
Parallel Implementation of Smith Waterman Sequence Alignment 

Algorithm 
 

 

Han Su Yin Nyunt; Thinn Thu Naing 

University of Computer Studies, Yangon 

E-mail: hansuyinnyunt@gmail.com

 

 

 

Abstract 
 

Local sequence alignment is widely used to 

discover structural and hence, functional 

similarities between biological sequences. Sequence 

database alignment is among the most important 

and challenging tasks in bioinformatics. This paper 

presents a parallel algorithm that finds all 

occurrences of a pattern string in a subject string in 

O(log n) time, where n is the length of the subject 

string. The number of processors employed is of the 

order of the product of the two string lengths. It also 

presents advanced computer architectures that 

utilize parallelism via multiple processing units. 

While parallel computing, in the form of internally 

linked processors, was the main form of parallelism, 

advances in computer networks has created a new 

type of parallelism in the form of networked 

autonomous computers. . The right choice of 

sequence alignment algorithm is that of Smith-

Waterman. To get high quality results in a short 

time is to use parallel processing. 

  

 

1. Introduction 
 

A massive volume of biological sequence data is 

available in over 36 different databases worldwide, 

including the sequence data generated. These 

databases, which also contain biological and 

bibliographical information, are growing at an 

exponential rate. The computational demands 

needed to explore and analyze the data contained in 

these databases is quickly becoming a great concern. 

To meet these demands, we must use high 

performance computing systems, such as parallel 

computers and distributed networks of workstations. 

Searching for similarities in protein and DNA 

databases has become a routine procedure in 

Molecular Biology. The Smith-Waterman algorithm 

is based on a dynamic programming approach that 

explores all the possible alignments between two 

sequences; as a result it returns the optimal local 

alignment. The Smith-Waterman algorithm 

guarantees the maximal sensitivity for local 

sequence alignments. It should be further considered 

that biological databases are growing at a very fast 

exponential rate, which is greater than the rate of 

improvement of microprocessors. This trend results 

in longer time. For the above reasons, many 

widespread solutions running on common 

microprocessors now use some heuristic approaches 

to reduce the computational cost of sequence 

alignment. Most widely used is running the 

alignment processes in parallel. 

This paper presents and analyzes the parallel 

processing of DNA sequence alignment with single 

processing. The alignment of two DNA or protein 

sequences is used to detect functional similarities. 

High sequence similarity implies structural and 

functional similarity. Smith-Waterman alignment 

algorithm will be used to find the alignments. It is 

an exact alignment algorithm that finds the highest 

scoring alignment possible between two DNA 

sequences. The organization of this paper is as 

follows. Section 2 presents the related work of 

sequence alignment process. In section 3, DNA 

structure and how DNA is made of are illustrated. 

 

2. Related Work 
 

A number of efforts have also been made to 

obtain faster implementations of the Smith-

Waterman algorithm on commodity hardware. 

Farrar [1] exploits Intel SSE2, which is the 

multimedia extension of the CPU. Its 

implementation is much faster than SSEARCH [3] 

(a quasi-standard implementation of Smith-

Waterman). 

An attempt to implement Smith-Waterman on a 

GPU was done by W. Liu et al. (2006) [2]. Their 

solution relies on OpenGL that has some intrinsic 

limits as it is based on the graphics pipeline. Thus, a 

conversion of the problem to the graphical domain is 

needed, as well as a reverse procedure to convert 



back the results. Although that approach is faster 

than SSEARCH but slower than Farrar[1]. 

 

3. Smith Waterman Algorithm 
 

The Smith-Waterman algorithm is designed to 

find the optimal local alignment between two 

sequences. It was proposed by Smith and Waterman 

and enhanced by Gotoh [8]. The alignment of two 

sequences is based on the computation of an 

alignment matrix. The number of its columns and 

rows is given by the number of the residues in the 

query and database sequences respectively. The 

computation is based on a substitution matrix and on 

a gap-penalty function. 

Consider two strings S1 and S2 of length l1 and 

l2. To identify common subsequences, the SW 

algorithm computes the similarity H(i, j) of two 

sequences ending at position i and j of the two 

sequences S1 and S2. The computation of J(i, j) for 1 

 i  l1, 1  j  i2 is given by following sequence is 

given by the following recurrences: 

 

H(i,j) =  max{0, E(i,j), F(i,j),  

 H(i-1,j-1)+ Sbt(S1i, S2i)} 

E(i,j) = max{H(i,j-1)-  ,E(i,j-1)-  } 

F(i,j) =  max{H(i-1,j)-  ,E(i-1,j)-  } 

 

Figure 1 is the example of the SW algorithm to 

compute the local alignment between two DNA 

sequences ATCTCGTATGATG and GTCTATCAC. 

