
 Building a Small new Interpreter for Arithmetic Expressions of Pseudo

Language by using Polish Notation

Su Myat Thu

University of Computer Studies (Mandalay)

sumyatthu3387@gmail.com

Abstract

Since most imperative languages have similar

control structures and operational logic, a pseudo

programming language with clearer syntax could be

more appropriate as a first teaching language.

Therefore, it is an ideal candidate for teaching

computation concepts. However, the novices

normally would like to try to execute their examples,

there’s no platform for running pseudo code. Pure

interpretation is an easy implementation and a

phenomenon that interpreter program executes

source machine statements. So, our system intends

to make pseudo code execute by using this method

in order to help pseudo users see their outputs. We

also use polish notation in order to evaluate the

arithmetic expressions in a pseudo program.

1. Introduction

Pseudo is a very close to the people and so every

beginner in programming language firstly learns

this language to train their logic. However, the well-

known bottleneck of this language is user can’t see

their outputs. So, in this system, we try to execute

pseudo programs using pure interpretation method.

There are three language implementation methods.

They are pure interpretation, compilation and hybrid

implementation system.

In pure interpretation, programs can be

interpreted by another program called an interpreter,

with no translation whatever. The interpreter

program acts as a software simulation machine

whose fetch-execute cycle deals with high level

language program statements rather than machine

instructions. Although the execution is ten to

hundred times slower than in compiles systems, this

system allows easy implementation of memory

source-level debugging operations because all run-

time error messages can refer to source-level units.

In compilation, programs can be translated to

machine language, which can be executed directly

on the computer. This method has the advantage of

very fast program execution, once the translation

process is complete. But, this process is far more

complex.

The last, hybrid implementation systems are a

compromise between compilation and pure

interpretation. Instead of translating intermediate

language code to machine code, it simply interprets

the intermediate code. Translating high-level

language programs to an intermediate language

designed to allow easy interpretation is more

complex than pure interpretation systems.

For this reasons, pure interpretation system will

be the most suitable method in making pseudo

program run. Our system will also use lexical and

syntax analysis for checking pseudo format input by

the user whether it is true or false. This system

intends to make pseudo code execute in order to help

pseudo users see their outputs.

2. Related works

There has been lot of discussion on choosing the

right language for the first programming concepts

and building interpreter. Olsen [1] used pseudo code

as a design tool in an inductor CS course. Students

used pseudo code to define the solution, and then

implemented the actual program with C++. Robert

E. Filman returned to the question of what

distinguishes AOP languages by considering how

the interpreters of AOP languages differ from

conventional interpreters. ROBERT W.SEBESTA

discussed three language implementation methods,

pure interpretation, compilation and hybrid-

implementation system.

3. Theory background

In this section, background theories are

discussed.

3.1 Interpreter

An interpreter normally means a computer

program that execute, i.e. performs, instructions

written in a programming language. Loosely

speaking, an interpreter actually does what the

program says to do.

3.2 Lexical analysis

In computer science, lexical analysis is the

process of converting a sequence of characters into a

sequence of tokens. Programs performing lexical

analysis are called lexical analyzers or lexers.

3.2.1 Token. A token is a categorized block of text.

The block of text corresponding to the token is

known as a lexeme. A lexical analyzer divides a

sequence of characters into tokens (tokenization)

and categorizes them according to function, giving

them meaning. A token can look like anything; it

just needs to be a useful part of the structured text.

3.3 Parser

The parser obtains a string of tokens from the

lexical analyzer and verifies that the string can be

generated by the grammar for the source language.

We expect the parser to report any syntax errors in

an intelligible fashion. It should also recover from

commonly occurring errors so that it can continue

processing the remainder of its input.

3.4 Parsing

Parsing is the process of determining if a string

of tokens can be generated by a grammar. A parser

can be constructed for any grammar. Programming

language parsers almost always make a single left-

to-right scan over the input, looking ahead one token

at a time.

3.5 Parse tree

One of the most attractive features of grammars

is that they naturally describe the hierarchical

syntactic structure of the sentences of the languages

they define. These hierarchical structures are called

the parse tree, and it has the important purpose of

making explicit the hierarchical syntactic structure

of sentences that is implied by the grammar.

3.6 Ambiguity

A grammar that produces more than one parse

tree for some sentence is said to be ambiguous. Put

another way, an ambiguous grammar is one that

produces more than one leftmost or more than one

rightmost derivation for some sentence.

If the grammar is ambiguous, we can

disambiguate these grammars by specifying the

associability and precedence of the arithmetic

operators. Suppose we wish to give the operators the

following precedence in decreasing order:

- (Unary minus)

↑

* /

+ -

3.7 Polish notation

Polish notation was described in the 1920s by

Polish mathematician Jan Lukasiewicz as a logical

system for the specification of mathematical

equations without parentheses. There are two

versions, prefix notation and postfix notation. In

prefix notation, the operators are placed before the

operand. In postfix notation, this order is reversed.

