
1

IMPLEMENTATION OF SPELL-CHECKING SYSTEM BY USING

LEVENSHTEIN DISTANCE ALGORITHM

Win Ko

University of Computer Studies in Mandalay

winkoucsm@gmail.com

Abstract

Natural Language Processing (NLP) is one of the

most important research area carried out in the world

of Artificial Intelligence (AI). NLP supports the tasks of
a portion of AI such as Spell Checking,Machine

Translation, and so on. Spell checking application

presents valid suggestions to the user based on each

mistake they encounter in the user’s document. The user

then either makes a selection from a list of suggestions

or accepts the current word as valid. Spell-checking

program is often integrated with word processing that

checks for the correct spelling of words in a document.

Each word is compared against a dictionary of

correctly spelt words. The user can usually add words

to the spellchecker’s dictionary in order to customize it

to his or her needs. This system is intended to develop a
spell checker (or spell check) application program by

using Levenshtein Distance algorithm.

1. Introduction

In computing, a spell checker (or spell check) is an

application program that flags words in a document that

may not be spelled correctly. Spell checkers may be

stand-alone capable of operating on a block of text, or

as part of a larger application, such as a word processor,

email client, electronic dictionary, or search engine.

Simple spell checkers operate on individual words by

comparing each of them against the contents of a
dictionary, possibly performing stemming on the word.

If the word is not found it is considered to be an error,

and an attempt may be made to suggest a word that was

likely to have been intended. One such suggestion

algorithm is to list those words in the dictionary having

a small Levenshtein distance from the original word.

When a word which is not within the dictionary is

encountered most spell checkers provide an option to

add that word to a list of known exceptions that should

not be flagged. A spell checker customarily consists of

two parts:
(1) A set of routines for scanning text and extracting

words, and

(2) An algorithm for comparing the extracted words

against a known list of correctly spelled words (ie.

the dictionary).

 The scanning routines sometimes include

language-dependent algorithms for handling

morphology. Even for a lightly inflected language like

English, word extraction routines will need to handle

such phenomena as contractions and possessives. It is
unclear whether morphological analysis provides a

significant benefit [5].

The word list might contain just a list of words, or it

might also contain additional information, such as

hyphenation points or lexical and grammatical

attributes. As an adjunct to these two components, the

program's user interface will allow users to approve

replacements and modify the program's operation.

The rest of the paper is organized as follows: Section

2 describes related work. In Section 3, we briefly

described tokenization, NLP process, lexicon;
levenshtein distance algorithm.Section 4 describes the

implementation details of our system. Finally we

conclude the paper in Section 5.

2. Related Work

In the Artificial Intelligence field, the utilization of

all the level of language processing explained above

offers the potential for truly habitable dialogue systems

[7]. Most spelling checkers allow the user to add

custom words to the spelling checker’s vocabulary.

Usually, the user also has the option to ignore specific

errors [6]. An adaptive spelling checker tool based on
‘Ternary Search Tree’ data structure is described in [5].

It learned media error pattern reposed by an algorithm

and also improved its suggestions with nondeterministic

traverse. The comparing results on a variety of

algorithms with the proposed method are eventually

concluded according to the suggestions of number of

iteration tones. Consequently, it is able to give more

flexibility, more accuracy, data compression rate, and

reliability with comparing to other proposed methods.

Alternatively, the used method can adapt and tune itself

by interactions by user or outer media and it improves
its suggestion list as time goes by.

A comprehensive spelling checker application

presented a significant challenge in producing

suggestions for a misspelled word when employing the

traditional methods in [4]. It learned the complex

orthographic rules of Bangla. It described the process of

checking the spelling of a Bangla document, compares the

methodologies with existing solutions available in the

literature, and then proposed solutions for each step. It is

shown by the performance and evaluation of the

proposed solution. It discussed the existing solutions and

mailto:winkoucsm@gmail.com
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Spelling
http://en.wikipedia.org/wiki/Word_processor
http://en.wikipedia.org/wiki/Email_client
http://en.wikipedia.org/wiki/Dictionary
http://en.wikipedia.org/wiki/Search_engine
http://en.wikipedia.org/wiki/Dictionary
http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Morphology_%28linguistics%29
http://en.wikipedia.org/wiki/English_language
http://en.wikipedia.org/wiki/Contraction_%28grammar%29
http://en.wikipedia.org/wiki/Possessive_%28linguistics%29
http://en.wikipedia.org/wiki/User_interface

2

explored their limitations, and proposed a complete spell

checking methodology for Bangla.

3. Theoretical background

3.1 Tokenization

Morphological analysis splits one token into several.