The matrix H{i, j} is shown for the computation 

with gap costs =1 and =1, and a substitution cost 

of + 2 if the characters are identical and -1 

otherwise. From the highest score (+ 10 in the 

example), a trace back procedure delivers the 

corresponding alignment (shaded cells), the two 

subsequences TCGTATGA and TCTATCA. 

 

 
Figure 1: Example of Two Sequence Alignment 

 

 

Process of Smith Waterman Algorithm 

 

1. Assigns a score to each pair of bases – Uses 

similarity scores only  

 Uses positive scores for related residues  

 Uses negative scores for substitutions and 

gaps   

2. Initializes edges of the matrix with zeros   

3. As the scores are summed in the matrix, any 

score below 0 is recorded as 0.   

4. Begins the trace back at the maximum value 

found anywhere in the matrix   

5. Continues until the score falls to 0. 

 

 

4. Parallel Processing 
 

Parallel computer is a computer with many 

processing units or processors. Given a problem to 

be solved, it is broken into a number of sub 

problems. Having multiple processors working 

simultaneously on a problem, the processors work 

collectively to solve the single problem usually for 

the maximum performance. All of these sub 

problems are now solved simultaneously, each on a 

different processor. The results are then combined to 

produce an answer to the original problem. 

 

There are four classes of computers for processing  

1. Single Instruction stream, Single Data 

Stream (SISD) – a computer in this class 

consists of a single processing unit 

receiving a single stream of instructions 

that operate on a single stream of data. 

2. Multiple Instruction stream, Single Data 

Stream (MISD) – N processors each with 

its own control unit share a common 

memory unit where data reside. There are 

N streams of instructions and one stream of 

data. At each step, one datum received from 

memory is operated upon by all the 

processors simultaneously. Parallelism is 

achieved by letting the processors do 

different things at the same time on the 

same datum. 

3. Single Instruction stream, Multiple Data 

Stream (SIMD) – a parallel computer 

consists of N identical processors. Each of 

N processors possesses its own local 

memory where it can store both programs 

and data. All processors operate under the 

control of a single instruction stream issued 

by a central control unit.  

 

Multiple Instruction stream, Multiple Data 

Stream (MIMD) – In this class of computer, the 



computation classifies parallel computers according 

to whether the instruction and / or the data streams 

are duplicated. There are N processors, N streams of 

instructions, and N streams of data. Figure 1 

presents the parallel processing architecture of 

SIMD model, where each processor has its own data 

stream but performs task for single instruction. 

SIMD architecture is mainly focused in this paper. 

 

 
 

Figure 2: SIMD Parallel Processing 

 

5. DNA 

 

Deoxyribonucleic acid (DNA) is a nucleic acid 

that contains the genetic instructions used in the 

development and functioning of all known living 

organisms and some viruses.  

Deoxyribonucleic acid, or DNA, carries the 

hereditary information. DNA and proteins make up 

the chromosomes of cells. DNA is made up of 

molecules of the sugar deoxyribose, phosphate 

groups, and nitrogen bases. The basic unit of DNA, 

the nucleotide, is made up of one of each. A 

molecule of DNA may contain as many as 200,000 

nucleotides. The nucleotides make up two chains 

that are linked and twisted around one another in 

the form of a double helix. The rungs of the DNA 

ladder consist of pairs of nitrogen bases. There are 

two kinds of nitrogen bases: purines and 

pyrimidines. The purines have a two-ringed 

structure; they are adenine (A) and guanine (G). The 

pyrimidines have a one-ring structure; they are 

cytosine (C) and thymine (T). 

The main role of DNA molecules is the long-

term storage of information. DNA is often compared 

to a set of blueprints or a recipe, or a code, since it 

contains the instructions needed to construct other 

components of cells, such as proteins and RNA 

molecules. The DNA segments that carry this 

genetic information are called genes, but other DNA 

sequences have structural purposes, or are involved 

in regulating the use of this genetic information. 

There are different DNA sequence formats, such 

as FASTA, BLAST, etc. In the FASTA format, 

sequence is starts with “>” and sequence number. 

General sequence structure for all formats is as 

shown below. 

ACAAGATGCCATTGTCCCCCGGCCTCCTGCT

GCTGCTGCTCTCCGGGGCCACGGCCACCGCT

GCCCTGCC 

CCTGGAGGGTGGCCCCACCGGCCGAGACAG

CGAGCATATGCAGGAAGCGGCAGGAATAAG

GAAAAGCAGC 

TCCTGACTTTCCTCGCTTGGTGGTTTGAGTGG

ACCTCCCAGGCCAGTGCCGGGCCCCTCATAG

GAGAGG 

AAGCTCGGGAGGTGGCCAGGCGGCAGGAAG

GCGCACCCCCCCAGCAATCCGCGCGCCGGGA

CAGAATGCCTGCAGGAACTTCTTCTGGAAGA

CCTTCTCCTCCTGCAAATAAAACCTCACCCA

TGAATGCTCACGCAAG 

TTTAATTACAGACCTGAA 

 

 

5.1 Sequence Alignment for DNA 

Classification 
 

DNA that have a significant biological 

relationship to one another often share only isolated 

regions of sequence similarity. For identifying 

relationships of this nature, the ability to find local 

regions of optimal similarity is advantageous over 

global alignments that optimize the overall 

alignment of two entire sequences. Having 

sequenced a particular protein, it is of interest to 

compare it with previously characterized sequences. 

