
Parallel Implementation of Smith Waterman Sequence Alignment

Algorithm

Han Su Yin Nyunt; Thinn Thu Naing

University of Computer Studies, Yangon

E-mail: hansuyinnyunt@gmail.com

Abstract

Local sequence alignment is widely used to

discover structural and hence, functional

similarities between biological sequences. Sequence

database alignment is among the most important

and challenging tasks in bioinformatics. This paper

presents a parallel algorithm that finds all

occurrences of a pattern string in a subject string in

O(log n) time, where n is the length of the subject

string. The number of processors employed is of the

order of the product of the two string lengths. It also

presents advanced computer architectures that

utilize parallelism via multiple processing units.

While parallel computing, in the form of internally

linked processors, was the main form of parallelism,

advances in computer networks has created a new

type of parallelism in the form of networked

autonomous computers. . The right choice of

sequence alignment algorithm is that of Smith-

Waterman. To get high quality results in a short

time is to use parallel processing.

1. Introduction

A massive volume of biological sequence data is

available in over 36 different databases worldwide,

including the sequence data generated. These

databases, which also contain biological and

bibliographical information, are growing at an

exponential rate. The computational demands

needed to explore and analyze the data contained in

these databases is quickly becoming a great concern.

To meet these demands, we must use high

performance computing systems, such as parallel

computers and distributed networks of workstations.

Searching for similarities in protein and DNA

databases has become a routine procedure in

Molecular Biology. The Smith-Waterman algorithm

is based on a dynamic programming approach that

explores all the possible alignments between two

sequences; as a result it returns the optimal local

alignment. The Smith-Waterman algorithm

guarantees the maximal sensitivity for local

sequence alignments. It should be further considered

that biological databases are growing at a very fast

exponential rate, which is greater than the rate of

improvement of microprocessors. This trend results

in longer time. For the above reasons, many

widespread solutions running on common

microprocessors now use some heuristic approaches

to reduce the computational cost of sequence

alignment. Most widely used is running the

alignment processes in parallel.

This paper presents and analyzes the parallel

processing of DNA sequence alignment with single

processing. The alignment of two DNA or protein

sequences is used to detect functional similarities.

High sequence similarity implies structural and

functional similarity. Smith-Waterman alignment

algorithm will be used to find the alignments. It is

an exact alignment algorithm that finds the highest

scoring alignment possible between two DNA

sequences. The organization of this paper is as

follows. Section 2 presents the related work of

sequence alignment process. In section 3, DNA

structure and how DNA is made of are illustrated.

2. Related Work

A number of efforts have also been made to

obtain faster implementations of the Smith-

Waterman algorithm on commodity hardware.

Farrar [1] exploits Intel SSE2, which is the

multimedia extension of the CPU. Its

implementation is much faster than SSEARCH [3]

(a quasi-standard implementation of Smith-

Waterman).

An attempt to implement Smith-Waterman on a

GPU was done by W. Liu et al. (2006) [2]. Their

solution relies on OpenGL that has some intrinsic

limits as it is based on the graphics pipeline. Thus, a

conversion of the problem to the graphical domain is

needed, as well as a reverse procedure to convert

back the results. Although that approach is faster

than SSEARCH but slower than Farrar[1].

3. Smith Waterman Algorithm

The Smith-Waterman algorithm is designed to

find the optimal local alignment between two

sequences. It was proposed by Smith and Waterman

and enhanced by Gotoh [8]. The alignment of two

sequences is based on the computation of an

alignment matrix. The number of its columns and

rows is given by the number of the residues in the

query and database sequences respectively. The

computation is based on a substitution matrix and on

a gap-penalty function.

Consider two strings S1 and S2 of length l1 and

l2. To identify common subsequences, the SW

algorithm computes the similarity H(i, j) of two

sequences ending at position i and j of the two

sequences S1 and S2. The computation of J(i, j) for 1

 i  l1, 1  j  i2 is given by following sequence is

given by the following recurrences:

H(i,j) = max{0, E(i,j), F(i,j),

 H(i-1,j-1)+ Sbt(S1i, S2i)}

E(i,j) = max{H(i,j-1)-  ,E(i,j-1)-  }

F(i,j) = max{H(i-1,j)-  ,E(i-1,j)-  }

Figure 1 is the example of the SW algorithm to

compute the local alignment between two DNA

sequences ATCTCGTATGATG and GTCTATCAC.