Several conventions exist for the evaluation of

arithmetic expressions. Prefix notation is known as

Polish Notation after the nationality of Lukasiewicz.

Similarly, postfix notation is known as Reverse

Polish Notation (RPN).

In infix notation, operators appear between

operands:

A+B*C

In prefix notation, operators precede operands:

+A*BC

In postfix notation, operators follow operands:

ABC*+

4. Design of the system

This section explains the design of the

system.

4.1 Flow design of the system

In Figure 1, firstly, lexical analysis is the process

of converting a sequence of characters for input

pseudo program into a sequence of tokens. The

resultant tokens are used by syntax analysis. We use

this second process for determining if a string of

tokens can be generated by a grammar. We can

determine whether the input program format is true

or false by using it. So, this analysis doesn't intend

to produce abstract syntax tree (AST) in our system.

Last, if the input format is true, we will interpret

it for producing result. In this process, we mainly

use polish notation for evaluating arithmetic

expressions of pseudo program.

Figure 1. Flow design of the system

The computer usually evaluates an arithmetic

expression written in infix notation in two steps.

First it converts the expression to postfix notation,

and then it evaluates the postfix expression. In each

step, the stack is the main tool that is used to

accomplish the given task. We illustrate these

applications of stacks in reverse order. That is, first

we show how stacks are used to transform infix

expression into postfix expressions and then we

show how stacks are used to evaluate postfix

expressions.

4.2 Transforming infix into postfix expressions

algorithm

We suppose Q is an arithmetic expression written

in infix notation. This algorithm finds the equivalent

postfix expression P.

1. Push “(“onto STACK, and add “)” to the

end of Q.

2. Scan Q from left to right and repeat Steps 3

to 6 for each element of Q until the STACK is

empty:

3. If an operand is encountered, add it to P.

4. If a left parenthesis is encountered, push it

onto STACK.

5. If an operator  is encountered, then:

a) Repeatedly pop from STACK and

add to P each operator (on the top of

STACK) which has the same

precedence as or higher precedence

than .

b) Add  to STACK.

[End of If structure.]

6. If a right parenthesis is encountered, then:

a) Repeatedly pop from STACK and

add to P each operator (on the top of

STACK) until a left parenthesis is

encountered.

b) Remove the left parenthesis. [Do

not add the left parenthesis to P.]

 [End of If structure.]

[End of Step 2 loop.]

7. Exit.

Continuously, we use the following algorithm for

finding the VALUE of an arithmetic expression P

written in postfix notation.

4.3 Evaluation of a postfix expression

algorithm

1. Add a right parenthesis “)” at the end of P.

[This acts as a sentinel.]

2. Scan P from left to right and repeat Steps 3

and 4 for each element of P until the sentinel

“)” is encountered.

3. If an operand is encountered, put it on

STACK.

4. If an operator  is encountered, then:

a) Remove the two top elements of

STACK, where A is the top element and B

is the next-to-top element.

b) Evaluate B A.

c) Place the result of (b) back on

STACK.

 [End of If structure.]

[End of If structure.]

5. Set VALUE equal to the top element on

STACK.

6. Exit.

5. Implementation of the system

In this section, we illustrate our system using the

following pseudo example program.

BEGIN

a=10;

b=20;

c=2;

Display a+ b*c;

END

5.1 Using lexical analysis in the system

Lexical analysis breaks up input program into the

following tokens. In our pseudo example program,

True Fals

e

Source

program

Lexical

Analysis

Syntax

Analysis

Pseudo

format ?

Interpretati

on

Result

Character Next

Token Next

Table 1. Generating tokens

Input Token Lexeme

BEGIN
a=10;
b=20;
c=2;
Display a+
b*c;
END

Keyword BEGIN

Identifier a

Operator =

Number 10

Punctuator ;

Identifier b

Operator =

Number 20

Punctuator ;

Identifier c

Operator =

Number 2

Punctuator ;

Keyword Display

Identifier a

Operator +

Identifier b

Operator *

Identifier c

Punctuator ;

Keyword END

where lexemes, BEGIN, Display and END

indicate the keywords, a, b and c indicate the

identifiers, ; indicates the punctuator, 10, 20 and 2

indicate integer numbers and =, + and * are

operators. See in Table 1.

Each time the parser needs a token, it sends a

request to the lexical analyzer. Then, the lexical

analyzer reads as many characters from the input

stream as it is necessary to construct a single token.

For instance, an integer token may contain any

sequence of numerical digit characters. The lexical

analyzer may report an error during scanning (e.g.,

when it finds an end-of-file in the middle of a

string). Otherwise, when a single token is formed,

the lexical analyzer is suspended and returns the

token to the parser. See the figure1. The parser will

repeatedly call the lexical analyzer to read all the

tokens from the input stream or until an error is

detected (such as a syntax error).