A token is used to separate by morphological analysis;

A token identifies a unit of information. Morphological

analysis splits one token into several. At first step of

processing is to divide the input text into units called

Tokens. Usually, tokens are the results of some

processing part that has performed lexical analysis and

divided a data set into the smallest units of information

used for subsequent processing. A token is an

occurrence of a term from the text of the field. It

consists of a term's text, the start and end offset of the

term in the text of a field, and a type string. The start
and end offsets permit applications to re-associate a

token with its source text. The type is an interned string,

assigned by a lexical analyzer naming the lexical or

syntactic class that the token belongs to. Words are not

always surrounded by white space. Often punctuation

marks attach to words, such as commas, semicolons,

and periods (full stops). It at first seems easy to remove

punctuation marks from word tokens.

Many Languages do not put spaces in between words

at all, and so the basic word division algorithm of

breaking on white space is of no use at all. Such
languages include major East-Asian languages; they are

Myanmar, Chinese, Japanese, and Thai. Ancient Greek

was also written by Ancient Greeks without word

spaces. Spaces were introduced by those who came

afterwards. In such language, word segmentation is a

much more major.

3.2 Process of NLP

Natural language process (NLP) system can after

possible solution to the problem of communication

between human and computer. There are five major

element in NLP system;

(1) Parser
(2) Lexicon

(3) Knowledge Base

(4) Understander
(5) Generator [1].

3.2.1 Lexicon

Lexicons are the heart of any language processing

system. They include the vocabulary that the system can

handle both individual lexical items and multi-word

phrases. A lexicon contains a complete inventory of all

words in a language along with relevant information

conforming to the specifications of a given theoretical

framework. A complete lexicon is supposed to contain

entries for all morphemes (meaningful units that make

up words) for the language. A lexicon is a list of words

in a language, for instance, the vocabulary along with

some knowledge of how each word is used. A lexicon

may be general or domain-specific, for example, a
lexicon of several thousand common words or a lexicon

of the technical terms of dentistry in some language.

The term 'lexicon', on the other hand, is used in a

technical sense in linguistics.

Each word or phrase in a lexicon is described in a

lexical entry. To say exactly what is included in each

entry depends on the purpose of the particular lexicon.

The details that are given may include any of its

properties of spelling or sound, grammatical behavior,

meaning or use and the nature of its relationships with

other words. Traditionally, lexicons are quite small and

are constructed largely by hand. There is a growing

realization that effective NLP requires increased

amounts of lexical information. A recent trend has been

the use of automatic techniques applied to large corpora

for the purpose of acquiring lexical information from

text. Statistical techniques are important aspect of

automatically mining lexical information [2].

3.3 Levenshtein Distance (LD) Algorithm

In information theory and computer science, the

Levenshtein distance is a metric for measuring the

amount of difference between two sequences (i.e., the

so called edit distance). The Levenshtein distance

between two strings is given by the minimum number

of operations needed to transform one string into the

other, where an operation is an insertion, deletion, or

substitution of a single character. A generalization of

the Levenshtein distance (Damerau–Levenshtein
distance) allows the transposition of two characters as

an operation. Some Translation Environment Tools,

such as translation memory leveraging applications, use

the Levenhstein algorithm to measure the edit distance

between two fuzzy matching content segments [8]. For

example,

 If s is "test" and t is "test", then LD(s,t) = 0,

because no transformations are needed. The

strings are already identical.

 If s is "test" and t is "tent", then LD(s,t) = 1,

because one substitution (change "s" to "n") is
sufficient to transform s into t.

Levenshtein distance is named after the Russian

scientist Vladimir Levenshtein, who devised the

algorithm in 1965. The Levenshtein distance algorithm

has been used in:

 Spell checking

 Speech recognition

 DNA analysis

 Plagiarism detection

3

4. Implementation

In Figure 1, it shows the overall system design for

spelling checking. In spelling checking, the system

breaks down the input sentences into word by word and

then the system matches the words with the lexicon that

has stored words. If the word is not found it is

considered to be an error, and an attempt may be made
to suggest a word that was likely to have been intended.

One such suggestion algorithm is to list those words in

the dictionary having a small Levenshtein distance from

the original word.

To apply the system database, the administrator must

enter the password. If the password is correct, then the

administrator can repair the system database such as

adding to database, updating, inserting and deleting to

the database. If the password is incorrect, the

administrator must reenter the password again.

Figure 1. Overall System Design

4.1 The Algorithm

Steps

Step Description

1
Set n to be the length of s.

 Set m to be the length of t.

 If n = 0, return m and exit.

 If m = 0, return n and exit.

 Construct two vectors, v0[m+1] and v1[m+1],

containing 0..m elements.

2 Initialize v0 to 0..m.

3 Examine each character of s (i from 1 to n).

4 Examine each character of t (j from 1 to m).

5 If s[i] equals t[j], the cost is 0.

 If s[i] is not equal to t[j], the cost is 1.

6
Set cell v1[j] equal to the minimum of:

 a. The cell immediately above plus 1: v1[j-1] + 1.

 b. The cell immediately to the left plus 1: v0[j] + 1.

 c. The cell diagonally above and to the left plus the

cost: v0[j-1] + cost.