The matrix H{i, j} is shown for the computation

with gap costs =1 and =1, and a substitution cost

of + 2 if the characters are identical and -1

otherwise. From the highest score (+ 10 in the

example), a trace back procedure delivers the

corresponding alignment (shaded cells), the two

subsequences TCGTATGA and TCTATCA.

Figure 1: Example of Two Sequence Alignment

Process of Smith Waterman Algorithm

1. Assigns a score to each pair of bases – Uses

similarity scores only

 Uses positive scores for related residues

 Uses negative scores for substitutions and

gaps

2. Initializes edges of the matrix with zeros

3. As the scores are summed in the matrix, any

score below 0 is recorded as 0.

4. Begins the trace back at the maximum value

found anywhere in the matrix

5. Continues until the score falls to 0.

4. Parallel Processing

Parallel computer is a computer with many

processing units or processors. Given a problem to

be solved, it is broken into a number of sub

problems. Having multiple processors working

simultaneously on a problem, the processors work

collectively to solve the single problem usually for

the maximum performance. All of these sub

problems are now solved simultaneously, each on a

different processor. The results are then combined to

produce an answer to the original problem.

There are four classes of computers for processing

1. Single Instruction stream, Single Data

Stream (SISD) – a computer in this class

consists of a single processing unit

receiving a single stream of instructions

that operate on a single stream of data.

2. Multiple Instruction stream, Single Data

Stream (MISD) – N processors each with

its own control unit share a common

memory unit where data reside. There are

N streams of instructions and one stream of

data. At each step, one datum received from

memory is operated upon by all the

processors simultaneously. Parallelism is

achieved by letting the processors do

different things at the same time on the

same datum.

3. Single Instruction stream, Multiple Data

Stream (SIMD) – a parallel computer

consists of N identical processors. Each of

N processors possesses its own local

memory where it can store both programs

and data. All processors operate under the

control of a single instruction stream issued

by a central control unit.

Multiple Instruction stream, Multiple Data

Stream (MIMD) – In this class of computer, the

computation classifies parallel computers according

to whether the instruction and / or the data streams

are duplicated. There are N processors, N streams of

instructions, and N streams of data. Figure 1

presents the parallel processing architecture of

SIMD model, where each processor has its own data

stream but performs task for single instruction.

SIMD architecture is mainly focused in this paper.

Figure 2: SIMD Parallel Processing

5. DNA

Deoxyribonucleic acid (DNA) is a nucleic acid

that contains the genetic instructions used in the

development and functioning of all known living

organisms and some viruses.

Deoxyribonucleic acid, or DNA, carries the

hereditary information. DNA and proteins make up

the chromosomes of cells. DNA is made up of

molecules of the sugar deoxyribose, phosphate

groups, and nitrogen bases. The basic unit of DNA,

the nucleotide, is made up of one of each. A

molecule of DNA may contain as many as 200,000

nucleotides. The nucleotides make up two chains

that are linked and twisted around one another in

the form of a double helix. The rungs of the DNA

ladder consist of pairs of nitrogen bases. There are

two kinds of nitrogen bases: purines and

pyrimidines. The purines have a two-ringed

structure; they are adenine (A) and guanine (G). The

pyrimidines have a one-ring structure; they are

cytosine (C) and thymine (T).

The main role of DNA molecules is the long-

term storage of information. DNA is often compared

to a set of blueprints or a recipe, or a code, since it

contains the instructions needed to construct other

components of cells, such as proteins and RNA

molecules. The DNA segments that carry this

genetic information are called genes, but other DNA

sequences have structural purposes, or are involved

in regulating the use of this genetic information.