5.2 Using syntax analysis in the system

We use syntax analysis for checking the input

pseudo program whether it is true or false pseudo

format. In checking process, we must apply

following grammar rules.

5.3 Grammar rules for pseudo example

program

1. <program>  BEGIN <st-list> END

2. <st-list> <st> <st-list> 

3. <st-list> <st><st-list> 

4. <st-list> Є

5. <st>  <assign>

6. <st> <if>

7. <st>  <for>

8. <assign> id= <exp>;

9. <exp>  <term> <exp>

10. <exp>  + <term> <exp>

11. <exp>  - <term> <exp>

12. <exp> Є

13. <term> <factor> <term>

14. <term>  *<factor><term>

15. <term>  /<factor><term>

16. <term> Є

17. <factor>  id

18. <factor> num

19. <factor> (<exp>)

20. <display>  Display <display-list>;

21. display-list>  <exp>

22. <if> if <exp> then <st-list>

end if

23. <for> for <exp> from <exp>

to <exp> do <st-list> enddo

5.4 Parse tree for example program

Figure 2. Parse tree for example program

5.5 Transforming infix into postfix expressions

Let Q be our infix expressions:

 Q: a+ b*c

First we push "(" onto STACK, and then we add

")" to end of Q to obtain:

 Q: a + b * c)

 (1) (2) (3) (4) (5) (6)

The elements of Q have now been labeled from

left to right for easy reference. Table 2 shows the

status of STACK and of the string P as each element

of Q is scanned.

After step 6 is executed, the STACK is empty

and

 P: a b c* +

which is the required postfix equivalent of Q.

Table 2. Status of STACK for infix into postfix

expression
Symbol Scanned STACK Expression

(1) a (a

(2) + (+ a

(3) b (+ a b

(4) * (+* a b

(5) c a b c

(6)) a b c * +

5.6 Evaluation of postfix expression

Expression P written in postfix notation for

example Pseudo program:

 P: 10, 20, 2, *, +

(Commas are used to separate the elements of P so

that 20, 10 is not interpreted as the number 20102.)

The equivalent infix expression Q follows:

 Q: 10+20*2

Note that parentheses are necessary for the infix

expression Q but not for the postfix expression P.

We evaluate P by simulating Algorithm 3.3. First

we add a sentinel right parenthesis at the end of P to

obtain

 P: 10, 20, 2, * +)

(1) (2) (3) (4) (5) (6)

The elements of P have been labeled from left to

right for easy reference. Table 3 shows the contents

of STACK as each element of P is scanned. The

final number in STACK, 10, which is assigned to

VALUE when the right parenthesis ")" is scanned, is

the value of P.

Table 3. Evaluating the postfix expression
Symbol Scanned STACK

(1) 10 10

(2) 20 10,20

(3) 2 10,20,2

(4) * 10,40

(5) + 50

(6))

6. Conclusion

Programming environments have become

important parts of software development systems, in

which the language is just one of the components.

The major methods of implementing programming

languages are compilation, pure interpretation, and

hybrid implementation. Pure interpretation is an

easy implementation of memory source-level

debugging operations, because all run-time error

messages can refer to source-level units. Our system

intends to pseudo user monitor their program’s

outputs applying pure interpretation method. Before

we interpret input program, we check it whether it is

true or false pseudo format by using lexical and

syntax analysis.

7. Limitations and further extensions

This system can only interpret the correct syntax

format of the Pseudo program. So, we hope that

some of the students will try to interpret the input

Pseudo by constructing automatic correction for this

program even if it is not correct syntax. And this

system can only interpret the keywords (if, else, for,

BEGIN, END, Display). Other students will try to

interpret all keywords available in pseudo format.

8. References

[1] Olsen, A.L., “Using Pseudo code to Teach Problem

Solving”, Journal of Computing Sciences in Colleges,

21(2):231-236, 2005.

[2] Robert E. Filman, “Understanding AOP through the

Study of Interpreters”, Research Institute for Advanced

Computer Science, NASA Ames Research Center, MS

269-2, Moffett Field, CA 94035.

[3] ROBERT W.SEBESTA, “Concepts of Programming

Language”, ISBN 81-7808-161-X, Fourth Edition, 2001,

Addison Wesley Longman (Singapore) Pte.Ltd., Indian

Branch, 482 F.I.E. Patparganj, Delhi 110092, India.

[4] P.M.LEWIS II, D.J.ROSENKRANTZ, R.E.STEARNS,

“Compiler Design Theory”, ISBN 0-201-14455-7,

DEFGHIJKL - XA - 89876543210.

[5] Seymour, Lipschutz, Ph.D. “Theory and Problems of

Data Structures”, Professor of Mathematics, Temple

University.

[6] Elliot Berk, “JLex: A Lexical analyzer generator for

Java ™”, Department of Computer Science, Princeton

University, Version 1.2, May 5, 2007.

