel Front

Office System

The proposed system implements

with five design pattern classes. It has used

Creational Pattern that includes Singleton

Pattern, Structural Pattern that includes
Adapter and Proxy Patterns, and

Behavioral pattern that includes Visitor and

Observer Patterns.

4.1 System Flowchart for Hotel Front

Office System

Hotel

database

Reservation Process

Start

Is Direct

Checkin?

Confirm Process

Check in

Record Expense

End

Yes

No

Report

Check out

Figure1: System Flowchart for Hotel

Front Office System

The flowchart of the Hotel Front Office

System can be seen as shown in figure,

there are five main process and it includes

report stage.

4.1.1Reservation Process

When the guest reserves the

room, the guest’s information and the room

that the guest want to stay are recorded by
the FO staff using the Reservation form.

Then, the related information of the guest is

added to the reservation list form.

 The room is assigned from the

room status list form that shows the status,

price, facilities and type of the room. The

room status such fill or free is changed due

to the visitor design pattern. The

necessary information of the room list can

be processed by the Adapter design pattern.

4.1.2Confirmation Process

The guest informs the FO staff that she
will stay or cancel or change before 1 weeks of

Behavioral Patterns

Chain of
Responsibility

A way of passing a
request between a
chain of objects

Command Encapsulate a
command request as
an object

Interpreter A way to include
language elements
in a program

Iterator Sequentially access
the elements of a
collection

Mediator Defines simplified
communication
between classes

Memento Capture and restore
an object's internal
state

Observer A way of notifying
change to a number
of classes

State Alter an object's
behavior when its
state changes

Strategy Encapsulates an
algorithm inside a
class

Template
Method

Defer the exact
steps of an algorithm
to a subclass

Visitor Defines a new
operation to a class
without change

Structural Patterns

Adapter Match interfaces of
different classes

Bridge Separates an object’s
interface from its
implementation

Composite A tree structure of
simple and composite
objects

Decorator Add responsibilities to
objects dynamically

Facade A single class that
represents an entire
subsystem

Flyweight A fine-grained instance
used for efficient
sharing

Proxy An object representing
another object

arrival. If the guest confirm to stay, the guest

from the reservation list is added to the confirm

list form. If he wants to cancel the reservation,

his information from the reservation list form

can be deleted .

4.1.3Check-in process

The additional information of the guest

is recorded. Then it is added to the check-in list.

4.1.4 Expense Process

The expense of the rooms such as
phone, extra bed, car rental, internet & email

etc... Are recorded daily by using the expense list

form. This form shows the expense type, rate,

total amount, unit of each expense at specific

date.

 The addition of each expense type and

rate to the expense type form is done by the

Singleton design pattern.

4.1.5 Check-Out process

The total charges of the room and extra
charges are calculated. If the guest who is

member of the hotel, he will get discount .If he

gets expired date, he will not get this discount.

The guest who is not member can get discount as

required. The members of the hotel can be

registered from the member form. This member

will be updated according to the member life and

fees on the member type form. This process is

done by the observer design pattern.

When the currency change is required,

the total amount of the room is calculated on the

exchange rate. This process is done by the Proxy
design pattern. After doing the check-out

process, the room status will become free.

4.1.6 Report

 Guest List Report shows the guest

information during the guest stay.

 Room List Report shows the status of

room such as fill or free.

 History Report shows the information of

the guest who have been checked out
during the limited period.

4.2 Overall Design Pattern Classes’

Implementation

4.2.1Singleton Design Pattern
Ensure a class has only one instance

and provide global of access to it.Several
different client objects need to refer to the

Expense and to ensure that clients do not

have more than one of them.

\

Figure2: UML Class diagram for Singleton

4.2.2 Proxy Design Pattern
 Provide a surrogate or placeholder

for another object to control access to it. A

proxy pattern constitute for the actual object.

Use of proxy is prevalent in remote object

interaction protocols.In check out process,

 H- CurrencyChange class acts as a substitute

for the H-CheckOut class.

Figure 2:UML Class diagram for Proxy

4.2.3Visitor Design Pattern
Represent an operation to be

performed on the elements of an object

structure. Visitor lets you define a new

operation without changing the classes of the

elements on which it operates. Visitor: The

status of the room is changed by the hotel

Processreservation class.

 Figure 4: UML Class diagram for Visitor

4.2.4 Adapter Design Pattern

Convert the interface of a class into

another interface clients expect. Adapter lets

classes work together that couldn’t otherwise

because of incompatible interface. Adapter: the

H-Roomoperation class acts as adapter between

H_Room class and H_RoomType class

,H_RoomStatus class.

Figure 5: UML Class diagram for Adapter

 4.2.5 Observer Design Pattern
Define a one to many dependency

between objects so that when one object

changes state, all its dependents are notified

and updated automatically.Observer: When

hotel Member type class changes something,

its dependent classes are updated

automatically.

Figure 6:UML Class diagram for Observer

5. Conclusion
 This paper show the efficiency of

design pattern using in UML models to

develop the object based business application

system. Design patterns integration into a

modeling language is a tempting idea. A

simple modeling constructs allowing to

explicitly point out participant classes of a

design pattern could help designers in many

ways. Besides the direct advantage of a better

documentation and the consequent better

understandability of a model, pointing out the
existence of a design patterns allows

designers to abstract known design details

(e.g. associations, methods) and concentrate

on more important tasks.
 By using design pattern in my

system, it can be reduced the designing time

and more importantly ensure that the system

is constistent and stable in terms of

architectural and design.

6.References

[1] Unified Modeling Lanuage

 Mark Priestley,”Practical Object-Oriented

Design With UML

 [2] Design Pattern

 Su Hnin Aye
Implementing Design Pattern For

Transformer Sales

 [3] Unified Modeling Language

 http://www.atlas.kennesaw.edu

[4]http://www.developer.com/design/article.php

[5] Gang of four design pattern

 www.dofactory .com

http://www.developer.com/design/article.php
http://www.dofactory/