There are different DNA sequence formats, such

as FASTA, BLAST, etc. In the FASTA format,

sequence is starts with “>” and sequence number.

General sequence structure for all formats is as

shown below.

ACAAGATGCCATTGTCCCCCGGCCTCCTGCT

GCTGCTGCTCTCCGGGGCCACGGCCACCGCT

GCCCTGCC

CCTGGAGGGTGGCCCCACCGGCCGAGACAG

CGAGCATATGCAGGAAGCGGCAGGAATAAG

GAAAAGCAGC

TCCTGACTTTCCTCGCTTGGTGGTTTGAGTGG

ACCTCCCAGGCCAGTGCCGGGCCCCTCATAG

GAGAGG

AAGCTCGGGAGGTGGCCAGGCGGCAGGAAG

GCGCACCCCCCCAGCAATCCGCGCGCCGGGA

CAGAATGCCTGCAGGAACTTCTTCTGGAAGA

CCTTCTCCTCCTGCAAATAAAACCTCACCCA

TGAATGCTCACGCAAG

TTTAATTACAGACCTGAA

5.1 Sequence Alignment for DNA

Classification

DNA that have a significant biological

relationship to one another often share only isolated

regions of sequence similarity. For identifying

relationships of this nature, the ability to find local

regions of optimal similarity is advantageous over

global alignments that optimize the overall

alignment of two entire sequences. Having

sequenced a particular protein, it is of interest to

compare it with previously characterized sequences.

Sequence alignment of DNA sequences is used to

analyze the data and interpret the results in a

biologically meaningful manner.

6. Proposed System

This paper presents the parallel processing

approach for the DNA sequence alignment. There

are n processors processing for the input DNA

sequence in this system. Smith-Waterman algorithm

is used to find the matches scores of the sequences.

It is implemented as the distributed system. When

user request arrives at a processor, it splits jobs into

sub jobs and sends requested to other processors.

Then request is processed in parallel and results are

replied to sender processor. Results are compiled at

the sender processor and best result is sent back to

user. Figure 3 is the proposed system architecture for

the parallel processing of DNA sequence alignment.

CLUSTER

PROCESSOR

1

PROCESSOR

2

PROCESSOR

N

CONTROL

…

INSTRUCTION

STREAM

DATA

STREAM

1

DATA

STREAM

2

DATA

STREAM

N

Figure 3: Proposed System Design

7. System Implementation

This system is implemented using Java

programming language. Processors are implemented

in the distributed computers. Remote Method

Invocation is used to send and receive results from

distributed machines.

The main process of the system is finding the

matched DNA sequence in a set of DNA databases.

Smith-Waterman algorithm is used to find the

similarity of input DNA sequence and DNA

databases. Since DNA sequences are large, and there

are a lot of DNA sequence database, processing time

of the DNA sequence alignment is the major

concern in the DNA sequence alignment. Parallel

processing architecture is used to optimize the

processing time.

Each processor stores the required information

(computer name, remote object) of other processors.

When a job request arrives, it locates the remote

processors for distributed parallel processing. After

processing parallel jobs, the main processor

combines all results and displays outputs. The main

process flow and implementation of the system is

shown in Figure 4, where when a job arrives, tasks

are separated according to number of processors

assigned. Then each task is redirected to

corresponding remote processors. Tasks are

processed at the remote processors and remote

processors return the results back to the main

system. It collects, finalizes results and returns the

final result back to the user. In this system, it is

assumed that Smith Waterman algorithm is

implemented in each processor and they have their

own sequence database. Whenever there is update in

the sequence database, it is distributed to other

remote processor. Therefore, all remote processors

maintain the consistency state of sequence database,

i.e., having the same sequence database all time.

Figure 4: Implementation of the System

8. Experimental Result

We have run this program with four computers,

implementing four distributed processors.

Computers are desktop computers with Processor

Intel(R) Pentium(R) Dual CPU 2.20GHz, Memory 2

GB of RAM. The type of network used in this

system is P2P with no domain server.

For the same request, we have tested with one

processor, two processors, three processors and four

processors. Running example is shown in Figure 5.