7
After the iteration steps (3, 4, 5, 6) are complete,

the distance is found in the cell v1[m].

The Example

This section shows how the Levenshtein Distance is

computed when the source is “GUMBO” and the target

string is “GAMBOL”.

Steps 1 and 2

 G U M B O

 0 1 2 3 4 5

G 1

A 2

M 3

B 4

O 5

L 6

Steps 3 to 6 When i=1

 G U M B O

 0 1 2 3 4 5

G 1 0

A 2 1

M 3 2

B 4 3

O 5 4

L 6 5

Tokenizing

Start

Admin or not

Input

Text

LD algorithm

Process

Display Match

keyword

Stop

Lexicon

Display Keyword

Enter Password

Add, update,

Delete, Insert

Correct/not

http://en.wikipedia.org/wiki/Levenshtein_distance

4

Steps 3 to 6 When i= 2

 G U M B O

 0 1 2 3 4 5

G 1 0 1

A 2 1 1

M 3 2 2

B 4 3 3

O 5 4 4

L 6 5 5

Steps 3 to 6 When i= 3

 G U M B O

 0 1 2 3 4 5

G 1 0 1 2

A 2 1 1 2

M 3 2 2 1

B 4 3 3 2

O 5 4 4 3

L 6 5 5 4

Steps 3 to 6 When i= 4

 G U M B O

 0 1 2 3 4 5

G 1 0 1 2 3

A 2 1 1 2 3

M 3 2 2 1 2

B 4 3 3 2 1

O 5 4 4 3 2

L 6 5 5 4 3

Steps 3 to 6 When i= 5

 G U M B O

 0 1 2 3 4 5

G 1 0 1 2 3 4

A 2 1 1 2 3 4

M 3 2 2 1 2 3

B 4 3 3 2 1 2

O 5 4 4 3 2 1

L 6 5 5 4 3 2

Steps 7

The distance is in the lower right hand corner of the

matrix, v1[m] == 2. This corresponds to our intuitive

realization that "GUMBO" can be transformed into

"GAMBOL" by substituting "A" for "U" and adding

"L" (one substitution and one insertion = two changes).

4.2 Sequence Diagram of the System

There are four class components in this system. Each

component is responsible to provide the functions of

spell checking procedures. Firstly, each user inputs a

sentence into the system. The sentence is split and also

checked to prove the word validation. The last

component Suggestion sends the result back to the user

depending on the spell correction. A suggestion list is

additionally sent while the wrong spell is recognized by
the system. The change word () method also works on

changing the correct word defined by the user.

Figure 2. Sequence Diagram of the System

:User

1: Read_File()
1.1:Spliting

Sentence()

: Open : Split : Check : Suggestion

1.1.1:Check

Word()

1.1.1.1:Accept_Suggesti

on()

Display Correct

or Wrong

Message

2:Change Word()

Display Changes

5

4.3 Spell checking with suggestion

In the Figure 4, the user must enter the sentence in to

the working area. And then, the user can check the

spelling. When the user checks the spelling, the system

matches the input words with Lexicon. If the spelling

error is found, the system will display the error words to

the user.

The user chooses the error word and then the user

can used the suggestion button. The system is used to

give the possible suggestion list by using the

Levenshtein Distance algorithm. This suggested list

allows the user to choose the correct word. The user can
use Correction button to change with correct word.

Figure 4. Error Checking and Suggestion

5. Conclusion

This system implement the spelling checking based

on Levenshtein Distance Algorithm as well as the

spelling check of English words or sentence. By using

this system, it supports the correct spelling for English

words occurrence. It can help to overcome the language

barrier between people using English languages. In this

system, it allows the simple sentence. It is just only for

spelling checking with possible suggestion. In this

system, the lexicon contains nearly about 3000 words.

So, the system cannot check more than 3000 words.
The system can not check the grammar rules. Complete

Dictionary and grammar rules can be added into the

existing system. This system can be extended to

implement the sentence patterns and language

translation.

References

[1] Efarim Turban, Expert System and Applied Artifical

Intelligence, ISBN 0-02-94b5b5-b, Macmillan

Publishing Company, New York, 1992

[2] H.Mishkoof, “Understanding Artificial
Intelligence”, The Staff of the Texas Instrument

Information Publishing Center, First Edition ISBN:0-

672-27021-8

[3} N.Daniel, “A Rule-Based Style and Grammer

Checker”, 28 August 2003

[4] U.Z.Naushad and K.Mumit, “A Comprehensive

Bangla Spelling Checker”, Center for Research on

Bangla Language Processing, BRAC University,

Bangladesh

[5] B.Loghman, Q.Z.Behrang

“ CloniZER Spell Checker Adaptive, Language

Independent Spell Checker” AIML 05 Conference, 19-

21 December 2005

[6]http://en.wikipedia.org/wiki/Spelling-checker

[7]http://www.03NLP.LIS.Encyclopedia.htm

[8]http://en.wikipedia.org/wiki/Levenshtein_distance