Sequence alignment of DNA sequences is used to 

analyze the data and interpret the results in a 

biologically meaningful manner. 

 

6. Proposed System 
 

This paper presents the parallel processing 

approach for the DNA sequence alignment. There 

are n processors processing for the input DNA 

sequence in this system. Smith-Waterman algorithm 

is used to find the matches scores of the sequences. 

It is implemented as the distributed system. When 

user request arrives at a processor, it splits jobs into 

sub jobs and sends requested to other processors. 

Then request is processed in parallel and results are 

replied to sender processor. Results are compiled at 

the sender processor and best result is sent back to 

user. Figure 3 is the proposed system architecture for 

the parallel processing of DNA sequence alignment.  
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Figure 3: Proposed System Design 

 

7. System Implementation 
 

This system is implemented using Java 

programming language. Processors are implemented 

in the distributed computers. Remote Method 

Invocation is used to send and receive results from 

distributed machines. 

The main process of the system is finding the 

matched DNA sequence in a set of DNA databases. 

Smith-Waterman algorithm is used to find the 

similarity of input DNA sequence and DNA 

databases. Since DNA sequences are large, and there 

are a lot of DNA sequence database, processing time 

of the DNA sequence alignment is the major 

concern in the DNA sequence alignment. Parallel 

processing architecture is used to optimize the 

processing time. 

Each processor stores the required information 

(computer name, remote object) of other processors. 

When a job request arrives, it locates the remote 

processors for distributed parallel processing. After 

processing parallel jobs, the main processor 

combines all results and displays outputs. The main 

process flow and implementation of the system is 

shown in Figure 4, where when a job arrives, tasks 

are separated according to number of processors 

assigned. Then each task is redirected to 

corresponding remote processors. Tasks are 

processed at the remote processors and remote 

processors return the results back to the main 

system. It collects, finalizes results and returns the 

final result back to the user. In this system, it is 

assumed that Smith Waterman algorithm is 

implemented in each processor and they have their 

own sequence database. Whenever there is update in 

the sequence database, it is distributed to other 

remote processor. Therefore, all remote processors 

maintain  the consistency state of sequence database, 

i.e., having the same sequence database all time. 

 

 

 
 

Figure 4: Implementation of the System 

 

 

8. Experimental Result 
 

We have run this program with four computers, 

implementing four distributed processors.  

Computers are desktop computers with Processor 

Intel(R) Pentium(R) Dual CPU 2.20GHz, Memory 2 

GB of RAM. The type of network used in this 

system is P2P with no domain server.  

For the same request, we have tested with one 

processor, two processors, three processors and four 

processors. Running example is shown in Figure 5. 

Figure 5 (a) is the input DNA, Figure 5 (b) presents 

the types of DNA available in this system, Figure  5 

(c) shows the processing status of current request, 

and Figure 5 (d) is the results for different classes. 

This example scenario is run with number of 

processors = 4 and Similarity Threshold = 0.75.   

 

 
 

Figure 5 (a): Input DNA 

 

 
Figure 5 (b): DNA Types available in this system 
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Figure 5 (c): Processing status of requested task at a 

processor 

 

 
 

Figure 5 (d): Similarity Score Results 

 

 

Processing Time comparison (Performance analysis) 

for different processors is shown in Figure 6. 

 

-

 
 

Figure 6: Comparison of Processing Times in 

different number of processors. 

 

Since this system uses data in small amount, the 

performance shows no significant changes for 

different processors for taking costs in initializing 

network services. But in the reality, DNA sequences 

are relatively long and network initialization time 

becomes a small factor of processing time. Therefore 

this system performs well for long DNA sequences 

with a large number of DNA sequences in the 

sequence database. 

When compared to other sequence alignment 

algorithms BLAST and single processor Smith 

Waterman Algorithm, this parallel processing of 

Smith Waterman algorithm outperforms over above 

two algorithms. 

 

9. Conclusion 
 

Parallelism is needed to keep pace with the ever-

growing demands in sequence comparison. It 

reduces the running time from the sequential to the 

parallel processing. This paper also presents 

performance analysis of these two different 

approaches with different processor counts. The 

analysis results show that the performance of 

sequence alignment process is significantly higher in 

longer sequences for different number of processors. 

There is no significant difference for short DNA 

sequences in processing with different number of 

processors since network initialization cost takes the 

great factor of overall processing time. 
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