Figure 5 (a) is the input DNA, Figure 5 (b) presents

the types of DNA available in this system, Figure 5

(c) shows the processing status of current request,

and Figure 5 (d) is the results for different classes.

This example scenario is run with number of

processors = 4 and Similarity Threshold = 0.75.

Figure 5 (a): Input DNA

Figure 5 (b): DNA Types available in this system

Processor 1

Smith-Waterman

Processor 2

Smith-Waterman

Processor n

Smith-Waterman …

Central Control Unit

ACTTGG--TTAA

DNA Sequence Results

DNA SEQUENCE DB

DNA Class

 Processor 1

Data for Remote

processors

 Processor 2

Data for Remote

processors

…

 Processor n

Data for Remote

processors

Job Request

(DNA)
No. of

processors

Separate Tasks

Assign & Locate tasks in

remote processors

Collect Results

Display Results

Results

results

instructio

n

Figure 5 (c): Processing status of requested task at a

processor

Figure 5 (d): Similarity Score Results

Processing Time comparison (Performance analysis)

for different processors is shown in Figure 6.

-

Figure 6: Comparison of Processing Times in

different number of processors.

Since this system uses data in small amount, the

performance shows no significant changes for

different processors for taking costs in initializing

network services. But in the reality, DNA sequences

are relatively long and network initialization time

becomes a small factor of processing time. Therefore

this system performs well for long DNA sequences

with a large number of DNA sequences in the

sequence database.

When compared to other sequence alignment

algorithms BLAST and single processor Smith

Waterman Algorithm, this parallel processing of

Smith Waterman algorithm outperforms over above

two algorithms.

9. Conclusion

Parallelism is needed to keep pace with the ever-

growing demands in sequence comparison. It

reduces the running time from the sequential to the

parallel processing. This paper also presents

performance analysis of these two different

approaches with different processor counts. The

analysis results show that the performance of

sequence alignment process is significantly higher in

longer sequences for different number of processors.

There is no significant difference for short DNA

sequences in processing with different number of

processors since network initialization cost takes the

great factor of overall processing time.

10. References

[1] Farrar M: “Striped Smith-Waterman speeds

database searches six times over other SIMD

implementations”, Bioinformatics 2007,

23(2):156-161.

[2] Liu W, Schmidt B, Voss G, Schroeder A,

Muller-Wittig W: “Bio-Sequence Database

Scanning On GPU. In Proceeding of the 20th

IEEE International Parallel & Distributed

Processing Symposium”, IPDSP 2006

(HICOMB Workshop Rhode Island, Greece;

2006.

[3] Pearson W: “Searching protein sequence

libraries: comparison of the sensitivity and

selectivity of the Smith-Waterman and FASTA

algorithms”, Genomics 1991, 11:635-650.

[4] Hesham El-Rewini and Mostafa ABD-El-Barr,

“Advanced Computer Architecture and Parallel

Processing”, Wiley Series on Parallel and

Distributed Computing.

[5] Ronges T. and Seeberg E, “Six-fold speed-up of

Smith-Waterman sequence database searches

using parallel processing on common

microprocessors”, Oxford University Press

2000.

100

80

60

40

20

0

1 2 3 4

T

 i

m

e

(s)

Processor

1 Processor

2 Processors

3 Processors

4 Processors

[6] Yang B. H. W, “A Parallel Implementation of

Smith-Waterman Sequence Comparison

Algorithm”, December 6, 2006.

[7] Slim G.Akl, “The Design And Analysis of

Parallel Algorithms ”, ISBN- 0-13-200056-3,

1989, Pages 1-38

[8] http://en.wikipedia.org/wiki/Smith-

Waterman_algorithm

[9] http://searchlauncher.bcm.tmc.edu/help

/SmithWaterman.html

http://en.wikipedia.org/wiki/Smith-Waterman_algorithm
http://en.wikipedia.org/wiki/Smith-Waterman_algorithm
http://searchlauncher.bcm.tmc.edu/help

